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A simple geometric argument is given which explains the reason certain paradoxes coming from the voting

and the probability-statistics literatures occur. Particular attention is focused upon difficulties which occur
with ranking methods and with conditional probability. The approach not only unites these paradoxes, but
it also uncovers several new ones.



1. Introduction.

The social choice literature s filled with descriptions of "paradoxes". In thi
paper we explain why some of them occur; tec do this, I will provide an elementary,

geometric arqument which describes the csource of several of the paradoxes for the

"m

voting and the agenda manipulaticn literature. Of egqual interest toc economice iz that

this same argument exposes nontransitive behavior which arisecs in probability and
statistice. Thie is of interest not only because it unites paradoxes coming from
different literaturec, but also becaucge it ic common for models in economics to be
bazed upon probabilistic concepts cuch as conditional probability and the combination
of random variables, Thic ie particularly true for the evolving field of information
in ecoromics, Here i1t is quite common to use constructs such as Bavesian techniques
ang conditioral probability. This ic alsc true in other contexts where prices and
other action wvariables are conditioned upon certain information. So, part of the
thrust of this paper is to describe certain anomalies which crop up in these bacic
mcdelling concepts, (Secticne 2 and 3), although our main emphasis will be with sccia
choice types of examples.

Although the explanation given here is elementary, (it depends on the open
mapping principle and come singularity theorv), It appears to be new and it uncovers
new examples., Indeed, cne point which will emerge is the ease with which paradoxes
can arise. This suggests that unlese particular care is taken in models which use,
cay, conditional probability, then there may exist ccncequences which are unexpected
or undesired. Moreover, the basic idez of the argument given here can be abstracted
in a form which will unite several conclusions from the social choice literature such
ac the Arrow Thecrem, the Gibbard-Satterthwaite Thecrem, etc. This abstraction will
be discussed elsewhere, To illustrate the argument, we will provide several new

results concerning ranking procedures and voting., (Section 3.3

v
f
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A "paradox" is nothing more than a counter-intuitive behavior of a relationship.
Because this behavior is unexpected, and perhaps undesired, it is important to Know
whether a class of paradoxes can be dismissed as being an anomaly consisting of
isolated examples. Our argument indicates that this isn’t the case; the type of
examples which are discusced here necessarily accompany the modelling of a svstem and
they do so in a robucst fashion. This approach will be used to determine the
informational ccntent of these paradoxes--how prevalent are they and the type of
analysic required to determine whether they do, or do not, occur. (Section 4.)

Te illustrate the flavor of these paradoxes, we start with two protctype

examples. In the following sections I will indicate how they are related, and how

they can be extended.

1. CONDITIONAL PROBABILITY AND SIMPSON’S PARADOX. Suppose a certain drug ic to
be tected in Chicago (C)» and in Los Angles (C’). @& tect group (T) will receive the
new drug, and a cortrol group (T7) will receive the standard treatment. Some pecple
are returned to health (H), while others are not (H’>, Assume that in both
communities the new drug is determined to be successful because it cures the zick with
a higher ratic than the standard treatment {(P{(H:CT)>P(H:CT’), PCHIC/TOXPCH:C'T ). Is
it possible for the aggregated test resulte to have a reversed conclusionj namely, the
new method is judged not to be csuccessful because P{H:TIKP{H:T">»? 1t is, and thic
ie Known as Simpson”s paradox. #An explaration (which differs from that given here)
and an excellent discuscion of this paradox and how it relates to the “sure thing”
principle is given by C. Blyth in [1]J. Examples where this paradox arises with real

data can be found in [11].

It will be shown that this inconsistency phenomena is characteristic of
conditional probability problems and models involving the combinaticn of random

variables., With the introduction of additional conditions, almost any imaginable
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extension can occur. For instance, suppose that the tests are conducted in university
facilities (U and in private tabs (U’), There exist examples whereby the tests are
uncsuccessful in each university and in each lab as well as in each community, but then
they are succecsful in the agagregate; cr, there ¢xist examples where the conclusions
oscillate at each level in that the tect is succeszsful in each of the {acglities, but
they are unsuccessful in both communities, and then thev are succescsful in the
aggregate; etc.

Indeed, the appropriate ratic of success to failure in each of these examples can
be made to exceed any predetermined constant. For instance, with the above example
where the conclusions oscillate, there exist situations where in each facility the
preobability of regaining health by uce of the drug is at least twice that obtained br
use of the standard treatment. But when viewed from the vantage point of each
community, the standard treatment is at least 3 times better than that achieved by the

drug! Finally, when viewed from the total aggregated level, the drug ic at leact 4

times better than the standard treatment!

2. VOTING AND RANKING METHODS: The iscsue of the aggregation of preferences is
central to economics, where a common prototype system is voting methods. Here, a weil
Known phenomena can occur when wcters rerni three alternatives {a,b,c) with a weighted
voting method. Suppose the outcome is a*hdc. It is possible for a majority of the
came voters to prefer ¢ to a, even though this is the reversal cf their original
ranking!

The situation can be much worse; this ic indicated by the following example which
illustrates the tvpe of results we obtain. Assume given a ranking of N2
alternatives, say a|>a2>...>a;. I1f this represents a group’s true linear
ranking, then it would determine their pairwise rankings of the alternatives. To show
that this need not be the cace, decignate, in an arbitrary fashion, a preferred

alternative from each of the N(N-1)/2 pairs of the alternatives. So, for each pair,
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this choice need not be consistent with the above ranking of the N alternatives, rnor
with the choice made for any other pair.

It will be shown that there exist examples of voters, each of which has a fixed,
linear ranking of the N alternatives, so that when the voters use the plurality voting
syestem (each voter votes only for their first place alternative) te rank the N
alternatives, the result is the above N-fold ordering. O0On the other hand. when the
came voters consider each of the Ni{N-1)/2 pairs, the alternative designated above will
win with a majority vote. As a corollary, it folows that ali sorts of ranking
paradoxes and agenda manipulation examples can be created. (The special cace of this
result where N=3 was given by P, Fishburn in [4). A related class of voting paradoxes
which also is suybsumed by the analysis in this paper is given by D,G. Saari in [&,7]1,)

These examples illustrate that a true linear ordering may be impossible to
achieve when individual linear rankings are agagregated, and they are characteristic of

problems experienced by ranking methods for sets of random variables.

In this paper we will show how these paradoxes, as well as others, are related.
For simplicity of exposition, we concider only those random variables which have a
finite number of values. However, because the explanation of the paradoxes is the
open mapping principle, what follows extends in an obvious fashion to more general

clacsces of random variables,

2. Characteristic Functions and the General Result.

The unifying explanation for all of the paradoxes discussed in this paper is the
‘cimple geometric property of open sets being mapped to open sets. The following
standard statement, which ensures a "local open mapping", will be sufficient for most

of what follows.



Proposition 1. Let F be a smooth mapping from a m dimensional manifold M to a n

dimensional manifold N where m)n, For some value v in the interior of N, assume there
is a pre—image point of v, say p, which is an interior point of M. If the Jacobian of
F at p has maximal rank, then there is an open neighborhood of p which is mapped onto

an open neighborhood of v.

For a more general setting where the domain and the range are function spaces, the
Jacobian of F is replaced with the Frechet derivative of F, and this derivative must
satisfy the conditions for an open mapping.

We will use the prototype drug example to illustrate the basic ideac of this paper
as to why the open mapping property captures the non-trancitive behavior which is the
source of the paradoxes. <Later in this secticn, this example will be used to
motivate the statement of Theorem 3.) Following the proof, a general theorem for
characteristic functions and conditional probtability will be stated. Then, we

conclude thie secticon with the basic theorem for this paper.

Theorem 1. Consider Example 1 where a drug is compared with a standard treatment,

Let A be the variable representing the sets C+C’, C, C’, CU, CU’, C’U, and CU’. For
each of the 7 comparisons of P(H:TA) with P(H:T’A), designate which probability is to
be the larger. Indeed, for each A, choose a constant da greater than unity and
express the comparison as an inequality where the larger probability is to be at least
da times the smaller value. There exists examples which simultaneously satisfy all

of the specified inequalities.

