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" Abstract :

It is shown in this paper that the way in which an allocation is represented (net trades, final
allocation, etc.) can affect the design of any implementing mechanism or incentive compatible
system. The reason is that a poor choice of representation may be imposing superfluous
conditions and demands upon the implementing mechanism. So, in this paper a technique is
developed to 1)find the optimal representation of an allocation, and 2)to characterize the
associated, implementing mechanisms. Although this approach is designed to be applied to any
smooth economic model, it is illustrated and motivated here by applying it to the price
mechanism. More specifically, there are assertions in the literature by Mount and Reiter and by
Hurwicz that the price mechanism is informationally efficient over the class of pareto seeking
mechanisms. These proofs are incomplete because they consider only one choice of
representation for the pareto allocations. We use this technique to a)reassert the dimensional
efficiency of the price mechanism, b)compare mechanisms for spaces of economics with and
without externalities, c)characterize allocation concepts and d)characterize those two agent
economies where the price mechanism is dimensionally efficient.



1. Introduction

In this paper, we will show that the way in which an allocation is
represented can affect an accompanying theory. Namely, for a particular economic
model, should an &llccation be represented in terms of net trades, final
allocationse, a mixture of the two, or in some other way? We will show that this
choice of the representation can affect the design of any implementing cor
incentive mechanism which realizec the allocation. The reason is quite simpie,
and it is an extension of the rationale why we usually represent allcoccations in
terms of net trades. Namely, i¥ it were expressed in terms of the finzl
allocation, then this would seem to force any implementing mechanicsm to determine
nct only the net trade, but alsoc the initial allocztion. So, any implementing
mechanism would be required to determine superfluous information. #As an example,
ncte that the csuccess of the price mechanism (PM) reguires the aliocations tc be
expressed in terme of net trades; the PM does not determine the final Walrasian
allocation.

This theme persists, We will show that different economic models may reguire
different, and even unusual wars to represent an allocaticn in order to avoid

S
introducing unintended demands upon any accompanying implementing mechanism or
compatible incentive svetem, For instance, we wil]l give a simple example where
expressing the allocaticon in termz of net tradec isn‘t "optimal" because it
imposes superfluous demands upon the'system. Irn other words, 1t turns out that

mechanisme can be sensitive to the choice of the reprecentation. Thus the

accompanying question becomes to examine other choices ocf Trecentations to cee

whether they lead to new, and perhaps better econcmic mechanisms. In particular,
when a new and unfamiliar economic made)l is being studied, what should be the

reprecentation of an allocation, and how does it affect the choice of the
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implementing mechanisms? If the choice of a representation doces have an impact,
then we need to Know what is fhé "best" choice, and how it is found. For
instance, are there non-standard reprecentations of a pareto allocation for a
model with externalities which may admit new, moré efficient mechanisms (there
are), and what are they? This choice of representation is one of the problems we
will analyze here,

Qur assertion is that any particular way to represent an allccation can
impose unintended démands upon any implementing cvstem. The type of systems we
have in mind are incentive systems and/or implementing mechanieme. Technical
definitione for an implementing mechaniem are given in Secticn 4, but,
essentially, an implementing mechanism conciste of specified communication rules
for the agents, and decision rules., The communicaticon rulec specify the tvpes of
signals or messages the agents use toc codify and indicate their state. Then, from
the accumulated Knowledge, decisions are made; allocations are assigned. For
inetance, in voting, & communication rulef ie & choice of a voting scheme. The
actual signel ic a marked ballot which ccedifies the voter’s ranking of the
alternatives. The decision rulte is the ranking of the alternatives bacsed upon the
vote tally. For the PM, the signals are the individual excess demands at & given
price. The state of "accumulated Knowledge" is the equilibrium where markets
clear, The decision rule consists of the net trades at eguilibrium, I+ the
allocation given by a mechanism always agrees with the theoretical, dezignated
allocation from the model, then the mechanism implements the allocation, e.g., the
PM implements the Walrasian allocation. Incentives are included in the above

because at a (Nasth) equilibrium "incentivec” define an implementing system,

So, when a new economic mcdel is being analyzed, there are the three design
iesues of the cheoice of the allocation, ite representation, and any implementing
mechanism; all three are tightly interconnected. The main purpcse of thic paper

is to develop & mathematical procedure which will handle all three prohiems
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gsimultaneously and in a systematic fashion. In other words, start with a smoocth
mathematical model of an economy along with the specified class of desired
allocation concepts, e.g., pareto allocations. Then, it is the procgdure which
will designate all poscible triplets of 1) allocations, 2) reprecsentations, and 3)
characterizations of the corresponding implementing mechanisms. Consequently, at
least for simple models, the total problem can be resolved. The important point
to note ies that it is the technigue which determines all of this; in other words,
insight and previous experience with the model should not be neceszary to rescive
the problem.

The analysis of the representation problem is the first part of our
development. The approach (Section 2> i¢ to define a class of representatione for
the allocaticn, or performance functions. Now, if there ic to be more than one
representation for an allocation, the agents need to know how to derive cne from
ancther, Sc, the definition will be bacsed upon what informaticon each member of the
economy is permitted to use in this conversion process, This becomes & structural
informational issue which is part of the modelling, Once the reiationchip iz
defined, then any conclusion about mechanisms should be considered over a class of

reprecentaticne, rather than over any particular representative., Tc carry out cur

program, this class must be characterized in a way which leads to a useful
analytic teooi. This is done in Section 35,

The second part is the mechanism design. This is in Section 4. Finally in
Section &, all parts are pulled together. To Keep the exposition from becoming
overly abstract, the ideac in Sections & and 7 are described with examplies.

To Keep the focus of this paper on the design of this procedure, we

illustrate and motivate our development with the familiar topic of the price

mechaniem (PM). In doing so, we obtzin come new re
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of the PM will become closely intertwined, However; the procedure ic intended tn
be apnlied too 2 wide variety of models, In Section 7, we will briefly illustrate
this by applying it tc & simple model with exterpalities,

Dur gca's in the study of the PM are cleocsely related to the abcve three
design issues. More specifically, thers are statemente in the economic literature
which acsert that the PM jc informatinnally efficient, Namely, any mechanicem
which determines a pareto point of an economy cannot do sc with less informztion

than the PM, With certain assumntipne this conclusion ic

"

orrect, but the
published proofs are incomplete. As one of ocur applications; a corrected proof of
thece accertions will be given (Section 4, Ac we will chaw, the flaw in the
prcofs given by Mount and Reiter [S1 anmd by Hurwicz [1] revaclves around thic
reprecentation nroblem., This ic mnot juct 2 techrnical point because, ae ] will

show with an example of a simple trzding economy, when different reprecentaticns

of a recource allocation are

o
n
m

dmitted they can sxrpoce nareto ceeking mechanicme

which are informationally more efficient than the PM! (Thic should be comrared
with a statement by Jordan [4] that for certain spaces of econcmies, the PM s
unique among the mechanisms which satisfy certain properties. We will show for
other spaces that it is not!)
A related question is to characterjze the spaces of economies for which the

PM ic efficient; after all, one of the attributes of the PM is that it is viewed
as being a universal mechaniem-- one which will werk as long as the utility
’functions satisfy certain geometric properties. But, if for some reason our
interest is in a restricted cpace of economies, then we wish to Know whether this
restricted model admits cther, more efficient mechanisms. I will give a partial
anzwer to this question for spaces of economies with two agents and ¢ commodities=
by providing sufficient conditione which ensure that the PM ic efficient. Then,
fcr the remaining spaces ancd for those spaces where the PM isn’t efficient, we

indicate, by meane of solving some examplies, how the approach used here can
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determine whether the PM is efficient, or whether there is an alternative solution
concept with a more e{ficientAmechanism. Finally, the same efficiency issue will
be examined for a special class of exchange economies where the utility functions
admit externalities. Here the main interest ic to see how these externalities
effect the choice of pareto seeking mechanisms.

