Discussion Paper No. 614

A LINEAR TIME RANDOMIZING ALGORITHM FOR &OCAL ROOTS
AND OPTIMA OF RANKED FUNCTIONS

by
Eitan Zemel**

September 1983
Revised July 1984

*Supported, in part, by NSF Grant ECS-812141, and by the Mia Fischer
David Foundation through the Israel Institute of Business Research, Tel Aviv
University. IIBR working papers are intended for preliminary circulation of
tentative research results. Comments are welcome and. should be addressed
directly to the author.

**J. L. Kellogg Graduate School of Management, Northwestern University,
Evanston, Illinois 60201. Part of this work was done when the author was
visiting Tel Aviv University.

Abstract

Consider a family F of n functions defined on a common interval U. For
each x € U, let 2 (x) be the k-th largest element in the set of function
values at x. Similarly, let I3 (x) be the sum of the k-largest elemeﬁts in
this set. We give a linear time randomizing algorithm for finding local
roots, optima, deflection points, etc., of £ or L. The algorithm is
generalized to the cost effective resource allocation problem and to various

variants of the parametric knapsack problem.

Keywords: selection, rank, randomizing algorithm, parametric methods.

A LINEAR TIME RANDOMIZING ALGORITHM FOR LOCAL ROOTS AND
OPTIMA OF RANKED FUNCTIONS
by
Eitan Zemel

Let F = {fl,...,fn} be a given set of continuous functions defiuned on a
common interval U = [a,b] whose end points may be at infinity. We are
interested in functions derived from F by order infqrmation. Specifically, we
deal with the two functions £, (x), whose value fér each x € U is the k-th
largest element in the set F(x) = {f;(x),...f (x)}, and I (x) whose value is
the sum of the k largest elements in that set. In particular, we give fast
(linear time) randomizing algorithms for finding local optima, roots,
deflection points, etc., of £ and L. Our methods are generalized to yield
efficient randomizing algorithm for various ratio knapsack problems and for
the Cost Effective Effort Allocation Problem [l1]. Similar methods yield an
0(n log n) randomizing algorithm for the Weighted Euclidean One Center Problem
[4], which can be solved deterministically in O(n log2 n), Megiddo [3].

The deterministic foundation on which our algorithm is based is the
parametric approach of Megiddo [2]. Indeed, the methods of [2] can yield an
0(n log2 n) deterministic algorithm for our problem. The algorithm uses
internally induced randomizations in the spirit of Rabin [5]. Thus, all the
probability statements provided are worst case statements and do not rely on
any assumption concerning the distribution of problem instances. A key
element in achieving the linear time behavior is the concept of an
g-partition, i.e., binary search which is not carried to conclusion. Without
this element, the running time of the algorithm is O(n log n).

For the sake of briefness, we treat in this note the case of finding a
root of L. The reader should have no difficulty extending the results to the

case of L or to the problems of finding a local optimum, deflection point, etc.

An earlier version of this paper was circulated as [7].

IT. The Computational Model

We consider here the problem of finding a local root of R over U. By
finding a local root of a functiom, g, over an interval [x,y], we mean the

following:

(1) If f(x)eg(y) = 0, return x or y as the case may be;

0, return a point z € [x,y] such that g(z) = 0.

N

(1i) 1If glx)e-g(y)

v

(iii) If g(x)eg(y) > 0, return an error message.

The basic framework presented here is able to handle any set of
continuous functions F. However, we need some conventions regarding our
notion of a computational step. These are summarized by the following two
assumptions:

(a) For each function f; € F, and each x € U we can compute fi(x) in constant
time. (In fact, computing the sign of fi(x) would suffice.)

(b) For each f; € F and each interval [x,y] ¢ U, we can find a local root of
f; in [x,y] in constant time (with the convention on the sign of
f;(x)*£;(y) provided above).

If the functions in F are linear, assumptions (a) and (b) require that
the four basic arithmetic operations be carri;d out in constant time. If F
are quadratic, then we require that square roots can also be taken in constant
time, etc.