Procf. To prove the firct part of the theorem, we need to show that for any choice of
sigrns for the severn relationships P(H:TA)-P{H:T“A), there exist examplec of data which

will realize it. So, view these egquations as being the 7 compcnents of a mapping F
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into R?, where the domain is some space representing data points., The conclusion
follows should the image set of the “comparison mapping” F meet all of the open
orthants of R7,

Each of the orthants has a common boundary point, the origin §. This “comparicon
point" will be used to prove the theorem in the following way. First, an interior
point, q, of the domain is found in F-!(0) so that the Jacobian of F at g has
maximal rank. This implies that F will map an open neighborhood of q onto an open
rreighborhood of 03 such an open set must meet each of the orthants., Thus, for any set
of signs, there will be domain points, or examples, which will realize all of them
simultanecusly, So, the technical part of the proof is to express the domain and F in
such a way so that F is a smooth mapping.

There are 8 sets determined by the varioue intersections of the sete T, C, U and
their complements. They are:

S =TCU S2=TCU~ S3 =TC’U S4=TC" U

Ss=T’CU  Sg=T’CU’ §,=T’C"U Se=T'C’U~"

An easy way to derive a smooth manifold M, which will serve as the domain of F, is to
treat each of these sets as a disjoint space. Let X; designate the characteristic
function of the set H in Sy. Let Y; represent the recults at the community level;
accordingly, define Yy=Xz254Xz3-1, j=1,..,4. This is the characteristic function

of H in the set Szs+Sz25-1. For the total aggregated results, Z2;=YzstYzs-i,

J=1,2, is the characteristic function of H on the appropriate set.

1f x5 denotes the value of P(X;=1), then x; is in the unit interval I,
J=1,..,8, Let d; designate P(S;) in the space 1JS¢k. The ds variables
describe a simplex in R® which is denoted by Si(8) and defined by Eid:=1. Thus,
these 16 variables lie in the 15 dimensional space

M= 18 x Si{8).
By use of the standard relationchip

2.0 P{(B) = P(BEY+P(BE’)Y = P(E)P(B:E)+P(E)P(B:E"),
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it follows that the probabilities P(Yy=1) and P(Z;=1) are rational functions of
the x“s and the d’s.

Comparison map. The first four components of F are given by

2.2) {xy-xs4sles

where ej is the unit vector in R? with unity in its jTH component. This is

the comparison of the results from the individual facilities., For comparisons at the

community level (A=C,C’)>, the components of F are

2.3 {yy -v3e2)e1+4, j=1,2 where

2.4) yy={xzy-1dzy-1¥x23d253/{dz2y-14dzs2.

Tte function ¥sy represents P(Y;=1:525-1+45z5). The last component of F
corresponds to A=C+C”, and it is

2.5) Az, - zzle>

$

L
L]
-
where 2z, =Lx:d;/z..d,v and 22=‘ZXJdJ/-/—-dJ.
REY 2=t i*s J:i

-
4

Oper mapping, Clearly F is a smopoth mapping. That the Jacobian of F has maximal rank

at some preimage of 0 is a direct computation. 1Indeed, it follows from this

computation that the maximal rank condition holds everrwhere except on a certain lower

dimensional set in the preimage. <These points of lower rank correspond to where

either the value of the ¥'s or the z“¢ are determined because the corresponding pairs

of x’s or ¥“s are equal.)

The specified choices of the 7 comparisons determines an orthant of R?; dencte
it by B. By construction, all poszible data points with this behavior are in
U=F-1(B>., By continuity, U is an open set; we must show that it is nonempty. But,
because F ie an open mapping in the neighborhocd of some point in F-1{0), (the
Jacobian has maximal rank>, F maps an open set from M onto an open set of 0, and so
this open set meets B. Thus, F-1(B), and U, are nonempty,.

Next, we must show that there are points in U which correspond to a “finite
experiment”, But, any ratioral point will suffice. A multiple of the common

denominator of the disj“s is the total number of experiments. The same multiple of



the numerator of d; corresponds to the cardinality ;{ Sr, and it serves as a
multiple of the denominator of xy. Since the rational pointes are dense and since
there is an open cset of points which satisfy the conditions of the theorem, there are
an infinite number of points which correspond to a finite experiment.
The set F-1(0), It remains to show that the inequalities can be bounded below by the
designated constants. So, once the values of da are specified, the inequalities are
of the type x3>daxs+s with a similar relationship for the y‘s and the z°s. To
see how the proof goes, let g={qi,..,q7> be a point in this orthant. Then
F-t(g) is given by %s5-x;4+4=qs with a similar relationship for the y’s and the
2’s. If qs is positive, then this becomes
X1/x144 2> 1 + Q1/X144.

I a point in F~!{g) can be found where xsy+4 is small enough so that the right
hand side is bounded below by da, then the specified inequalities will follow. Thus,
the mathematical explanation for these inequalities is that F-!1(0) contains 0xSi(8)
and that part of this set consists of boundary points for U, <(The 0 point permits the
xy components to become arbitrarily small.)

A less abstract verification follows. Notice that z; is between yz; and
y21-1, J=1,2, and that y; is between xz5 and xz25-;, Jj=!,..,4. It is an
extension of the rank arqument that these are the only restrictions on these
variables. Therefore, to allow for freedom in the choice of the z°s, we require bcth
¥1 and y3 to be smaller than either z, and both ¥z and ¥« to be larger than
either 2. If all of these terms are sufficiently small, the smaller of each pair can
be chosen so small that the ratio satisfies the appropriate inequality. Likewise,
require both x; and xs to be smaller than either ¥; and ya, while both x:
and xs are to be larger. Also require both x3 and x4 to be smaller thanr either
vz and va, while both x4 and xs are to be larger. These inequalities are
consistent with the ordering given above. Furthermore, the numbers can be chosen

sufficiently small so that the ratio in each pair satisfies the required inequality.
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This completes the proof.

COMMENTS:1.The basic idea behind this paradex, and all of the other paradoxes
described in this paper, is displayed by the comparision mapping F. Individual
comparisons are one dimensional, but when more than one comparison is being made, they

must not be viewed as being a series of comparisons on the line. More correctly, they

must be viewed as defining a mapping where the range space is in a higher dimensional
space., Such spaces admit symmetries and cycles, and so it should be expected that
these cycles can be manifested in the various comparisons. This is what happens, and
this is the source of the paradoxes'! (In the example, the domain of F is 135
dimensional while the range is only 7 dimensional. This suggeste that this model
admits added, simultaneous comparisons which lead to even more complex paradoxes; for
example, they can be between different levels of aggregation.)

An easy way to demonstrate that all of these symmetries are available for a
“comparison map" is to locate a point which is on the boundary for each of the
comparison regions and to show that the image of the map includes an open set about
thie comparison point., Consequently, the range must intersect all of the comparison
regiones in non-empty open sets. For each of these open sets, the continuity of the
comparison map provides an associated open set in the domain. If the admitted
examples (e.g., in the above, the raticnal points) are dence in the domain, then in
any open set there exist points which can be associated with examples., This simple
idea 1s the essence of the explanation for all of the paradoxes given in this paper.
Indeed, because the remainder of this section is devoted to refining this arqument, a
reader primarily interested in the discussion of the ranking and the voting results
can omit, on a first reading, the material from Theorem 2 to that just prior to
Corollary 3.1.

2. A second fact emerges from this example. A careful investigation of the set

F-1(0) provides stronger conclusions. For instance, by using the boundary
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conditions of this set, the inequalities can be strengthened to be a ratio bounded
below by any predetermined constant. A different issue might be to determine the
minimum size of a sample set which is needed in order to obtain a particular behavior,
For the above model, this would be given by a point in U which has the smallest
"lowest common denominator” after the admissible points are normalized as described
above.

Other types of statements result from the structure of the ranqe of F. For
instance, the image contains an open set about the origin, so it meets any sector
defined by & specified ratio of the outcomes; e.g.,

CCPCY =1y -P(Y3=1)13>42{P{X =1)-P(X4=1))20. The above shows that there are

examples which will satisfy these conditions.