"Informational efficiency" is a long standing topic in economics which
received conciderable attention during the soc-called "Socialist Controversy" of
the 30°c and 40°s. (See Ward [111.) An aspect of the debate concerned the
alternative wars in which an economy could achieve an equitable outcome as given
by some pareto allocation. One mechanism would have each of the members of the
economy submitting 11 relevant information to a central agent, and then this
agent would compute a pareto outcome. An obvious cbjection to such a "complete
revelation” mechanism (CR) is ites informational inefficiencies; the central agent
would be swamped with "mitiions of equationse® which must be solved.

0f course, a mechanism can be labelled "inefficient” only if there is a
better alternative. The obvioue candidate ic the price mechanism. To see what
savings ctan be achieved, consider a pure exchange economy with ¢ commodities where
each agent’s utility function is Cobb-Douglas. In the CR setting, each agent must
communicate 2c items of information -- ¢ of them identify the agent’s utility
function while the remainder identify the agent‘s initial endowment. 1If there are
n agents, then the total number of different items of information is 2Znc. On the
other hand, for a PM, the iTH agent communicates a vector (x1,p) where x1 is
the action vector of net trades the iTH agent is willing to make at the price p.
Therefore, the total count for the number:of items of information conveyed ic
(n+i>c. If n and c are both large, this reprezents a distinct savings over the
CR. (The additional ¢ term:z arice from the price vector.) Sctually, by uein
standard relationships such as Walrae” Law, a numeraire, and a scaling of the the

exponents and the price vectors, it is possible to reduce the count of the
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informational requirements of the CR to n(2c-1)> and the PM to n{c-1), It is this
standard value of nfc-1) which we use for the PM in what follows.

In this pairwise comparison, the price mechanism appears to achieve a marked
improvement over the Complete Revelation mechanism, but, is it informationaily
efficient? Namely, are there other ways to determine a pareto point which require
even less information than the PM? To answer this, the price mechanism must be
compared with all other possible pareto allocation concepts and their accompanying
mechanisms to show that it is "minimal® with respect to this efficiency standard.
This leads us to the core of the problem; what are the alternatives to the PM and

vl

)
the CR? (This is theaproblem of choosing an allocation and an accompanying
A

mechanism.) That is, what are the ways in which the information about the
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of the economy can be communicated, codified, er combined, and then the
accumulated intellegence used to determine a pareto outcome of the economy? Most
cf the literature on thic topic was developed to circumvent this barrier, but we
will tackle it directiy.

Te handle this probiem, we will use a thecretical characterization of smooth,
regular mechanisms g% gqiven in Saari [7). The idea is the following; no matter
what mechanism is used, incentives, prices, taxes and subsidies, etc. at an
equilibrium the communication rules must provide sufficient information so that
the correct allocation point can be identified; thatis, it must be based upon
certain information concerning the economy. What we characterize is how thiz
infoermation, or the different states pf the economy, can be partitioned in a way
which is compatible with the correct allocation. This set of necessary and
sutficient conditions leads to the construction of mechanisms. The advantage of

this approach is that it reduces the discussion of mechanisms tc the induced

(8]

partitioning of the space of economies, it allows us to construct alternative
mecharisms tc show non-uniqueness of the PM, and, in certain settings, to

construct mare efficient mechanisms. This characterization of mechanisms will be
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combined with the representation problem so that the analysis of both is done at
the same time. This characterization, which is in terms of integrability
conditions, will be used to determine various pareto allocations for spaces of
economies with and without externalities. We chooce thece spaces to be related to
facilitate comparisons of the informational reguirements which are needecd to find
a pareto point,

The efficiency problem ics a minimization problem over the domain of all
passible implementing mechanisms., Therefore, we need to determine what ic meant
by "informationally efficient". Since this term can convey a cense of
"superiority" of one sycstem over ancother, an accurate definition should include
a1l the information and procescsing reguired to find an outcome; this ie implicit
in the criticism that the CR approach involves "golving millions of equations”,
o, for a fair comparison between the CR and the PM mechanicsms, the "sclving®
process for the PM must be included. This involves the informational reguirements
of the dynamics which are necessary to attain a competitive eguilibrium., <{Once
this drrnamic ie included, the PM no longer is as informationally atiractive
becavse it reguires a csignificant increase in information (Saari and Simon [81,
Jordan [31), even if there are only two commodities! (Saari [81)} It also
involves solving the equations at equilibrium, e.g., in order tc determine the net
trades, any information which was coded by use of Walracs’ Law or 2 numeraire must
be unscrambled.

So, an accurate definition ot informaticonal efficiency must include not only
a count of the number of different pieces of information, but alsoc the
complexities involved with how this information can be successfully convered (the
dynamics) and reassembled to determine the correct allocatione (the solving of the
equationed, It isn’t ciear whether there exists a single measure which accurately
captures all of this, But, no matter how flawed it ic, a simple measure of

counting the number of required "channele” of information is a first step, anc .it

-
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does provide some understanding of the mechanism. Furthermore, as we will see,
the characterization we use déscribes the informaticn which a mechanism needs to
implement a solution, This gives additional insight into why a mechanism works,
{However, any such added insight is not captured by this dimensional measure.)

To underscore the fact that only a simple counting is being used, I will use
the description "dimensional”, It is in this sense I will show that if the class
of utility functions is sufficiently rich, then over the space of all paretec
determining mechanisms, the PM is "dimensionally efficient". <(The formal
statement depends upon terms which will be defined in what follows. So, it will
be givern in Section &.) Here the class of utility functions ics the set of
traditionzl, concave functicns over the positive orthant of the commodity space.

We conclude thic section by introducing some terminclogy. Let the N-fold
cartesian product R¥x..xRK represent the state of the economy, where a vector
in the jTH factor RK represents the state of the jTH agent, j=!,..,N. <(For
instance, the components may be the parameters which define the agent’s utility
functicon and initial endowments.,? If the allocation space is given by RA, then
an allocation procedure can be given by a mapping,

1.0 P: WCRKx,.xR¥ --——=-—- > RA,
where W is a subset with a non-empty interior which describes the domain ot the

model. Such a mapping is called a performance function, or a performance

standard., For instance, if the allocation ccrresponds to a certain pareto point,
then P is the mapping which assiagns the correct net trades to the choice Of,
utility functione and initial endowments. For a resource allocation problem, let
P= (Piy... PN where P; describes the jTH agent‘s allocation. To handle a
clase of different allocations, we will use a parameterized performance function
Pu.