The following two additional assumptions are necessary for the analysis:
(c) There exists a constant s (independent of n), such that for each pair

(fi’fj) € F, the equation fy(x) = fj(x) has at most s roots which can be

found in constant time.

(d) There exists a constant t (independent of n) such that £ has at most t

roots in the interval U.

Assumption (c) would clearly hold if the fucntions in F are polynomials
of bounded degree. Assumption (d) holds with t = 1 if the functions in F are
monotone, or if these functions are convex, and one searches for the minimum
of L. Under the convexity assumption, (d) holds with t = 2 for the problem of

searching a root of L.

I11. The Test

In the squeal we consider the only interesting case l(a)-i(b) < 0, say
2(a) < 0, 2(b) > 0. Let x be any point in the interval (a,b). We call the
operation of computing the sign of 2(x), a test at x. Assumption (a) implies
that this can be accomplished in 0(n) time. Clearly, if 2(x) > 0 then a root
exists in the interval (a,x); if 2(x) < 0 then a root exists in (x,b); and if
2(x) = 0, then x is the required root. In a typical binary search algorithm,
a test enables us to reduce the interval of interest U. A key idea in the
parametric method of Megiddo is to perform the test in selected positions

which enable us to reduce the size of F too.

IV. The Rank of an Element

Let x* be the root of L which is eventually found by the algorithm. The
rank of a function f; in F is defined relative to this point. Let
' F; € F, Fi c F and Fz S F be the sets of functions whose values at X are
greater than, equal to, and less than fi(x*), respectively. The rank of f; in
F is the ordered triplet of cardinalities (lF;|,'Fi|,|Fi'). Similarly, the
weighted rank is the triplet of toﬁal weight inside these sets. Clearly, if
the partition F%,F%,F% is known, we can examine the rank of f; relative to k
and discard from further considerations two of these three subsets.

* . .
Unfortunately, as x 1s not known in advance, neither is the rank of f;.

However, we can still rank f; in a roundabout way by performing several tests

at key points.

Indeed, let xJ = {x{,...,xgj} with P < s, be the set of roots of the
equation f;(x) = fj(x) inside U. These roots induce a partition of U such
that f; alternates, being above and below fj on subsequent intervals of this
partition. Thus, we can find whether fi(x*) is above or below fj(x*) by
locating x* within the set XJ. Let X = {xl,...,xp} be the union of the sets
Xj, j=l,.ee,n, j#i, with p < (n-1)ss. The complete partition of F into the
three subsets F%, F%, F% can be identifed if the location of x* is known
relative to all the points in X. But this can be found by performing log(p)
tests at suitably chosen points of X. Since p = 0(n), and since each test
costs 0(n) steps, this can be the basis of an 0(n log n) randomizing algorithm
for our problem. An alternative 0(n log n) randomizing algorithm can be
obtained by using Reischuk's randomizing parallel algorithm for selection [6]
within the framework of Megiddo's method [2]. To achieve linear time
performance, we have to economize further. This can be accomplished by using

a relaxed form of ranking which we call e-ranking.

V. eg-ranking and eg—partitioning.

Let 0 < & <1 be arbitrary but fixed. An e-partition of F by f; is any

partition of F into four subsets, G§, «=1,2,3,4 such that for «=1,2,3

(2]
R
In
(2]
H R

while for a = 4
|Gf| < ¢ |F|.

Clearly, there are numerous e—partitions associated with a given function fi

as the only requirement on Gé is on its cardinality. An e-rank of f; is the
ordered triplet (‘Gi|,|G§|,|G2|) associated with one of these e-partitionms.

A weighted e-partition is similar to an e partition, but Wit% the requirement
that the weight of Gé does not exceed ¢ times the total weight. Although not
unique, an e-rank gives some useful information on the “real” rank of a

function f; as for «=1,2,3, one has
6§ < |¥§] < [ef] + e|F].