3. To avoid the above behavior, the Jacobian of F can’t be of maximal! rark. Thus,
this singularity constraint becomes a necessary condition to avoid a paradox. Often,
as in the above model, these lower dimensional, singularity conditions correspond to

familiar constraints such as the "independence of random variables®. See Section 4,

The above demonstrates that "paradoxes” can be a common occurance; transitivity
may be an unrealistically strong requirement. Nontransitive behavior should be
suspected whenever the domain of the comparision map, F, is greater than 2., In other
words, unless proved otherwise, it is reasonable to expect that almost anything can
occur! This definitely is the case for problems in conditional probability. The same
argument extends to concepts based upon conditional probability, such as indicators or
prices which are based upon certain constraints. Moreover, the above demonstrates
that when a paradox cccurs, it may be associated with an open set of examples;
accordingly, this type of behavior cannct be dismissed as being an isolated anomaly.
Indeed, since finite examples correspond to rational points, and since when the
denominators get larger (larger sample sets) more rational points are in any specified

open set, such behavior cannot be minimized by expanding the sample size.
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The lead of Theorem ! will be followed to obtain a general theorem for a set of
characteristic functions., To underscore the magnitude of the problem, we first
determine the dimension of the domain for the associated comparison mapping. If there
are N characteristic funcz:ons, then the first N-1 of them define 2N-:i possible
sets. The tast random variable can be treated as a characteristic function on each of
these sets. In this way the comparicson mapping will have a domain of dimension
2N-14{2N-1-1}= 2N-1, This number serves as the upper bound for the range (in
order that the Proposition will apply), and it indicates that such a model admits a
very large number of comparisons with possible concomitant unexpected behavior,

Let X; be a random variable with values in 5=(0,1} and with domain D;, Jj=1,

+s N, where the D:’c are pairwice dicioint, fet IN = Ix,,xI, and let Si{N) be

the usual! =implex defined by the equation ..dy=!. Let the coordinates of the space
M=INxSi(N)Y be (x;,.. ,xn,d1,..,dn), where x; represents P{(X;=1) and d;
represents P(Dy) in the space E=D;+..+DN, Let Y be 2 random variable with
values in S which js defined by 4#(X;,..,X¢)., UWe assume that the domain of ¥ is
the union of those Dy’s with index j represented in function f. (Hence
Yi=f(X)=X; has the domain D;, while Yo=+7X,,X2)=X, has the domain
Di+D2.Y Then, it 40llows from 1.1 that P(Y=1) is represented by a mapring from M
to the real lipe. This mapping is given by a summation where the terms are of the

type xy,; l1-wy,; or veoy/lge+.. 40y} where gy is either dy or 1-d;.

Theorem 2. Let X;, Dr, j=1,..,N be ac defined above. Let Y;, with values in §,
be defined in terms of some K-tuple of the X‘s with the convention on the domain as
specified above, Assume that the admissible values for P(X;=1) and P(D;) form a
dense set in M,

For s<{2N pairs of these random variables, let my be the mapping representing
P(Y1=1)-P(Yy=1) where (Yp,Yy) is the jth pair, j=t,..,s. Define

L:M=INxSi(N)--)RS as &.mses. Let q be an interior point of M such that
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1> g is in L-¥(0>, and
2) the Jacobian of L evaluvated at q has maximal rank.
For each ordered pair, designate a preference between the variables. Then, there
exist examples where the random variables assume all of these preference rankings

simul taneously.

The discussion preceeding Theorem 2 provides a plausiblity argument why the above
is true; the proof is in Section 5. 0f course, by examining the boundary conditions
of the inverse image of L, it may be possible to show that the indicated ratios can be
made arbitrarily large, This requires, as in Theorem 1, that the appropriate
probabilities can be made arbitrarily small. Incidently, note that with a boundary
analysis, Theorem 1| follows directly from Theorem 2.

The comparison mapping given above is determined by the differences between the
probabilities of events. However since the paradoxes are explained by the open
mapping principle, it ig clear that this explanation extends to other situations.
Indeed, all we need in order to define the comparison mapping is that the components
can be expressed as smooth functions. So, the components could be functional
combinations of probabilities, expected values, the various moments, waiting times,
Yoss functions, decision rules, risk functions, correlation indices, scattering
indices, variance, covariance, and on and on. If the open mapping principle applies
at a comparison point, then all possible comparisons are realized. 1In this way, it is
easy to show that there exist examples illustrating, for instance, that the waiting
time for A is larger than that for B, even though A is the more probable event; that
the expected value {or variance, loss function, etc.,) may have E(X)JXE(Y), ret
ECFCX)ICECHCY)) for some monatonically increasing function f; or that certain decision
rules may be inconsistent with other measures. <(Indeed, a discrete version of this
tah be used to explain the Arrow social choice paradox.) Theorem 3 is the formal

statement which covers all of these situations.
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In all of the above examples, the meaning of a comparision region and a

comparision point are evident. In the next statement, their structural dependence ic

-3

emphasized.

Definition. Suppose a mapping FiM-—>N is given. Comparison regions in the image
space N are sets of pairwise disjoint open sets of N. A comparison point is a point

which is on the boundary of each of the comparison regions.

The statement of Theorem 2 suggests that the important comparison points for
analyzing paradoxes are the regular points of L. This is not necessarily the cace,
the singular points of L can be used to display an interesting and different class of
*paradoxes“. This can be easily seen with the drug example. Here,
P(H:TCUYCKPC(HITCU ), PCHITC UIIP(H:TC U Y, PCHITC U IDP(HITCU ), and P(H:TCIKPLH:TC")
is an admitted outcome, but it cannot be captured by the above theorem. (The
comparison mapping is {x;-%z2, X3~X4,; X2-X4, ¥Y;-¥2}.) This is because
the last inequality can not be reversed without interchanging others. But, the
maximal rank condition on the comparison mapping means that it is possible te change
in any inequality independently of any other inegquality. Consequently, any setting
which requires at least two inequalities to change signs simultaneously will
necessarily correspond to a singular point of the associated comparison mapping.

Mathematically, what is happening is that the graph of the comparison mapping is
being pinched to form a fold or cusp at the comparison point. Consequently, the
comparison point mavy not be an interior point of the image set of the mapping, but
rather a boundary point of the image. To capture the relationship among the
comparison regions, the compariscn point, and the domain, we use additional terms in
the Taylor series expansion of the comparison map. After all, if the map is analytic
or sufficiently smooth, then, locally, the image set is determined from this series.

However, an analysis of a Taylor series can be very difficult, So, we provide
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alternative conditions in Theorem 3 which appear to be both sufficiently strong to
handle the singularities which occur for a large class of models, and simplier to use
because they reduce the number of terms which need to be evaluated.

Because the derivative conditions are mappings from tangent spaces, for
simplicity assume that both the domain and the range of F are affine spaces. This

will allow us to blur the distinction between the spaces and their tangent spaces,

Theorem 3. Let F be a smooth comparison mapping from a domain M to the comparison
space N where the dimension of M is bounded below by the dimension of N. Assume that
the admissibie values form a dense set in M. Let c be a comparison value in N,
Assume there is an interior point p in the domain for which F(p) = ¢ and DFe has
max imal rank. Then, the behavior characterized by any comparison region is admitted.

Suppose that B is a comparison region where its boundaries are given by
hyperplanes passing through c. If any of the following are true, then there exist
examples of the behavior characterized by B.

a) The range of DFp translated to c meets B.

b) @& combination of non-negative scalar multiples of elements from the range of

DFy and the image set of D2ZFy translated to c is in B.

Theorem 2 follows from the above because DFe meets all of the comparison
regions, The drug example, which was used to motivate the higher order derivative
conditions, defines a mapping into R, It is a simple computation tc show that this
behavior is captured by statement b of this theorem,

The second part of this theorem becomes particularly important when the
components of the comparison mapping are constructed from loss functions, variance,
covariance, the nonlinear combination of random variables, etc. This is because the
nonlinear nature of the modelling often leads to singularities at a comparison pocint.

Incidently, thic derivative condition can be extended toc higher order terms in the way
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indicated in the proof. But, in practice, higher order derivatives are usually
difficult to use because of the increacsed number of variables, so, alternative
arguments which capture the above are preferred. Of course, in this theorem as
before, the properties of the boundary behavior of the inverse map can admit more
striking examples,

In the following section, we will illustrate this theorem by discussing ranking
methods. Another source of interesting paradoxes is C. Blyth“s influencial paper [2];
his examples can be described in terms of Theorem 3. 0ne of his paradoxes with random
variables X and ¥ has P{X>Y) as close to unity as desired, even though P(X<a)<{P{Y<{a)
for all choices of a. This corresponds, of course, to the boundary behavior of the
comparison mapping. (In his paper, the paradoxes are described in terms of examples,
The above treatment explains and unites them, it shows that they can be extended in
several ways, and it proves that the paradoxes are satisfied by open sets of examples.
This last fact undercuts some of the critical comments about his conclusions which are
in the articles immediately following [21.)