A performance function specifies an obiective; the problem is to determine

how to implement it. Thic is the central issue for mechanism design. As stated
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above, a mechanism is described in terms of the rules of communication and of
decision, In general, messages-will be represented as vectors in a vector space M
where each component corresponds to a type of information, e.g., how the jEH
uoter.uoted for the iTH candidate. The actual message m is the value of the
codified or transmitted information; an interpretation of what the message meanc
depends upon the codification process. Thus, it ic the partitioning of the
economic parameters which represents the content of a message and which partially
determines the complexity of the mechanism. (In this paper we will not provide
any interpretation of messages in terms of action variables, organizaticnal
structure, or policy. However, it is clear they are related.) The minimal

dimension of M determines the dimensicnality of the mechanism.

Privacy preserving means that each agent’s messages are baced only upon this
agent’s state of the economy and upcn the mescages of the other agents. This
doesn’t mean that externalities aren”t involved, it only requires each agent tc
respect the privacy of the others in the communication process. Indeed, as we
will see in Section 7, externalities only change the propertiez of the performance
function, the subsequent analysis remains the same., In this paper, assume that

all mechanisms are privacy preserving.

2. An Example

In this section, we will show by means of a simple example that the
representation of an allocation can affect the ways in which it can be
implemented. Consider the trading economy with twc agents and three goods
represented by x, ¥, and z. Suppccee that the utility function for the first and

the second agents are

Ul i,y 21d=xyy 1Rz !-®, and Vixg,y2,223=xzy38271-8,
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respectively, where A and B are positive parameters both less than unity. Suppose
there is a unit amount of eacﬁ good and that ws={wyi,wsrz2,ws3) represents
the initial endowment of the j7H agent, j=1,2. The state of this economy can be
represented by an open subset of the cartesian product R4xR4 where the first
component in each of the two four-vectors identifies the jTH agent’s utility
function while the other three identify this agent’s initial endowment.

In this model, assume that the allocation is a pareto point which describes a
redistribution of the first good according to xy=x2. (Perhaps it is a public
good.) It i¢ conventional to represent reallocaticne in terms of net trades.

When this is done, this allocation ie qiven by the performance function

E|=((1/2)—w;|,(A/kA+B)}-w|2,{(1—A)/(2—A—8)}—w1;}, and P2 has the same
form but where A and B are interchanged and where wi; is replaced with ways,
Jj=1,2,3, It will be shown in Section 4 (by the techniques described tnere) that
this performance function cannot ke implemented by a mechanism with & mecsage
space of dimension lese than four. (Qne can use the "single-valuedness” approach
of Hurwicz [1] or the "local threading” argument of Mocunt and Reiter [3] to reach
the same cenclusion.) Consequently, any mechanism which implements P and which
uses only a four dimensicnal messagé space is dimensionally efficient. Loosely
speaking, one such mechanism is where the second agent communicates information
concerning the value of B. The first agent uses thie information to compute his
net trade; this is an additional three-vecter of messages., The decision rule iz
the obvious one derived from the performance function.

Consider the same allocation, but where it ic reprecented as the final

allocation. This performance function is B=(G;,Q:;) where

w

Q=012 ,A/(A4B) ,(1-A)/(2-A-B)), and Bz i= the came ac @, afier A and B are
interchanged. It turns out that O can be implemented with a meszage svetem of

gimension 2' Inceed, each agent communicates the value of the parameter which |
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identifies his utility function. This means that the central agent has the
informaticn about these paraméters, sc the decision rule is escsentially the same
as @, This mechanism is dimensionally efficient.

For the same allocation, we have two different mechanisms, and we claim that
both are dimensionally efficient. This isn‘t a contradiction because for each of
the specified performance functions (i.e., for each of the representations?,
dimensionally, you can”t do better than the described mechanism. Evidently, this
means that there is a difference between a dimensionally efficient way to

implement a performance function and a dimensionally efficient way to implement

the allocation represented by the performance function. The former is just one

step in solving the latter. A dimencionally efficient mechanism for an allocation

is one which uses the minimum amcunt of information over the class cof all pozciblie

rebresentations of the allocation.

The reason for this discrepency is that this allocation does not involve the
initial allocation. But, net trades implicitly use the initial allocation, <o P
inherits this superflucus condition (the wys terms). P defines the objective of
an implementing system, so these extra, unintended demands must be satistied by
any implementing mechanism., This is manifested by the minimal dimencional
requirement of 4 for a message space. On the other hand, G eliminates these
unintended demands, and this is manifested by the accompanying, lower dimensional
message sp;ce.

This example was designed to demonstrate that the usual choice of of net
trades need not be "optimal". Other cimple examples can be constructed to show
that the optimal choic; would be a mixture between net tradés and final
allocations. When we examine externalities, it will become clear thgt for any
choice of representation, a simple example can be constructed to show that {(at

least for thic example) the performance function imposes undesired, additional

demands upon any impiementing mechanism. So we cee that the areac of mechanism
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design, incentives, complexity, etc, are all sensitive to this representation
problem. <{For example, if the goal of a model, as given by the performance
function, requires additional terms be computed, then, intuitively, this gives the
agents more flexibility to misrepresent their status. That is, the extra,
unintended requirements can make it harder to design a compatible incentive
svstem.)

This explains why the proofs supporting the assertions made in the Mount -
Reiter and in the Hurwicz papers are incomplete. Both papers used the standard
representation of the net trades needed to reach a pareto point, and no other
representation was considered. So, they found that the PM is dimensionally
efficient with recspect to any pareto seeking mechanism where the allccaticn is
exprecsed in terms of net trades. This leade to the possibility that there maw
exist another representation which will lead to a dimensionally smaller mechanism.

Tc complete the proof, all possible representations of reaching a pareto point

Some of the pcinte demonstrated by this example are highlighted in the

following formal statement.

Theorem 2.1. a) For certain spaces of economies, there exist pareto seeking
mechanisms which are dimensionally more efficient than the PM,
b) For certain spaces of economies, there exist pareto seekKing mechanisms which
differ from the PM and which have the same dimensional message space as the PM.
cf The representation of an allecation can determine the minimum dimension of

the mechanisms which implements it.

The importance of parts a and ¢ are deccribed above. Statement (b?

establiches the importance for the various hypothesice used in Sonnenschein’s
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Ycategory" characteriZ;tion of the PM [¢] and in Jordan’s theorem asserting the
uniqueness of the PM [41, This is because although the above mechanism has the
same dimensional message space, it is not in the same category as the PM. These
two papers consider wide classes of economies, and so the efficiency and other
propertiec of the PM appears to be based upon there being a "sufficiently
complicated® space of economies. This will be the theme of Thecrem 4.4. In
Section &, a space of economies will be considered where the PM is dimencsionally
efficient, but it is not unique. <{In both [4] and [?], the reprecentation was

expressed in terms of net trades. I have not checked whether this hacs an effect

on their conclucions.)

in]

3. Classes of Performance Functions

To simplify the subseguent notation and analysis, assume that all performance
functions are of the form G=¢(Q:,...,8n) where Gy represents the jTH
agent’s allocation., Furthermore, assume for sach choice of j that the number of
compcnents of Gy is fixed. As we saw in the example of the last secticn, this
need not always be co; Py had four components while @7 had two. In such
situations, dummy variables can be inserted.