A quick and eaéy way to compute an £ rank of an element fi is the
following. Let X = {xl,...,xp}, p < (n-1)s be the set of intersections of fi
with the other n - 1 functions of F. By performing a test at the median
element of X, we establish the location of x* in relation to one half of the
points in X. A second test at the median of the remaining set establishes the
location of x* with respect to an additional quarter of these points.
Continuing in this fashion for a total of log(s/c) tests, we are left with a
subset of at most £(n-1) < en of the points of X. But then\the number of
functions fj € F which cannot be put in one of the sets Gf,éa=1,2,3 is at most
en. For any prespecified € > 0, this amounts to 0(n) overaﬁl effort, since s
is a constant. We note that a similar effort is needed for deriving an

g-weighted partition. The latter can be achieved by performing tests at the

weighted medians of the appropriate sets.

VI. The Algorithm and Its Analysis

We are now in a position to state our algorithm. Recall that we denote
by x" the root which is eventually produced by the algorithm. At each
iteration, we pick up a function fi € F randomly and generate the appropriate

g-partition and e—-rank. As we demonstrate below, this will enable us to

eliminate a subset of F from further consideration. When F 1s reduced to a
single function, we can conclude the search by finding a root of that
function. Although the set of active (uneliminated) functions varies from
iteration to iteration, we abuse notation and refer to this set as F, with a
similar convention with respect to the set; defining a true or an e—partition,
and to n and k.

We now examine the process of elimination. Assume that at a given point
we are able to conclude, for a given function f;, that fi(x*) > 0. Then
clearly fi can be removed from the set F without any effect on our ability to
find x*. Similarly, if we can conclude that fi(x*) < 0, then f can be
removed provided k is decremented by 1. In order to understand how
elimination can take place, assume first that the true rank and partition
associated with f; are known. Clearly, if |F1| > k then each function fj in
F% u Fg must satisfy fj(x*) < 0 and can be eliminated. Similarly, if
|F$|> n — k, then the functions in F% U F% can be eliminated as these
functions must be positive at x*. Finally, if neither comditions hold, then
fi(x*) mist be zero and we can conclude our search. In each of the former two
cases, if fi(x*) is located somewhere in the central region of the set F(x*),
then the number of functions eliminated is a significant fraction of n.

In actuality, we only have information about the erank of fi’ rather
than about its true rank. However, we can still go through with the
elimination process with only small modifications. For instance, assume that

IG%I ?» k. Then obviously |F%| must satisfy this inequality and we can safely

eliminate G% U Gg. Note that the difference between the magnitudes of G% v Gi
and F% U] Fg is at most een. A similar situation arises when ’GgI >n - k. If

neither condition holds but IGi U Gi, > k then Gf can be eliminated.

Symetrically, if |G§ U Gi‘ > n -k then G% can be eliminated. Finally, if

none of the above mentioned conditions holds, i.e., k > |G;| > k = en and
a-k > IG3| > n -k - en, we cannot infer whether fi(x*) is positive or
negative and no elimination can take place. (Note that this situation never
arises if the true rank of f; is known.)

Let @ > O be a constant to be specified later. Call an iteration a
success if we eliminate at this iteration at least aen variables. We wish to
assess the probability of success. Throughout this analysis we ignore the
issues of rounding and treat expressions like aen as integers. The reader
should have no difficulty realizing that the errors introduced by this
approximation are negligible and do not change the conclusions of this
analysis.

Assume first that x* is the unique root of 2 in U. Consider any
permutation of the indices of F(x*) which is consistent with the order of the
set F(x*), feee, £, (x) > £, (X) > oo » £, (x). Llet i=j_. Obviously,

I I Ja :
since f; is chosen randomly from F, r is uniform over the integers 1 to n.

Denote the integers in the set
{jrlr € [1,(ate)n] u [n = (a + €)n, n] U [k - en, k + enl},

forbidden. Clearly, the probability that r falls in the forbidden rangé is at
most 2a + 4e. It is easy to see that any choice of f; which is in the
complement of the forbidden set must yield a success even for the worst
possible choice of the set Gé.