Note that the comparison regions are required to be open sets. Technically, this
forces the existence of an open set in the domain of the comparison mapping. Then,
the condition that the admissible examples are dense forces some of the admissible
examples to be in this open set. However, there are situations where we might want a
comparison region which isn’t an open set in order to capture "indifference", etc.

The only difficulty for this setting is that, in general, the inverse image of a
comparison region need not be an open set. So, if the conclusions are to hold,
additional, stronger conditions must be imposed on the admissible points (or the
modelling) in order to ensure that there are admissible examples in the inverse image
set. An example how this is done is given in (4],

We conclude this section with some comments concerning when the converse holds.
0f course, we are not as interested in Knowing when the Jacobian is of maximal rank as

we are in Knowing when the existence of certain types cf examples implies the
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existence of others, This is of importance because proving that a comparison map has
maximal rank can be an extremely difficult, analytic argument. So, the value of a
converse is if it tells us that the existence a finite number of certain types of
examples implies the existence of all possible examples, This is because it would
convert a difficult analytic proof into a computational one, of—showiag—that—cestain
examples can G&eyr. Moreover, the existence of such examples may be possible to be
verified by a computer search; hence the task is converted to one which can utilize
current technology.

However, to prove a converse, we still run into difficult singularity problems.
For example, the mapping (x7,»y?) maps RZ onto RZ, but (x?,y8) doesn’t, and
they car®be distinquished by Theorem 3 because the singularity is of a sufficiently
high order. Therefore, in this partial converse, we avoid singularity problems by
requiring the comparison map to be linear. Extensions will follow the same basic

approach.

Corollary 3.1. Suppose that F is a linear comparison mapping with range space RN,
Furthermore, assume that the 2N orthants are the comparison regions, If there exist
2N-141 examples, each represented by a different comparison region, then F is of

maximal rank and all possible comparisons are admitted,

The proof is that the image of a linear space under a linear mapping is a linear
space. If the image includes points from 28-t+1 orthants, then the image cannot be
a 2K-1 dimensional space, but rather a 2N dimensional space. The conclusion
follows. Actually, we can get by with fewer examples and even in the same comparison
regions as long as they cannot lie in the same plane of dimension 2N-1, Extensions
to spaces with different types of comparison regions is much the same with the
emphasis on the geometry; this is particularly of interest with the regions introduced

in the next section with ranking and voting.
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3. Ranking Paradoxes.

In this section, we will use multivalued random varijables to describe some of the
implications of Theorem 3. & richer assortment of behavior is to be expected because
the additional values force the comparison map to admit a larger effective domain., iTo
see this, express such a random variable as a linear combination of characteristic
functions, and then apply the dimension argument which precedes Thecrem 2.) Because
of the interest in the social choice, most of our illustrations of this behavior will
be directed toward obtaining new results for the ranking literature, the voting
literature, etc.

The first examples are from weighted, or positional voting. 1If & group is to rank
N alternatives, aj,.. ,an, then a common method is to adopt scalar weights, w;,

.y wWn, which are not all equal and which will be used to reflect each voter’s
ordering of the N alternatives. Usually, the larger weights are used tc indicate more
favored alternatives; however, an inverted weighting system could be used where
smaller weights are assigned to more favored alternatives, Whichever system is
specified, each voter assigns the appropriate weights to reflect his ranking of the
alternatives. In the obvious way, the group’s ranking of the alternatives is
determined by the sum of the weights cast,

The weights can be expressed as the components of a vecter Wy in RN, In
order to standarize this vector and tc indicate whether an inverted system is being
used, we require Wy to be the assignment of the weights for the ranking aj;raz>
+.2an. (Thus, if the values of the components of Wnx are increasing, then Wy
corresponds to an inverted voting system.,) For plurality voting, the weight vector is
(1,0,..,0). Another well Known voting system, called the Boerda Count, uses the weight

vector By=(N,N-1,...,1). Call any weighted voting system where the weight vector is
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a linear combination of By and En=(1,..,1) a Borda voting system. (See [41.’

To describe the main result for voting systems, we introcduce what we call a

reverse neutral svstem. This is where the sum of the standardized vector and the

vector assigned to the reversed ranking aw>awn-1>..%a; is a multiple of En. A

Borda system always is "reverse neutral®. An easy algebraic argument demonstrates
that the space of reverse neutral systems is a hyperplane in RN of dimension [N/2]
where [] is the "greatest integer function". A basis for this hyperplane can be
computed directly. For example, for N=3, only the Borda systems are reverse neutral,.
For N=4, a basis for the hyperplane is given br Es, Bs, and ¢(2,1,1,00. For N=5, a
basis is Es, Bs, and (2,1,1,1,0); etc.

For N alternatives, there are N! different possible categories of voters as
determined by the N! ways to linearly rank the N alternatives. Since the sum assigned
to any alternative is a linear relationship, the group’s ranking of the alternatives
is not altered should the vector sum be divided by the total number of voters. Thus,
the domain tor thic problem becomes (the rational points ind> the simplex Si{N!) which
lies in the positive orthant of a N! dimensional space. So, if Ar is the random
variable assigned to alternative ar, then P(Ar=wx) reflects the fraction of
voters which rank the iTH alternative in the KTH place. If A is the vector valued
random variable {(A;,..,An}, then the group’s cordering of the alternatives is
determined by the linear ordering of the components of the expected value, E(A).

Although this describes an important class of commonly used voting methods, i1t is
not clear how the conclusions of such a procedure should be interpreted. The
following theorem, which includes Example 2, highlights this. <(Example 2 is a special

case because the weight vector Wy = (1,0,..,0) is not reverse neutral for N>2.)

Theorem 4. Assume given a set of N>2 alternatives, Aly= {(aj,..,an}. Rank the N
alternatives in an ordering RKn. Delete any one alternative and rank the resulting

set AlN-1 in a ranking RKn-i1. Continue this process of deleting an alternative
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and ranking the set Als in a ranking Rk; for j=3,..,N. The choice of these
rankings can be arbitrary; they need not be related in any way to each other,

Specify a weight vector Wy which is not reverse neutral to rank the

alternatives in set Aly, j=3,..,N. The choice of the weight vectors need not be
related. Next, for each of the N(N-1)/2 pairs of the alternatives, specify one of the
pair as being preferred to the other. This specification can be independent of any of
the rankings RKksy and of any of the other pairwise comparisons.

There exist examples of voters, each of which has a2 fixed linear ranking of the N
alternatives, such that when the same voters use the weight vector W; to order the
alternatives in set Al,;, the outcome is Rky, j=3,..,N, and for each of the
N(N-1)/2 pairs of alternatives, a majority of the same voters prefer the specified

alternative.

A simple example of thic theorem is that there exist situations where most of the
voters prefer a to b, b to ¢, and a to ¢, yet when these same voters vote on all three
alternatives with a weighted voting system other than a borda system, the aroup
outcome is c>b>a. This cutcome is the reversal of the implied linear ordering given
by "majority preference®. A more striking example of inconsistency for N=5 is where a
majority of the voters prefer ajy to aj4++ for j=1,..,4, as>a; {so, these
alternatives form a cycled, as>ay for j=1,2, a;>asz, and ajyras for j=2,3,

Still, by use of a plurality vote, these same voters rank the first three alternatives
as ajrazraz, the first four alternatives as az>az>a;?as, and the total

set as ag’a;>as’az>as., Other examples are limited only by the imagination

of the designer.

There is a literature comparing the conclusions of pairwicse majority voting with
weighted voting methods. (For example, see the expository article [51.) An

alternative is called a Condorcet winner if it wins a majority vote against all of the

other alternatives. Because a Condorcet winner does not alwaye exist (e.g., the
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above, second example), schemes have been proposed to determine the winning
alternative based upon formulae which use the ordinal outcome of each of these
pairwise comparisons., For instance, the winning alternative could be one which wins
the largest number of pairwise elections. Ancther possibility would be to select i,
{say, the status quo> if it is the Condorcet winner; otherwise, from the set of
alternatives which beat a;, select the one which wins the most pairwise compariscns.