To analyze the guestion raized in the last section, we must determine when
two performance functions, P! and P2, are equivalent. Quite simply, the
equivalence is €a) if both functicne are representations of the same allocation
and (b if it is possible for each agent to determine his allocation under cne
performance function bacsed upaon what‘it weuld be under ancther., (In practice, if
{b) ie¢ satisfied, then it can be assumed that (a) holds.) For instange, if the
allocation is the salary increase for faculty members, it doesn’t matter whether

it ic expressed in terms of the increace or the final salaryj from cre’s private
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in{ormatio; it is possible to determine one representation in terms of the other.
Sa, the first requirement is fhat each individual can combine the public
information as expressed by the given performance function and the individual’s
private information to determine his allocation as represented by a second
performance function,

This computation of the outcome from one performance function to ancther 1g
an informational issue. MNamely, we must specify whether there are any
restricticons on what private information can be used in this ccnversion; this
choice will influence what constitutes an admiscible representation. For
instance, in the above example, the faculty member uses only information
concerning his previous salary, but no informazticon concerning his utility
function, social security number, eté. was used. On the other hand, there is no
reason why such a listing couldn’t have been in terms of social security numbers
where the final salary is a specified functicn of an announced number and an
individual’s social security number. To model what the agent can use, iet [
reprecsent the subcset of the parameters of the system which the jTH agent can use
in going from one performance functicn to another; e.g., it may be the space of
poscibile initial endowments for this agent,.

The public information (the components of P) which each individuai may use
must alsc be specified. In the salary example, the computations use only each
faculty member’s allocation. However, it is easy to describe representations
where the computations are based upon the total image of the performance function,
not just those components which pertain to the jTH agent, say, each perccn‘s
increase is & particular multiple of the tctal amount of moner to be allocated.
Therefore, let Pry be & projection mapping from R® onto one of its component
subspaces., If the image of Pr; is the subspace correcsponding to the allocation
of the jTH agent, then the jTH agent will be making the computatione baced

only uporn his allccation. If this mapping is the identity mapping, then it can.be
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based upon the allocations of all of the agents.
The following is a formal statement describing the conversion of cne

performance function into another.

Definition. For each j, let C; be a linear space such that the space of
economies RKx..xRK can be expressed as a product of C; and another set. Let
Pry be a projection map from RAR to one of its component subspaces. The
*structural information set" D=I[Cy,...,Cn3Pri,y...,Prn]l is a listing of the
information which the agents can use to convert one representation“of an
allocation to another. If P is one representation, then the jTH agent can use
the variables in C; and the values of Pry(P). If x; is the component
representing the jTH agent’s state o% the economy, let c; be the component in
the subspace Cys. Performance functions P! and P2 are said to be

*D~-related" if there exist smooth functions F=(F;,..,Fx? and G=(G,..,Gx)
such that the following equalities hold for j=1,..,N.

3.1> FEs(cs,Prs(PI)=PZ;,

3.2) Gilci,Prs(P2))=pl,;,

Functions F and G will be called "transformation functions®.

Whern a D relationship is specified, it is a recstriction on what infcormation
the agents can use in going from one performance function to ancother. Hence, it
is a critical part of the modelling which asserts what is intended by the
allocation., For example, if C; is the set of initial endowments, then it is
possible to go from net trades to final allocations. Usually Csy will be &
subset of the jT7H agent’s space of characteristice, R¥., Extensicone of this to
models which inciude public goods, public or partial Knowledge, externalities,

etc, are obvious. For example, C; may become a cpecified subszet 1n a larger

space which includes part of some other agent‘s parameters. This is ii]ustrate;
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in Section 7.

If P is the al]ocation,Athen let <P>p be all representations of P which are
consistent with the information set D. If C; is the domain for Pry(P), it is
easy tc show that the binary relationship introduced above defines an equivalernce
relationcship among performance functions. Thus, <P>p becomes a D-eguivalence
classes of performance functions.

We will say that D! is contained in D2 if for all choices of Jj, the cet
Cty is contained in C2; and the range of Pr'y is contained in the range of
Pr2;. This means that under D2, each agent hae more information at his
disposal to go from one performance function to another. The following

-

proposition is immediate.
Proposition 3.1, 14 D is contained in E, then (P>p is contained in {P>eg.

To find whether a mechanism is dimencsicnally efficient for a final allocation

P. then it must have the minimal dimension cver the class of mechanisms which

implements some @ in <{P>p.

Proposition 3.2 Let performance function P be a representation for & given
allocation. If the minimal dimension of a message space is dy for the

informational structure Dy, and if D; is contained in Dz, then d;2>d:z.

The proof of this statement ic immediate.

Notice that (P>p={(P} if D is the empty set. Since in the Hurwicz and the
Mourt-Reiter papers only-the net trade representation of an allocation was
concsidered, one can view their results ac holding for this trivial etructural

infermation set. The problem is to determine whether the result hclds for

n

larger D class. #According to Proposition 3.2, when larger cets are concidered,



the dimension of the message space may be smaller,

While the above description concerning the representation of allocations may
seem to be quite general, it can be extended. .In Section 4, the description of a
message network is given, A more complicated and qeneral version of the
representation problem combines the ideas of these two sections, Namely, it turns
out that it is possible to define the choice of the representation of the
allocation as part of the communication process! However, this leads to some
technical difficulties, so I’m deferring & discussion of this to elsewhere,
Morecver, this more general theory plays no role in the discussion of the PM,
However 1t is important for models with externalities or asymmetric informaticn.

it the end of Section 7, we illustrate this with a simple example.

4. Message Networks

In thic section, we give the technical definition of a regular mechanicm
which implements a given performance function. This will be fcllowed by the
tharacterization of any such system. Thic characterization will be illustrated by
proving the assertions made in the last two sections.,

The goals of an economy are specified by the performance function P az given
in Equation (1,1), That is, for a clacs of resources and characteristics of the
agents, the performance function specifies the realliccation of the recources.
Acgcume that the message space M is anm Euclidean space. The rules of communication
are modelled by a mapping
4.1 Gix,m):R¥x,, . xR¥xM-—--M
where Gizx,m) = {gi{xt,m>,,..,anixN,m3) and where gsixy,m> 1€ & mapping
from RKxM into a subspace of M. The jT® agent’s paramefers are given by x5,

and thic agent communicatecs all messages m for which gsixs,m3=0. The privacy



preserving aspect is that these messages depend only upon the jTH agent’c
parameters., <(Examples of thi% are given in what fellows and in [7).)

An equ{librium mecsage ﬁ* it one for which G(x,m*)>=0. @A decision rule is &
mapping h which aseigns allocations to equiiibrium messages according to the
following rule: I1f m* is such that Gix,m*¥>=0, then
4.2) him*) = P(x),

Sc, & mechanism is determined by the rules of communication G, the messages
M, and the decicion rule h. The problem of designing a mechanism which implements

P ie to find a triplet <G,M,h> so that the following diagram commutes.