Consider now the case of several local roots. Since the order of the
functions in F may be different for each root, the forbidden regions with
respect to each root may be disjoint. For each given root, the probability of

falling in the forbidden range is as calculated in the previous section.

However, x" can not be assumed fixed since its identity depends on the random
steps of the algorithm. To overcome this difficulty, let A be the event:

[fi is in the forbidden range for a given root of £ in U] and let B be the
event: [f is in the forbidden range for at least one of the t roots of £ in

U]. Clearly, Pr{A] < 2a + 4e¢ and Pr[B] < tePr{A] < t(2a + 4¢) = q. Choose

the constants « and € so that 3 < 1. This is an upper bound on the

" probability of failure. We recall that the work per iteration is

c log (s/e)Jn = cyn for some small constant c, independent of success or
failure.

Let 5, be the running time of the algorithm, with n functions left to
go. S, is a random variable whose distribution depends on the data (i.e., on
F and U) in a very complex way. However, we can analyze the running time, Ty
of a slightly modified version of the algorithm. The modified version
proceeds precisely as the original algorithm, except that whenever success
occurs, exactly ae°n functions are eliminated (ever if more could have been).

Analyzing T, is also complex, but it can be easily observed to be

stochastically dominated by X, defined recursively by the equation

X =

" c;*n + Yoxn + (1 - ¥)X

(1-g)n
where Y is a zero—one random variable, independent of X and n and such that
Pr{Y = 1] = q. (In the process defining X success occurs with probability
exactly 1 - q while in T the probability is at least that.) X, can be
analyzed easily. In fact, one can show that

€1

E(Xn) = T -9z = con

and

Var(Xn) = dzn2

for some easily obtained constant d. The first condition immediately yields
that E(Tn) < con. Furthermore, using the second condition and Chebyshev's
inequality, we get that for any prespecified level of confidence, p, there

exists a constat c(p) such that

Pr[Tn > c¢(p)en] < p,

i.e., our algorithm is linear time to any desired level of confidence.

VIiI. Extensions

We consider here some extensions of our method. Since the techniques
employed in this section are close in spirit to those of the previous one, we
treat here a simplified version of our problem. Specifically, whenever a
comparison is made between elements (functions) we ignore the possibility of a
tie so we can say that the rank of an element is simply the number of elements
larger than it and the weighted rank is the weight of these elements.
Similarly, an e£-rank and a weighted s-rank are defined as the number and
weight, respectively, of the elements known to be above an element in an ¢ or
a weighted eg-partition. As seen in the previous section, the existence of
ties can only speed up the algorithm so the results derived are valid for the
general case. Also, we consider here the case of a unique root x* of 2 in
U. In the applications which follow, this condition is met. However, by the
same reasoning applied in the previous section, the order of the running time
is not affected, provided the number of roots is bounded by a constant.
Finally, we ignore the issue of rounding and regard expressions like ae*n as

integers. Again, the implications of this simplification are trivial.

..10_

Consider first the original problem of finding a local root of 2 but with
some additional structure imposed on the set F. Specifically, assume that the
set F is partitioned into m subsets Fl,...,Fm such that the sorted permutation
at x* of the functions in each subset Fi, i=l,...,m, is known in advance.

This additional information allows us to speed up the solution, yielding, for
appropriate values of m/n a sublinear algorithm.

Assume that k < n/2. Let 0 < B, y <1 to be specifed later. Let
ny = lFi'. Denote by hy, i=l,...,m, the element whose rank in Fl is Pn; and
let H = {hlv""hm}' Let h € H be a given element and let its weighted rank
in H be yn, where the weight of h; is taken to be nj, i=l,...,m. Clearly
there are at least B y n functions f; € F which are larger than h at x*, and
at least (1 - B)(1 - y)n functions which are smaller. If 8yn > n/2, then
these (1 - B)(1 - y)n functions can be eliminated, being negative at X e
Now, assume that the g—weighted rank of h iﬁ H is Y'n. Then, clearly

y - e < Y' < v, and 1if By'n > n/2 then at least [(1 - B)((1 - Y' - e)ln
functions can be eliminated. Note that BY' > B(y - €) and that

1 -pqQa - Y'- e) » (1 = B)(1 =y - ¢€)e Thus, if B(y - &) > 1/2 we
eliminate at least (1 - B)(1 - y - &£)n functions.