Call any such method a Condorcet Method [5,8]. An implication of Theorem 4 is if N>3,

then for any Condorcet Method and for any weighted voting method which isn’t reverse
neutral, there exist examples of voters such that the outcomes will be as inconsistent
as desired! For instance, the winner based upon the Condorcet Method could be the
last place alternative in the ranking which is determined by the weighted voting

method.

Corollary 4.1. Assume there are N>3 alternatives which are to be ranked first by a
given Condorcet method and then by a weighted voting method which is given by weight
vector Wn. Assume that Wnw is not reverse neutral, Let RKn be any ranking of

the N alternatives, and let ay be one of the alternatives. There exist examples of
voters such that the group’s selection according to the Condorcet method is a;, but

the ranking of the N alternatives as given by the weight vector Wn is RKw.

The choices of ay and Rkn are independent of each other, so the corollary
displays the inconsistency of the outcomes. Of course, Theorem 4 asserts that this
same chaotic state of affairs persists at all levels; indeed, it cannot be eliminated
even if an assignment method combines, in some way, all of the ordinal Wg outcomes
at the k=3,..,N levels. For example, we could call a process "dynamic® if it uses the
ranking of N alternatives to eliminate an alternative, if it uses the ranking of N-I
alternatives to eliminate another alternative, etc., until only one alternative

remains. A dyvnamic and a Condorcet method need not agree.
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Corollary 4.2. Let f be a dynamic method used on the set of N alternatives to
determine one alternative. Assume that for the set of j alternatives, the voting
vector Wy, which isn’t reverse neutral, is used to rank the alternatives. Then, for
any two alternatives a; and ayx, there exist examples of voters so that the result

of the dynamic process is ax and the result of the specified Condorcet method is

- 4

Recently there has been interest in election procedures where the voter can
choose among several different voting uectors\wu. One type is the builet vote where
a voter can use either the system ¢2,0,0,..,0) or the system (1,1,0,..,0), In
general, the voter can either split his vote among a specified number of his top
ranked alternatives, or he can cast the full vote for his top ranked alternative,
Another procedure, which is being championed by S. Brams and P. Fishburn, is approval
voting. Here a voter votes either approval or disapproval for each alternative. This
means that this voter has N different choices of voting systems to choose from;
¢1,0,0,.,.,00, ¢1,1,0,..,00, .., €<1,',..,1). So, in general letYWN denote the zet of

voting methods from which the voter can select to rank N alternatives.

Corollary 4.3. Assume N>2 alternatives are given. Let the set Al;, and the
ranking RKy be as specified in Theorem 4 for j=3,..,N. For each choice of j, let
M be a set of voting methods which the voters can use to rank the j alternatives
where each set contains at least one method which isn’t reverse neutral. Select a
Condorcet method, and select some one alternative ag. Then, there exist examples of
voters such that when the same voters rank Alj; by the multiple voting method ¥,

the outcome is Rky, Jj=3,..,N, while outcome for the Condorcet method is ax.

For instance, there exist examples where the last (or the sTH) place result
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based upon approval voting is the Condorcet winner; there exist examples where the
results based upon approwval voting are as?az>azra;, for a set of 4
alternatives, a|>a2§a; for this set of three alternatives, and az is a
Condorcet winner.

Related inconsistency results hold for if reverse neutral weight vectors are
used. However, in this setting, the image of the comparison mapping may be a
hyperplane rather than an open set. Thus, the choice of the rankings at various
levels and the winner of the Condorcet method may share some relationship; vyet they
need not be consistent. The typec of results depend upon the dimension and the
properties of the image of the comparison mapping.

The proof and an extension of Theorem 4 is given in Section 5, but it should be
clear that it will involve a comparison mapping from Si{(N') to a Euclidean space of
dimension N+{(N-1)+ ., ,+ 3+{{N)(N-1)>/2}., The first N components of this mapping are
given by E(A), the next N-1 by the expected value of the weighted voting method
Wn-1, etc, The last N(N-1)/2 components are given by the pairs P(A1)-P{AL),

Because the domain was normalized to Si(N'), the image of the expected value for W;
lies in the simplex Sifj) in RJY where the sum of the components equals the sum of
the compcnents of Wj. without.lﬁss of generality, we can assume that this sum is
unity. Thus, the range of the comparison mapping is Si(N)xSi{N-1)x..xS(3)xJN(K-1)/2
where J is the interval {-1,11, The range space has dimension N2-N-1., The
comparison value on each simplex ic the point of complete indifference, N-'En.

For each of the intervals J, the comparision value is 0. Thus, this is an example
where both the domain and range are manifolds different from a Euclidean space, and
the critical value for the mapping is not 0; but rather the indifference points
(N-VEN,(N-1)-YEN-y,..,3"1E3,0,0,..,0).

I1f N>2, then the dimension of the domain either equals that of the range (N=3),
or it exceeds it (N»3)., <(In the latter case, additional comparisons can be included.)

The prcof consists of showing that this linear map has maximal rank. The rank
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condition doesn’t hold if Wx, k=3,..,N are Borda vectors. Here it turns out instead
of being of maximal rank (i,e., corank 0), the linear map has a corank (with respect
to the image space) of {N(N-1)/2}-1, This means that while there are ceveral possible
inconsistency statements, not all of the arrangements are possible. In particular,
Theorem 4 does not hold if the Wy“s are Borda vectors. A direct verification of
this for N=3 is given in Section 3. For other reverse neutral systems, the corank
dimensicns are smaller, so more “inconsistency” statements are admitted. Since the
Borda weight vectors avoid the largest number of these paradoxes, this serves as one
argument for ite adoption. By use of different techniques, P. Fishburn [4] proved
Theorem 4 for the special case N=3. (Actually, what Fishburn proved is that the first
example which immediately follows the statement of Theorem 4 can occur; but his proo¥
probably could be extended to our general statement for N=3.> For N>3, the part of
the theorem without all the possible pairwise comparisons is a special case of a
result in [7],

Incidently, note that the comparison mapping is linear, so L-'(8) must be a
linear subspace which has dimension at least N!-NZ+N, Therefore, should N>3, then
this subspace must intersect the boundary of the domain Si(N'). This implies that
there exist several strong "boundary® examples of the type derived for Simpson’s
paradox. Indeed, a boundary point in this model requires several of the comporents to
be zero, so there exist examples where all voters (not just a majority) prefer certain
alternatives over others. An example illustrating this boundary behavior is given in
Corollary 4.5.

The above identifies the source of problems experienced in the social choice
titerature. The natural domain for considering N alternatives is Si(N!>j it has
dimension unity only when N=2, and then it increases rapidly for N>2. Whenever this
large dimensional domain is exploited by defining a comparison mapping where the
indifference point ic an intericr point of the image set, then all sorts of behavior

are admitted. For instance, it can be seen from the large dimension of the Kernel of
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the comparison mapping in Theorem 4 that several additicnal comparisons can combined
with the above to create an even more imprecsive inconsistency paradox. One extension
of this trype is offered in Section 5. What we show is that not only can there be
inconsistency in results between levels, but if the voting methods satisfy certain
technical conditions, then there can also be inconsistency when the same voters use
different methods to rank the same set of alternatives, Even after this extension,
the Kernel has a high dimension, so several! other types of examples are possible
and/or striking “"boundary" behavior examples can be constructed.

These ranking paradoxes are not restricted to voting and social choice. Similar
difficulties accompany ranking procedures coming from probability and statistics, and
they rely upon the second half of Theorem 4. To be underscore ite importance, it will
be restated helow., MNotice that it asserts that any type of cycle and subcycle can

occur.

Corollary 4.4, Assume given N2 alternatives a;,..,an. For each of the N(N-1)/2
ordered pairs (ar,a;), designate one alternative as preferred to the other. Then
there exist examples of voters’ preferences (each voter has a fixed linear ordering of
the N alternatives) such that for each of the N(N-1)/2 ordered pairs, a majority of

the same voters have the indicated preference.