M
G=0 hi
4.2 P:RKx,, . xRK-—momomm o 2RA
The goal is to determine a mechanism which has the minimial dimension for the
message space M. So, consider only those mechanismz which have been reduced to
eliminate certain redundancies. In this spirit, & regular mechanism is cne for
which 6 satisfies the following:
a} 6 is a smooth function.
b> The number of components of G equals the dimension of M.
¢} The square matrix given by the Jacobian of G with respect to the m variables
is nonsingular,
d) The Jacobian of G with respect to the variables in R¥x,.xRK hac maximal
rank.

The basic idea for the characterization of a regular, privacy preserving

W

mechanism comes from the analyeis of the communication rules. If m i3 an
equilibrium mescage, then the set
4.4 Uimi = {x | Gix

consiste of those states of the economy which gives rise to the came equiibrium.
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message. That is, G partitions the domain into sets which, informaticnally, are
equivalent for F.

To understand what these sets mean, it helps to compare them with the
partitions which arise in the theory of "sufficient statistice". 1In both cases,
the partitions collect the parameters or data into subsets which are sufficiently
refined to realize the objectives of the modelling of the problem. (This is given
by P.) However, this analogy can be carried only so far because of some major
differences. For example, in economics, information must be collected from
several agents and then coordinated. Thus, we have what amounte to a "sufficient
statictic" for each agent (the level sets of gs{x:,m)=0), and they must
catisfy compatibility conditions which reflect the coerdirnation of these
"statistics",

With the regularity accumptions, the level sets are, locally, manifoids whers

the gradiente of the component functione of cr determine the normal bundle

LU

each point, @This is the set of a1l vectors which are crthogonal to the tangent
of the space.) Eguivalently, if it ic poecsihle to find nartitione which are given
bw level cete of functione and for which the diagram commutes, we have a

mechanism. This is the jdea p¥ the $aollowirn characterizztion (1712, (& hried

[n

eccrintion of the terme jic given in the Appendix.)

Theorem 4.1, Let P be smocth performance mapping as given by Equation 1.1, and
let x be a regular poirt for P. Then in a neighborhood in x, P has a meccage
system (G,M,h) where M hae dimension n if the following conditions are satisfied:
4.5) For each J, there jc a differential ideal 1; which is defined in a
rneighborhood of x and which contains dP and dxp for any cobrdinate function xg
which isn’t in the iTH agent’s space of characterictics. The dimension of I;

i nr+(N-1)YK where T ny=n.

4,6) Let I be the intercection of thele’S. Then I is a differential ideal
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which hac dimension n.

The converse is also true. That is, if there ic a reqular mechanism in a
neigborhcod of x, then the G functions define differential ideals with the above
properties,

s it will become clear in Sections & and 7, the components and the form of
1y are more important than the dimensicns. The ideal Iy corresponds to the
normal bundle for the surface which must be constructed. The condition that it ic
to be a "differential ideal" ic the integrability condition which ensurecs that
thic set is given by the level sets of functions. Condition 4.4 is the
compatibility condition between the various csubsets., The condition that dPf must
be in each ideal is the condition which allows this to be a "cufficient
information partition" for P.

To illustrate Thecrem 4,1, it will be used toc verify the azserticn that the
performance functicon P given in the first part of Section 2 cannot be implemented
brv a mescage srstem of dimencion less than four. The condition (4.5 recuires
that dPs, J=1,2,3, must be in I, But
4.7 a) dPFy = dwig,

5.7 b)Y dF2

n

dwiz - (BdA- AdBY/(A+R)2

4.7 ¢) dPgz

#

dwis - {((B-1)da+{1-AXdBY/(Z-A-E)2
These three forme are linearly independent, soc it is impocesible to choose two
forms to express all three of them. (To cee that they are linearly independent,
tgke the wedge product of all three. It will include the wedge product of the
three terme dwiy, and sc it must be nonzerc.) This means that the dimencsicn of
1 1¢ at least three, and from the theorem, this meane thzt the dimencion of M iz
at least three,

Concider the ideal 1;. According toc 4.5, this idea! containe dE, dwzs,

~

y and dF. If it is to admit an n; with dimension le

(48]

J=1,2,

"

s than three, then .
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these seven one-forms must be linearly dependent. However, a direct computation
shows that they aren’t. Thus; ni23. A similar argument shows that nz>1,

Thus, it follows that n24.

That P admits a message system where the dimension of M is four follows from
the system
4.8 qzl{xz2,m)=B-ma.

ol {xy mi=my-F7 %, ,ms), J=1,2,3.

Here x5 is the four-vector of paramenters which describes the jTH agent. This
mechanicsm ic the system described in Section 2 where the second agent trancfers
the value of B to the first agent, (This sycstem couid be constructed directly
from from the differential ideale by usina the approach described in Section 3 of
{710

fNext, we will illustrate how this characterization can be used with an
equivalence classes of performance functione. «(See Section 3. Let P be ac
defined above., The goal is to find transformaticn functions FL, L=1,2, which
will convert P into a representation which admits & dimensicnal savings; that is,
one which the extra demancs from the performance function. To do this, ascume
that the informaticnal structure set, D, is such that Ly is the space of
poesible initial endowments for the J7H agent, and that Prs; is the projection
map to the JTH agent‘s allocation, 1In other words, in going from cne
representation of the allocation to another, set D restricts each agent to use
only the information concerning his initial allocation and his final allocation
under P.

Each function EY is a mapping from a c¢ix dimensional space (three
components for the initial allocation and three for the values of the approgriate
components of F) toc a three space. Here, the range space consists of the L7HR
zgent’s three components of the new representstion of the allocation. So, let the

notation Flak correspond to the KTH partial derivative of the jTH component
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function of FL, Fty, where L=1,2; J=1,2,3; and K=1,..,4. The conditions which
the transformation function E¥(E',Ei) must satisfy to achieve an informational
saving follow:

4,9a) For each L=1,2, the 3x3 matrix ((Ftygd), J=1,2,3, K=4,5,4, must be
nonsingular. This comes from the implicit function thecrem, and it reflects
Conditions 3.1 and 2.2 which require that it is possible to go from one
representation to another with respect to the information etructure D,

4,95) The ideals Iy, L=1,2, are differential ideals. Each ideal contains the
difterential of the coordinate functions for the other zgent as well as the
differential of the six functicns
FEs{wK,Px), Each ideal hac a basis npy+é where n=n;+nz<4,

Furthermore, the ideal 1 formed by the intersection of I and Iz ic &.

differential ideal with a n dimensional basie., Thie is just Theorem 4.! where the

new representation of the allocation, F, is uced instead of P, The value n ic the

dimension of the mescage space,

For this problem, it iz easy to use the above conditions to determine choices

for F. 1f yiy, L=1,2, J=1,..,6, correspond to the coordinates of Ft, then one
choice would be
Fly = wly 4+ wliys3, J=1,2,3, L=1,2.