Let @ > O be a constant to be specified later. Call an iteration a
"success” if we eliminate at least an variables. Clearly, a success occurs
whenever vy € [1/28 - &, 1 — ¢ - (¢/(1 = B)] = T. Choose constants a, B, €
such that T # ¢. We wish to compute the probability p that y € T. Let & be
the size of the interval T. Pick h; € H randomly, with probability nj/n.
Then, p is approximately equal to y, the degree of approximation depending on

the relative sizes of the sets Fi, i=1,.0e,n. In fact, let

- 11 -

then p > § —= 2A. To achieve a small A, break each subset Fl Gith n; > §/10
into 10n;/& separate pieces, each of size §/10. This ensures that A < §/10
and thus p > 85/10, Note that after elimination is accomplished, the
different pieces which make FL can be put back together, so that throughout
the algorithm, m is increased by at most a constant, 10/8. Since the work per
iteration is O(m log (n/m)), we get by an analysis similar to that 'of Section
VI that the running time is O(m log2 (n/m)) to any level of confidence. A

specific example 1Is the Cost Effective Resource Allocation Problem:

m
max izlfi(xi)/gi(xi)

subject to

x, » 0, integer

where F = {fl""’fm} and G = {gl,...,gm} are sets of concave and convex
functions respectively. The algorithm proposed here can solve this problem in
0(m logzm) steps with high probabilityAas opposed to the 0(m logzm logzk)
worst case deterministic complexity, [1].

As another extension consider weighted problems where a weight, w; > O,
is attached to each function fi € F. A.case in point is the max ratio

knapsack problem:

2 cjx. + c
jJEN

ydx, +d
jen 33 °

max

- 12 -

subject to

2 a,x, < ao
jen J
0 < Xy <1, j €N
with
dj > o, j=o,1,"',n'

or the parametric knapsack problem:

min max) (c, - Ad Dx
A x jeN]]

subject to

Y a,x. < a
jen J 0

i 0 < xj < 1, j € N.

Both these problems can be solved in O(n 1og2n) deterministically by the
methpds%of [2]. By picking a variable x4, i € N randomly (with probability
%) and computing its weighted rank, we can get an 0(n log n) randomizing
running time. Also, by picking x;, i € N with probability proportional to a;
and computing its e-weighted rank, we get an o(n log A) randomized running
time, where A is the ratio of the largest to smallest weight coefficient,
i.e., | :

A = max rili.
1,7 %3

[1]

[2]

(3]

(4]

(5]

(6]

(7]

- 13 -

References

Megiddo, N., "An Application of Parallel Computation to Sequential
Computation: The Problem of Cost Effective Resource Allocation.”
TWISK 202 CSIR-NRIMS, Pretoria, S. Africa, 1981.

, "Applying Parallel Computation Algorithms in the Design of
Serial Algorithms.” SACM, 30, 4 (1983), pp. 852-865;

, 'The Weighted Euclidean 1-Center Problem.” Math. of 0. R.,

8, 4 (1983), pp. 498-505.
, and E. Zemel. "An O(n log n) Randomized Algorithm for the
Weighted Euclidian One Center Problem.™ Forthcoming.

Rabin, M. O. "Probablistic Algorithms.™ In Algorithms and

Complexity: New Directions and Recent Results, J. F. Traub (ed.).

Academic Press, 1976.
Reischuk, R., "A Fast Probabilistic Parallel Sorting Algorithm.” 22nd

Annual Symposium of Foundations of Computer Sciences, pp. 212-219,

1981.
Zemel, E., "A Parallel Randomized Algorithm for Selection with
Applications.”™ Working Paper No. 761/82, Israel Institute for

Business Research, Tel Aviv University, November 1982.