To see how this corollary describes ranking procedures other than voting, suppose
we are to determine a “guality ranking” of N firms which make the came product. The
“iTH alternative” now becomes the iTH firm, the "jTH voter" becomes the "jTH
vector sample" of the product taken from each of the N firms, and the "jTH voter’s
preference ranking* becomes the linear "quality ranking" of the products in the jTH
sample., The statement that ai>a; has the interpretation that based upon the
samples, firm i’s product appears to be superior to firm j’s. However, because there

is an open set of examples such that all possible pairwise comparicons are admitted,
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it follows that the binary sampling apprcach need not lead to a linear ordering of the
*quality of the firme".

Indeed, the well-known Steinhaus paradex [91, where a;>az, azdasz, but
az*a, for three firme producing the same product, is a special case of Corollary
4,2, Incidently, Theorem 4 admits a similar interpretation, so even should the firms
be ranked by use of weighted ranking methods, the results still could be difficult to
interpret. For instance, the weight vectors W¢y = ¢1,0,..,0) correspond to the
natural ranking method based upon P{Xi=max{Xs:jeAxl). If these weighted ranking
methods are used, then it follows from Theorem 4 that should some cne firm be deleted,
the revised rarking could drastically change. 0Other measures experience similar
problems.

A similar effect occurcs for the scoring of athletic events where a voter’s
preference corresponds to how the various teams placed in a particular event, etc. A3
another example, for a sophisticated individual whose taste preferences are based upon
several attributes (e.g., a wine connoisseur), we should not expect his binary
comparisons to necessarily be transitive, This is, of course, an N alternative

version of the famoucs folklore "pie" example. <1 prefer "apple" to “cherry". But, if
"blueberry" is also available, then my choice is “cherry*.)

As one might expect, this corollary has important implicaticns concerning methods
commonly employed to find the “best® choice from a field of alternatives. Indeed, i1t
can be used to indicate the difficulties which can arise when tree diagrams and other

hierarchical processes baced upon some measure are used toc determine the "best”

alternative. This is because the corollary asserts that any path, or cycle among the

w

alternatives is possible. Corollary 4.4 will be used to indicate that those meti.cc
based upon pairwise comparisons and tree diagrams can lead to any type of conclusion;
thus the final ocutcome may be more a function of the initial "seeding" than the other
variables. This includes such methods as tournaments, whether single, double, or

k-fold elimination, the construction of agendae for meetings, etc. The following
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corcollary, which illustrates this, asserts that the right to set an agenda for a
meeting is & potential source of power (the first conclusion) or embarasement (the
second conclucion where the final outcome need not reflect, in any way, the true
sentiment of anyone in the group), Similar evamples can be constructed for various
tourrnament procedures and other tree diagrams which are based upon pairwise
comparisons. Equivalent examples for cther hierarchical echemec which are bacsed upon
other measures (rather than the cimple counting ar frequency measure used hera) can be

constructed in much the same way,

Corotlary 4.5, Let N)3 alternatives be given, An agenda is an ordered listing of the
N alternatives. The first two listed alternatives are voted uvpon; the alternative
receiving the majority vote is then compared with the third listed alternative, This
pairwise comparison procedure is continued to the end of the listing, and the
alternative receiving the majority vate in the last comparison is the group’s accepted
alternative.

There exicst examples of voters and N agendae such that when the same voters use
the iT¥ agenda, the outcome is aj, Jj=1,..,N.

Indeed, if NX3, there exist examples of voters and N agendae so that the above

conclusion holds even though all of the voters prefer a3 to as, a4 to as, ..,

and an-| to aw.

Ac in Section 2, there exict open cete in the domain which exhibit each of the
above behaviors. Consequently, thece examples cannot be dismissed as being isclated
because they are manifested by an infinite number of examples; the behavior is robust,
As the number of agents increase (the denominators of the rational points become

larger), so do the number of the possible examples. Indeed,

Corollary 4.6. Consider a system of weighted voting methods as described in Theorem
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4. Let n(Q@,m> be the percentage of possible outcomes which have the behavior @ when
there are m agents., If the characteristics of the voters is uniformly distributed,
then as m—->00, n(Q,m) approaches the ratio of the area of L-1(Q) to the area of the

simplex.,

For elementary number thecretic reasons, the sequence {n<(G,m)>} need nct be
monotore. The limit is positive if L-'(Q) contains an open set. For other
distributions, the ratio is determined in a similar fashion, but with the different
measure.

The above demonstrates the perils of weighted voting methods., It cshould bLe
expected that other techniques which lead to a comparison mapping with a high
dimensional range, don’t fare much better. For instance, consider a dice game where
each player uses his own die which is markKed in the standard fashion. In a game of
high score wing, suppose the loser pays the winner the difference between the face
values. It is possible to weight the dice so that the expected parvoff from the firzt
die is more than the cecond, even though the second die has a higher probabiltity of
winning in any roil of the dice. Indeed, suppose there are three different payroffs
where the first is the cube of the difference in face values, the second is the
difference of the squares of the face values, while the third is the difference of
face values. For each payoff, select which die which is to have a larger expected
payoff, and select which die is to have the better probability of winning a roll., It
is possible to weight the dice so that all four conditions can be saticfied
simultaneously., This illustrates the possible incompatibility among various reward
functions and the distribution. <(0f cocurse, the result follows because of the
functional independence of the form of the payoffs and the computations of
probabilities.> The relationship of this type of example to modeis in economic theory

is obvious.
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q. Some Comments

Because the situations described above can be realized by open sets of examples,
they cannot be dismissed ac being anomalies. Instead, the lack of transitivity and
the existence c¢f the various types of cyclic behavior should be viewed as being a
natural phenomena. For those models where a preference relationship has a natural
definition, such as in a dice game, this means we must accept the existence of this
behavior as a fact. Since what corresponds to an "optimal situation” can change with
the setting, then so must any strategy which is geared toward "raticnal behavior” or
an optimal outcome. For instance, in the dice example, we Know which die we would
prefer--it is the one with which we would get the largest payoff. Consequently, if
the functional form of the payoff changes, or if other dice are admitted (as is to be
expected, sets of weighted dice can create cyclic examples of the flavor given in the
voting paradoxes), then what constitutes the "best choice” may varies accordingly

without any regard for transitivity.

While this randomness in the behavior may be probable, often in the modelling of
economics, the goal is to achieve some sort of a linear ordering of the alternatives.
So, we need conditions which ensure that this will occur., There are two natural ways
to do this--the first is by restricting the choice of the random variables and the
second is by restricting the space of admissible examples. The first approach is to
determine those conditions on the comparison mapping which will avoid the undesired
behavior, This is done by determining the conditions on the random variables so that
the various derjvative conditions in the Tayxlor series will not admit a paradox. An
analysis of this type leads to a generalized form of "independence of the random
variables". Indeed, an example which illustrates this is the definition of
independence of random variables. 1t can be viewed as resulting from a singularity

analysis for the comparison mapping with components of the form
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P{(X=i)PiY=j)-P(X=i,Y=j). The derivative conditicns force the components of this
mapping tc be identially equal to zero. But note, such csevere singularity conditions
aren‘t always required; fold conditions, as captured by Theorem 3, are more general
and they can obtain the desired results. For instance, certain equalities can be
replaced with certain inegualities.

In order to obtain a linear relationship, it is natural! to try to define a binary
relationship which i1s sufficiently strong so that it will exclude nontransitive
behavior., In my copinion, this is the wrong approach because the resulting binary
relationship tends to be so severe and restrictive that it becomes impractical. For
instance, for the voting examples with N alternatives, a binary relationship with this
property ic where aj>ay iff in the pairwise vote, alternative | received at least
(N-1)/N of all of the votes, (See [3,101.) Thic condition ic unlikely to be saticstfied
in actua! elections. A similar condition occurs for sampling, and again this creates
an impractical, overly stringent condition.