Thie defines the transformation functions from the P to the @ used in Section 2

‘o«

At this stage, it is an exercise based upon Theorem 4.1 to show that F(PF) acdmits a

mechanism of dimension 2. However, in general, the problem of determining an
appropriate transformation function may be difficult., For instance, is there &
method to determine the above F which isn’t bacsed upon prior Knowledge of the

system? Furthermore, there remains the quecstion whether this is the best which

can be done for this model, Therefore, in Section 5, we will present an approach

which helps to answer these questicons while simplifying the analysis.
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5. The Transformation Functions

One more step remains before we can turn to the analysis of the dimencional
efficiency cof performance functions. Namely, how does one determine the
transformation functions F and §? The following theorem provides a local
characterization of such transformations. Part of this characterization was
already uced in the last section when the examples from Section 2 were considered.
For notation, assume that the dimension of the set C; is cry, and that the
dimension of the range of Fry is py, 4=1,..,N. Furthermcore, ascsume that the
dimersion of the component of & performance function which represents the 7K
agent’s allocation is K. The transformation functicnz are to be composed with an
element from an equivalence ¢lass, so ite domain is to be an cpen subset of &
(E:QJ)+NK dimensional space. The notaticn for each of the components of F remain
as introducecd in Section 4. Thic means that FY ie a mapping from a Cstps
dimensional linear subspace into & K dimensional space. For notaticonal
simplicity, we will suppress the notation that these components are restricted to

thece cubspaces.

Theorem 5.1, Let P be a reprecentation for an allocation as given in Equation
1.1. Let the structural information set be D. Suppose that F is a transformation
function from P to another element of (B>p which is defined in a neighborhood of

a point x in the domain of P. Let y be the point given by the C; components of

¢

and P{x). Then, in a neighborhood of y, F must satisfy the following:
5.1 For each L=1,..,N, the pixK matrix ({(Flgss)), j=1,..,K, s=1,..,pL has
maximal rank K.

3.2 The NKxNK Jacobian of F, obtained by treating the C; variables as

parmeters, is non-singular.
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Furthermore, if a function F catisfies these conditions, then, in a

neighborhood of y, it is a transformation function.

The difficulty is not in determining whether a certain function F i1s a
transformation function, but in trying to find one. This is because in the
analysis one varies various partial derivatives of the components of F. The
complicatione arise from the standard integrability condition that "mixed partiale
must agree”. Thus, when one functional form is altered, so must several others,
In what follows, the mixed partial derivative condition is replaced with a more
general integrability condition., The functione {fl;s}, which a;e described
below, are to play the rcle of the partial derivativee Flys except that they may
not admit the appropriate mixed partial derivative concdition. However, we ascume
that the domain of the {fL} functions ic the same ac the domain of the
components of FL. The following ic a local sufficient condition for the
existence of a pair F and G. It ien’t difficult show that this iz a nececsary and
sufficient characterization of cuch a pair. Also, in practice, often these local

conditions give rise to global definitions,

Theorem 5.2. Let P be a represent the final allocation, and let D be the given
information structure. Let x be a regular point for P and y as defined in Theorem
5.1. The following are sufficient conditions th;t in some neighborhood of y there
exists a transformation function F which transforms P to another element of
P’p.

There exists smooth scalar functions {fi;s}, L=!,..,N, j=1,..,K,
s=1,..,c1%pL, to be called "transformational coordinate functions®, which are
smooth in a neighborhood of y, such that:

95.3) For each L, the matrix ((fL;g)), j=1,..,K, s=c1+1,..,C14pL, has

maximal rank K.
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5.4) The NKxNK matrix ({(grT)) is non-singular where the (R,T) entry is
-determined in the following wéy. I+ (L-1)K<CRLLK, tk=1,..,N, and if T is an index
of a component of y which corresponds toc entry in the image of Pe;, then grt
is fLys where j = R-(L-1)K and s is the labelling of the component corresponding
to T. Otherwise, gr7=0.
9.9) Let wt; be the differential form E:fl:sdyl:s. Then the ideal ji

which is generated by the wty’s is a differential ideal,

As stated above, the transformational cocordinate functioAS (TCFy, {FLg:2,
are meant to replace the appropriate partja]s cf E. The idea is that the TCF mav
not be the partiale of the components of a transformaticon function E, but if the
integrability condition 9.5 is caticfied, then there is some rearrangement of the
TCF's, throucgh multiples cf scalar functions and appropriate linear combinaticns,
which doee saticsfy the mixed partial condition. This simpiifies cur computations
because, by the ucual row reduction arguments, we can assume without loss of
generality that the components corresponding to the composition of £ with the
projections of P are in & row reduced form; if Pry requires each agent to
compute on the basic of his own allccation, then this is the identity matrix.
Notice that if a transformation includec a coordinate change on the underlying
cpace of parameters, then the }CF will involve P,

The difficulty with Theorem 5.2 is that it doesn’t determine the
transformation function F, it only establiches its existence. However, because of

the following theorem, it is unnecessary to convert the TCF intc a transformation

function; they can be used directly in the analysis.
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Theorem 5.3. Let a performance function P and the structural information set D be
given, Suppose that a set of‘TCF, {fL;s}, satisfy the conditions of Theorem
5.2. Take the composition of these functions with the variables (cy,Prs(P))
and combine them to define the differential forms zl:=§;.+L;Tdy1. In the
statement of Theorem 4.1, replace the differential forms dP with the forms
{zL,y3, t=1,..,,N, Jj=1,..,K. Suppose that the rest of the conditions of Theorem
4.1 are satisfied where I has dimension n. Then there exists an element of <P>p
which admits a regular mechanism with a message space of dimension n.

To illustrate this, r;turn to the modé] in Section 2 where D is as specified
in Section 4. We will show that the minimal dimension of the message space for =z
mechanism which implements this allocation i two. In proving this, we shall
concentrate on the ideal 1;; similar arguments hold for Iz and I.

Assume that the TCF are celected. Then, according to Theorem 5.3, 11 must
contain the six one-torms dPLK+E;-+LKJdWLJ, t=1,2, k=1,2,3, (here, the
comporients of Py are Plyx) as well as the differentiais cof the coordinate
functions for the second agent-- dwzy, Jj=1,2,3, and dB. Because the
differentials of these coordinate functions are in I, for the first six forms,
we can drop all terms which have these differentials. (More precisely, we are
finding an equivaient bacis in a row reduction manner by taKing the appropriate
linear comb;nations of the one-forms.) This means that the cole contribution of
the three one-forms with superscript L=2 is dA. So, ni21, and in order to
achieve equality, it is necessary for the three one—-forms with superscript L=i tc
be scalar functicnal multiples of dA., This uniquely determiges the TCF. For
instance, when k=2, we have Z;f'z;dwi;+dw|;—B[A+BJ‘2dQ. The anly way this
will become a multiple of d& is for f'z2=-1, and f1325=0, i=1,3. Thics meanc
that I; will be gernerated by d&; dB, dwzs, J=1,2,3., It is tri;ia? to show

that 1; i a differential ideal arnd that ni=1.
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A similar arqument shows that nz=!, and that Iz amd I are differential
ideals. & simple integraticn yields the transformaticn function F defined in the
last section, This proves that the smallest dimension is two.

Notice how it is the second agent’s allocaticon which determines the TCF for
the first agent. In general, we will find that for the 7R agent, it is the
allocations of the other agents which dictate the form of the appropriate
representation of both the i7H agent’s allocation and partitioning of economic
parameters, This theme recccurs in what follows both for economiecs with and
without externalities. The reason is that the differentials of &11 componentc of
the performance functicn must be in all jdeals. In Iy, the TCF and the
components in C; can influence the form éf some of these components, but not
those for the other agents.

For a different example, consider the performance function
Pix,»?2:RZxR2~--3R, which is represented by the inner prcduct ¢x,»>. In I7],
as well as in [2] it is shown that thic mechanicm requires a mechanisem with a
mescage space of at least three. (In [2], different technigues are used; they
require come additional steps of solving some partial differential equaticne. The
approach given in [7] can be viewed as being the dual of that in {21, and it
aveoids several complicated computational steps.) By use of Theorem 5.3, it can be
shown that this lower bound of three remains even if the structural information
set D consists of all of each agent’s private information and all of the public

information.
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&, The Efficiency of the Price Mechanism

In this section, we combine all of the above into one single approach. The
goal is to find from a given set of allocations, those choices which give rise to
the most efficient implementing mechanisms. The basic idea is to characterize the
admiscsible allocation concepts as a family of performance functions {(Puyl. That
te, each Py corresponds to a different type of &llocatien. Then, D is
specified. The sets {Pu¥p are examined to determine which representation
provides the most efficient implementing mechanism., This means that for each Py
we have the most efficient representation and a characterization of the
implementing mechaniem. Thus, each Py ic assigned & number corresponding to the
dimension of the minimal dimension of the message space. Then, the subspace of
{Pu} corresponding to the minimal dimension is characterized,

Perhaps the bect way to illustrate this procgram is to apply it to a proklem.
So, we will use it to determine §wm when the PM ic dimensionally efficient and to
characterize alternative pareto seekKing allocaticne and their accompanying
mechanisme which use mecsage spaces of differing dimensions. In particular, we
are interested in determining whether there are any allocation concepte which have
a lower dimencional message space than the PM, and to characterize thcse which
have the same dimensional efficiency as the PM,

The basic idea of the fcllowing analysis will be to consider the class of all
pareto allocations over a space of economies characterized by quadratic utility
functions, (Thie is the set {Py}.> Then, we will adopt a structural informaticn
set D, and consider all of the representatione of the allocations in %FjD
eQuivalence class, From here, we find the minimal dimensicn of the cocrresponding
message syctem.

Following Hurwicz [1], consider the class of utility functions

Us==(1/20X25 1 +b 1 Xy =C1/20K 25 24b52X5 24 X535, J=1,2, where X;k
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designates the jTH agent’s holding of the KTH commodity. If wyk desianates
the jTH agent’s initial a]]océtion of the KTH commodity and if wx=§:w;x is
the total supply of the k7Y commodity, then any pareto allocation can be
reprecsented as
6.1a) Xyx={wgtbyk-bsx3/2 for j,k=1,2,
where j’ is the other agent’s index. The allocations for the third good are given
by
é.1bY Xyz=ulw,b), and Xzz=w3-u
where w is the six-vector describing the initial allocations of the twc agents, b
ie the four-vector which identifies the two utility functions, and u is the
allocation; it is a smocth function which selects a particular pareto point.

When this class of economies is represented in an Edgeworth box, the line of
pareto points is parallel to the axis for the third good. The defining parametersz
for the utility functicns determine the location of the line, and the function u
determines a point on this line. In this way, all smogth, paretc allocations are
represented by some choice of the function u., Converseiy, a choice of & functicn
u determines an allocation for this space of economies. For example, the
competitive mechanism is
6.2 U=W|3+2[E£(wJK—XJK)(bJK”XJK)}.

We start b: underscoring the importance of the representaticn probiem., To do
this, we consider the problem where the allocation has the representation in 4.1

and D ic empty., We will show that for any allccaticn u, the minimal dimension of

the mecscace space must be ten and the mechanism essentially cocrresponds to the

=

That is, tc improve upon the CR, we need toc use a different representaticn. To
see this, we determine the entries which must be in the ideals Iy, Iz, and 1,
The differential oy ={ldw;i+db;il+ldwzi-dbz:13/2 must be in &l

three ideale., Since 1, containc the differentials of the ccordinate functions

for the second agent and since the sum of scalar functional multiples of
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differential forms is again in a differential ideal, it follows that the first
bracketed term is in 1. (Seé the Appendix.) By using a similar reduction on
all six of the components of the performance function, if follows that I,
contains the entries dwyi+dhy, dwyz+cb, 2, dﬁl, Gwia-dui,
dw;i-dbyi, dw)z-dbiz, and the differentials of the second agent’s
cocordinate functions, dwzs, dba2y, j=1,2,3. Here, du=dui+duz where dus
ie that part of du which contains the the differentiale of the jTH agent’s

coordinate functions.

It ic a simple combinatoric exercise to show that independent of the choice

of u, 1| containe the differentials of all ten coordinate functions., As a
result, n;=5. A similar argument shows that n2=5, and that n=10. There are
many different message systems which will implément the system, but they zre

equivalent to the CR where each agent communicates the value of each paramenter

30

to

a central agent, and the central agent computes the outcome., This is because the

G equatione defining a mechanism can be sclved to determine each and every

parameter of the two agents. 1In other worde, each equilbrium message correcponds

to a unique point in the parameter space defining the economy.

Next consider &il poccible representations of the alloccations. So, tet Cy
correspond to the space of the JTH agent’s initial endowmernts, and let Pry be
the projection mapping onto the JjTH agent’s allocation space, j=1,2. What we
show is that over the equivalence class {P>p, for any pareto allccaticon, the
minimal dimension of a message space is 4. Also, we characterize all paretc

allocations which achieve this minimal dimencsion.

-
[

Theorem 4.1. Acsume the structural information set is given as described above.

A necessary and sufficent condition that an allocation u can be implemented with a

message space of dimension 4 is that u can be represented as

$.3) u = w3 ¢+ H
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where H is any smooth function of the terms (wyx-bsx}), Jj,K=1,2.

The representation of the allocation is an expression of these same four

terms; this includes net trades.

Arargument similar to that given in the proocf shows that the same conciusion
holds should Cy consist of the total five-dimensicnal space of the 7K agent’c
parameters and should Pry be the identity map. By using Proposition 3.2, it
follows that the above characterizes the best one can do dimensionally where the
structural information set incorporates all private and all public informaticon,
1t follows from Equation é.2 that the competitive equilibrium has such a

representation. Hence,

Theorem 6.2 Let the structural information set D be where C; is the total
parameter space of the jTH agent and where there are no restrictions on the
public information. Then the PM is dimencionally efficient over the clase of all

privacy preserving, pareto seeking, regular mechanisms.

A& similar analysic holds if this model of quadratic utility functicne is
extended to include any number of commodities and agents. Because of this, we s&s
that Hurwicz’s assertion still stands; a similar analvsis applies to claszs of

economiecs used in the Mount-Reiter paper.