A more reasonable approach for modelling would be to define a relationship in
terms of what is intended. For instance, suppose a relaticonship is to te defined with
the purpose of finding a linear ordering of a set of N alternatives., ®As shown above,
this shouldn’t be done in terms of a binary relationship. Therefore, the relationchip
should be defined to require the linear ordering to hold cver all subsets of
alternatives. For instance, if N=4, then a linear corder is attained only if the crder
is preserved by the & possible pairwise comparicons, the 4 triplet comparisons, and
the comparison of the cet of 4 alternatives. So, the definition will involve 11
relationships. <(Even here, without imposing additional conditions, it can be asserted
that this is a linear ranking only with respect to the adopted ranking technigues.
This is because there exist examples where the rankings at each level can change with
the ranking technique. See [7), or the extension of Theorem 4 in Section 5.)

Although this imposes a large number of conditions to check, they determine the

» “
largest possible sample space which defines a true Vinear ordering of the
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alternatives. Any other gdefinition which leads to such an ordering must eliminate any
legttimate admissible sample point which has an image close enough to the comparison
point so that a small perturbation could cause a paradox.

Notice that these conditicns are similar in spirit to those used in the
definition of independence for a set of n random variables; the indeperndence
conditions must hold not only with binary comparisons, but also for all K-fold
comparisons for K=2,..,n. The reason is the same; lower level comparisons are not
sufficient to aveid undesired behavior admitted by the comparison mapping which
involves larger sets,

If the purpose of a relationship is only to determine the "bect" alternative,
thern the above conditions can be relaxed. The definition of what is "best” affecte the
definition of the relationship. If it is to be the "best" not only at a pairwise
comparison level, but also at a level with triplets, etc., then this reflects the
conditions of the definition. For instance, if the alternative is selected by voting
and it is meant to be the best over all other alternatives, then the concept of a
Condorcet Winner must be extended so that the alternative is not only the winner in
all pairwicse elections, but it is also the top alternative in all triples, etc. But,
by adding recstrictions in a definition, the size of the set in the domain which
satisfies all of them is decreased. 1In turn, this increases the probability that the
resulting definition will not be satisfied. Thus there is a tension between what ic
desired of a relationship and whether it is likely to be violated.

This approach can be further illustrated by considering the definition of a
binary relationship which is intended to capture a certain property. Typically, such
a relationship is tacitly assumed to be invariant cver a certain class. However, as
it was illustrated above, this need not be the case. For instance, it is a direct
application of Theorem 3 to show the existence of a monotone function ¥ and random
variables X, Y, 2, and W so that conditions of the type ECXIYE(Y), but EC(${XIICECHLY))

occur, or that Covar{X,2)>Covar(Y,W) but Covar{f(X) ,f(2)){Covar($(Y),fCW))>. This is
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true for almost any type of problem; for loss functions, for higher order moments,
etc. If one of these measures is to be used to produce a binary ranking, then it runs
the embarassment that a scaled version of the same random variables doesn’t satisfy
the same ranking. So, to handle this problem, the binary relationship must be
redefined so that intended behavior of invariance over a certain class does occur,
(Thie is a common approach for certain of these measures,) Namely, we would define a
binary relationship to state that XY iff the appropriate inequality holds not only
for the random variables X and Y, but also for €¢X) and f(Y) where f a function from
the intended invariance class. (Note that if X and Y are finite valued, ther only a
finite choice of the ¢ need be checked to determine whether the condition holde.)

A second way to derive conditions which will avoid "undesired behavior” is to
determine the appropriate conditions on the distributions of admissible examples,
That is, restrict the domain of the comparison mapping. In theory, this is easy to
do; the appropriate regions are defined by L-1(Q) where Q corresponds to the
compariscon regions of a decired behavior. The characterization of these regions leads
to conditions similar to the well Known "Black’s single peakedness" conditions of
social choice. However, with the exception of certain simple systems where an

1

ie (e.g., cee

elementary analysis of the inverse image of a comparison point is possib
{71, this characterization problem appears to be difficult.

Finally, a related approach is to determine whether it is likely that one of the
above domain conditions are satisfied; i.e., that a linear ordering is satisfied or
that the "best" choice was made over a specified domain. This involves defining a
relationship as described above, and then developing a standard testing procedure
which is based upon the null hypothesis and the adoption of the appropriate
significance levels, This again depends upon the analysis of the sets L-!(Q), and

it is a task which remains open for most systems.



5. Proofs

In this concluding section, the proofs of the forma] statements will be qiven.

The Key result is Theorem 3. This statement incliudes Theorem 2 as a special case.

Progt of Theorem 3. To prove the theorem, two facts are needed. The first is that the

image set of F meets the appropriate comparison regions. The second is that if Q is
cne of the specified compariscon regions, then an admissible example point is in the
set F-1(Q). However, the comparison regions are open subsets of the range space.
Therefore, if the image of F meets G at a point g, then the set F-14Q) is a nonempty
open set. The admissible points are assumed to be dense, so there will exist
admissible points in F-1(Q).

What remains is to show that the conditions ensure that the image of F will meet
the appropriate comparison regions. The first condition ensures that an cpen
neighborhood about p will be mapped onto an open cet about c¢. Since ¢ is a boundary
point for each of the comparison regions, this open set has a nonempty intersection
with each of the comparison regions.

To show how the remaining condition ensures that F meets B, let a(t) be a smocth
curve in the domain for which a(0)=p. We will show that the curve can be selected so
that if the conditions of the Theorem are satisfied, then F(atil} is in B for a
sufficiently small value of t.

According to the chain rule,

5.1 FCa(t))=c+DFpCa (0)2t+(1/2)[D2Fp(a”(0),a"(0))+DFp(a®(0)31t2+0¢(t2),

The last term decignatec terms which, when divided by t2, approach zero as t-->0,.

I+ the first condition is satisfied, then choose a’(0) so that DFe(a’(02) is in B,
Since the comparision region B is wedge-like in a neighborhood of c, this conclusion
holds for any positive scalar multiple of this term. But, for a sufficiently small

value of t, F(a(t)) = c+tDFpla’(0))+0(t). Becauce the first two terms on the right



Page 33
hand side define an interior point of B, so does the right hand side for sufficiently
small values of t. This completes the proof.

Now suppose that the range of DF does not meet B, but a combination with
nori-negative scalar coefficients of terms from the range of DF and the range of DIF,
when restricted to the kernel of DF, meets B, This means that there is a choice of
a’{0) in the kernel of DF and a"(0) such that the bracketed term meets E. 3.nce - =
DFpCa’(0>)> term is zero, the argument essentially is the same as the one given

above.,

To prove Thecrem 4, we first prove the Corollary 4.4,

Proct of Corcllary 4.4. For each of the pairs of alternatives, a voter would vote

either 1 or -1 to indicate the preferred alternative. More specifically, list the
pairs in the following order. The first pair is (aj,az); the second set of two
pairs i1s given by (ay,a3z’, j=1,2; and the Kth set of K pairs is given by
{ayyak+1dy J=1y..,K} K=3,..,N-1, For each pair, the voter assigns the weight 1 if
the voter prefers the first listed alternative over the second one; otherwise the
voter casts the weight -1. For example, associated with the preference ranking
a1732”..,23n is the vector with unity in all N(N-1)/2 of the components.

Since the N alternatives can be ranked in N' different wars, the comparison map
is a linear mapping from Si{N'!) to JN(N-11/2 where J is the interval [-1,1] and the
comparison value is 0. We must demonstrate that there is an interior point in SitN!)
which is the preimage of £ and that the Jacobian of the comparison map has full rank
at this point. Such an interior point is obtained by having an equal number of voters
for each of the N'! possible ways to rank the alternatives.

Since the comparison mapping is linear, it has a matrix representation. The
matrix is the Jacobian, and it can be viewed as consisting of N! column vectors with
N(N-1)/2 components., Each of these vectors corresponds to one of the N! rankings; the

vector has component values of either { or -1 to reflect the direction of the pairwise
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comparisons. To show that the comparison mapping has maximal rank, it suffices to
show that this set of N! vectors inciudes N(N-1)/2 linearly independent vectors,

Corisider vectors Vs, J1=1, ..,N(N-13/2, where V; has the value 1 in the first
{NIN-1)/23-¢Jj-1) components and -{ in the remaining components. This set of vectors
ts lirnearly independent. This is because they form a square array where all of the
entries on and above the diagonal from the lower left hand corner to the upper right
hand corner are all equal to 1. All of the other entries equal -1.

There are 2N vectors with entries of either 1 or -1. So, most of them are not
related to the described ranking method. Thus, to complete the proof, it remains to
show that each V; is associated with one of the N! rankings of the alternatives,

The choice of the components and the vectors V; makes this fairly simple. The vector
Y1 corresponds to the ranking ajraz®..>an., Vector V2 has -1 only in that

last component, and this corresponds to a transposition of aw and aw-i. Since

these two alternatives are adjacent in the first rankKing, the ranking for Vz can be
cbtained by this transposition to obtain the ranking a ;?az>...>an-z>an?an-1.

Indeed, the only difference between V;y and Vy4y is in one component. This
component reflects the change in the ranking in precisely cne pair of two
alternatives, Moreover, by construction, these twc alternatives are adjacent in the
ranking, RKy, associated with V3. Therefore, the ranking for Vs+; is obtained
by transposing these two alternatives in RKjy. This is betause the ordering of the
choices of the pairs of alternatives to define the vectors is given in such a way that
the -1's in the square array correspond to the n adjacent transpositions required to
move an from last place to first, then to move an-: from what is now last place to

second, etc. This completes the proof.

Proof of Theorem 4. Let the weight vectors Wk, k=3,..,N be as specified in the

statement of the theorem. In this situation, each voter caste the weight of either |

or -1 for each of the pairs of alternatives in accordance with the scheme described
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above., Furthermore, the voter casts the appropriate permutation of the weight vector
Wk to reflect the voter’s ranking of the k alternatives, k=3,..,N. With the
normalization deccribed after the statement of Theorem 4, this can be viewed as being
a linear mapping from Si{N!') to JN(N-1}/2x5((32x,..x8i(N), The comparison value is
(0,0,..,0;¢1/3)E3,..,{1/NDEN?. rn interior point which ic mapped to this point is
the same as the one given earlier; namely, each of the N! pessible rankings has the
same number of voters.

Since the mapping is linear, its matrix representation defines the Jacobian,
This matrix can be viewed as being N! column vectors with {N(N-1)/2}+3+,.+N= N2-3
components. (The dimenzion of the image is smaller; it hag dimension NZ-N-1. The
difference results from the constraints defining the N-2 cimplices Si<{k> in the image
space.,) The firct NI(N-1)/2 components of these vectors are described above. The next
three components are some permutaticn of the components of Wiy, etc. We must show
that linear combinations can be made from this set of N! vectors to derive a set of
N2-3 vectors which are linearly independent. In the proof of the corollary, a set of
N{N-1)/2 vectors which are independent in the fircst NI(N-1)/2 componentc were
determined. To obtain the remaining {(N{N+1)/23-3 independent vectors, we take the
vector asscciated with each of the N! rankings and add it toc the vector associated
with the reveral of this ranking. Each of the first N{(N-1)/2 components of the vector
associated with the reversed ranking will differ in sign from the original vector.
Therefore, the sum vectors will have zeros in each of these first NIN-1)/2 components.
Consequently, these new vectors are orthogonal to the range space ucsed in the procf of
Corollary 4.4. Consequently, all that is required ic to show that these new vectors
contain a set of {NiN+1)/27-3 independent vectors,

For a reversed neutral vector, these new vectors are all multiples of En. In
all other cases, the ith component has the value wiwn-141. For example, for the
weight vector (4,3,0), the new vector corresponding to the rankings a>b>c and cibra is

(4,6,4>, The vector corresponding to a»c?b and b>c*»a is (4,4,6). 1In general, thece
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new vectors would correspond to a weight vector except that they do not have the
monotonicity to correspond to either a monotone or an inverted weighted voting system,
However, the results in [7] hold even if the weight vectors do not have one of these
monotonicity properties. Therefore, the above reduces to a special case of [?7]), and

this gives the reguired proof of independence,

Froof that a Borda weight vector will not work for N=3. Assume that the alternatives

are a,b, and c¢. Assume that the Borda Weight Vector is B3=(3,2,1>, The comparison
mapping is linear and its image includes the comparison point (0,0,0;46,6,6). (Recause
we didn’t normalize Bz, the sum of the components of Si(3) is 6.3

The compariscn regions in Si(3) are identified with the linear rankings of the
three alternatives. To obtain them, note that if the axis of R3 are lTabelled in the
usual x,»,z notation, then the region x)y corresponds to a)b, ¥>z corresponds to bdc,
Z>x corresponds to c>a, etc. In this way, the simplex Si¢(3) is divided into é open
sets which are defined by the intercection of the simplex with the three hyperplanes
x=y, y=2, and z=%. (See [8].)

Suppose that all of the different behavior described in the theorem could hold
for Bs. This would mean that the image would have to meet each of the 6 regions of
Si(3) as well as all of the open regions in J3; in all, it would meet 48 open
regions. If this happens, then, by the linearity of the mapping and a comparison of
the dimensions of the domain and range, it follow that the mapping is onto a
neighborhood of the comparison point, so the matrix has a maximal rank of 5. We will
show that this isn’t possible by listing all six of the vectors and then extracting a
four dimensional basis,

The vectors are: a»brc, (1,1,1;3,2,1); a>c>b, (1,1,-133,1,2); cra’>b,
(1,-1,-13;2,1,3>; c>bra, ¢(-1,-1,~1;1,2,3>5 b>c>a, (-1,-1,1;1,3,2); and bla’c,
{-1,1,1;2,3,1>, However, these 6 vectors admit a basis consisting of the first three

vectors and the vector ¢0,0,0;1,1,1>. Thus, the system has corank 2. Since this last
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vector is orthogonal to the image space, the system has corank 2 with respect to the
image space. This, and the lirearity of the mapping means that the comparison mapping
has a nonzerc intersection with 12 of the 48 admissible comparison regions. I+ the
mapping were always consistent, then the mapping would meet only 3'=¢é regions. Thus,

the mapping still admits several "inconsistent” conclusions,

Extension of Theorem 4. The 'acst part of the proof of Theorem 4 uses reference [7].

However this reference admits a wider variety of behavior., For example, at the level
of K alternatives, it admits k-1 weight vectors, W3¢, which form, with Ex, a

linearly independent cet. The theorem permits k-1 arbitrary rankings of the K
alternatives, and then it asserts that there exist exampies of voters co that when the
same voters consider the set of k alternatives, k=3,..,N, by using the iTH weight
vector, then the ocutcome is the iTH specified ranking of the alternatives. This is
true for all choices of i=1,..,k-1 and K.

A similar extension holds for Thecrem 4. Namely, for each k=3,..,N, choose weight
vectors so that for some ranking, the new vectors (formed by adding the vector to the
vector associated with the reversed rankKing? and Ex are linearly independent. It ic
easy tc see that for each k, there are k-1-[K/2] such vectors. Then, for each zdopted
weight vector, choose some ranking of the k alternatives. The conclusion is that
there exist examples of voters such that when the same voters use the 1TH weight
vector to rank the K alternatives, the putcome is the ascociated ranking. The
conclusion concerning the pairs of alternatives remains the same. The proof of this

statement is a straightforward modificaticon of the proof of Thecrem 4.

Proof of Corollary 4.5. From Corollary 4.4, it follows that there is an open set of

examples where the outcome in pairwise elections is the cycle aj>az, az’az,..,
aNn-1raNy an’a). Consider the reversed cycle a;<an{an-1¢ ..<az<a,

To create an agenda where the alternative ajy will be selected, take the listing of
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the N alternatives from this cycle which starts with the alternative immediately
following asy. For example, the agenda which will lead to a3 winning is az,
dly 8Ny AN-Ijs vssy A4y 85«

The proot of the second part of this statement is nothing more than examining
the boundary properties of L-'(0) toc find those examples which will define a cycle
like the above one. An example manifesting this behavior and which will lead to the
game cycle is one where an equal number of voters have each of the following
preferences;

ajraz’...>anN; agz’asz’...>anNsar} asdaa’...ranrajraz. Note
that in each pairwise comparison, the winning alternative will receive either 2/3 of
the vote, or all of it! This is true for whichever agenda is used and whichever

alternative wins.

The dice example. This is a straightforward computation. However, the domain point

used in the inverse image of the comparicson point should correspond to two identical
dice, but where the value of the probability that a particular face will surface is
left to the end of the computation. In other werds, there are complications in the

computations with two fair dice where each face is equally likely to surface.
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