Theorem 6.3. Consider the space of all neoclassical economies for n agents and ¢
commodities where the utility functions are smooth and concave. Let the
structural information set D be where C; is the total parameter space of the

JT¥ agent and where there are no restrictions on the public information. Then

the PM is dimensionally efficient over the class of all privacy preserving, pareto

seekKing, regular mechanisms,
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The reason this theorem hb]ds iec that it is well Known that over this space of
geconomies, the PM requires a mecssage space with dimension n{c-1), But, according
te The&rem 6.2, there is a subspace of this space of economies for which no
mechanism can do better than the PM. Thus, the conclusion follows. RAlso, because
of the choice of the structural information set D, it follows from Propositicn 2.2
that this is the smallest dimension for any privacy preserving mechanism.

However, we still wish to know when a particular subspace of economies has the PM
ac an efficient mechanisem, This guestion is addrecssed at the end of this csection

in Theorem &6.4.

Proof of Theorem 6.1. Without loss of generality, assume that those components of
the TCF which are multiples of the dF components form an identity matrix.
Therefore, for the LT® agent,L=1,2, the Eéggliz;as are

6.4)  mflygdwikt dXis

for j=1,2,3, k=1,2,2, Once choices of the TCF are found which satisfy the
conditions of Theorems 5.2, then these forme are substituted into the three ideals
in place of d¥;k.

The easiest way to start the computation is to analyze the impact the second
agent’e allocation function has on the first agent’s ideal. Here we get terms
liKe dw g+tdwak+dbzg-db i k+ta wahere a consicsts of the terme introduced by
the change in the representation. The second, third, and fifth terms can be
dropped becaqse they are linear combinations of the second agent’s entries {(which
are in Iy to reflect ptivacy preserving). But, independent of the choices of
the {(fZ;y3 fukctions, it is not possible to eliminate the terme dw;g-dbik.

This i1s becauce these entries do not belong in the private information set Cz,

So, while thece differential forme need not appear explicitly in Iz (becaus

m

1, already includez the differentialse of all of the first agent’s coordinate
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functions), they will appear in I;. This means that when }he new forms for the
second agent are included kn fhe first agent‘s ideal, I; will include the new
forms defined by the {fl;x} functions as well as the three one-forms
6.8) dwii-dbyy, dwiz-dbz,
and
6.6) dwya-duy.

The one-forms in 6.5 are linearly independent, so n; is bounded below by 2.
A similar argument shows that nz also ic bounded below by 2, so n is bounded
below by 4. Hence, independent of the choice of the parete allocation u, the
minimal dimencion for a message space is 4.

Next, we characterize all pareto allocations which qgive rise toc mechanisms
with a four dimensional mecsage space. What has to occur is that all of the
remaining ferms in I, must be linear combinations with functional coordinates of
the two forms in &.5. A symmetrical condition holde for I2. This uniquely
defines the choice of the ¥ functions. Namely,
6.7y Fizy=-1, L,i=1,2, and all other f terms are identically zero.

This condition starts the characterization of the possible allocations u.

3

3

The first condition comes from the fact that the form in 6.6 must be a combination

ComS
cf the forms in 6.5, while the second condition from th
A

inserting the first agent’s forms into 12 and then forcing nz to be equal to
2. Thus,
6.8 dui = dwis + a, where a is any differential form given by the sum of
scalar functional multiples of the forms in &.9.
6.9). duz is the sum of functional multiples of (dwzi-dbz,) and
(dwaz-dbazd. ‘
Because u ic required to be a smooth function, an additicnal integrability

conditon needs to te imposed.

6.10> d{a+dugzi=0, This completes the procf of the theorem.
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What vitiates the impact.o+ these statements is that the price mechanism and
the Walrasian equilbria aren’t the only dimensicnally efficient mechanisms and
allocations. An example of an alternative allocation is where H=0. In this case,
each agent Keeps the initial endowment of the third good. Another example might
be where the net trade is some fractional amount of the average net trades of the
first two goods for the agents. A sufficient condition for a allocation in thie
economy to be individually rational is that
(byy-wyi)2+(by2—ws222-C-2(-12FH>0 for j=1,2 where
C=(byj=wii1d(bai—~wz1)+{bzz-wz2)¢biz-wiz). The sum of these two
equations is always positive. From this it is clear that & function H can be

+ound which will saticfy both inequalities. This meane that there exicste & clacss

pf individually rational mechanisms which do not agres with the PM, but which have

las

messace space of the szme dimension as the PM,

A mechanism which implements any of the above, including the Walrasian
allocation, ic a partial revelation mechanism
é6.,11) byy-wiy=m;, bai-wzr;=mr+z, J=1,2,
That is, the jTH agent communicates the values of (wyk-bskd, K=1,2. An
alternative mechanism which uses the same partiticoning would be
6.12) bry—wis=m’;+m 542, borwzs;=-m’s+m’s+z, J=1,2.
It might be gquesticned why one would present this last system since it appears to
be only a complicated version of (8.11), We do so becauce this essentially is the
price mechanism. Here (m’3,m"4) corresponds to the prices while the other
primed messages corresponds to the net trades. Actually all mechanisms can be
founds It is the set of any four functions gx(b1|-wa,;b42-w32,m)=0
where two of these functions use the subscript j=!, while the cther twg use j=2.
Furthermore, these functions must satisfy the regularity conditicons. Thus, m

codifies the value of these four terms. The h function (decision rule) depends
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upon the choice of tge allocation,

From this arqument, theré is nothing from a dimensional viewpcint which
distinguishes the PM and the competitive equilibrium from a large class of other
poscibilties which include allocations with redistributions, individually rational
zlleocations, etc. Indeed, at this stage it isn’t clear whether one of these other
mechanisms might not be cimnlier to implement from 2 strictly comrutational and
complexity viewpoint,

In Section 2, an example wae civen to chaw that there exict spaces of
economies where the PM is not dimencsionally efficient, MWe conclude thie section

by nrouviding 2 sufficient condition that 2 craces of neccld

i
m
W
[m]
0
—

economies wWwith 2

agents and ¢ commcdities admits the PM as a dimensicnally efficient mechaniem (A

cimilar condition holde for n agente 2nd ¢ commodities, Percauge the current

r

>
)

0¥ jc complicated, it is not offered here.) Thic ctatemert ian‘t intended to

k

[
o
n
w

roy rather 4 ic intended tc chow thzt whern the emzce of pareto points

H
3

hecomes sufficiently rich, then the PM ic efficient, ULhile this sufficient

n

condition jen’t comnrehencive; it doec include the ctandzrd craces of exchang

u

economies which are useg in the literature. 0+ cource, for any given space of

economiecs . the technique uce

TEZ e T -

(n ¥

ah

()

we in the prond of Theorem 4,1 czrn nrouvide a
sharp estimate as well ac a description of the partitioning of the parameters.

v, the regzder mzy hauve cenjectured after reading the examnle in
Section 2 that the reascon the PM wasn‘t efficient ic that the total amcunt of each
commodity wze given in =zdvance, Thic ic onrly 2 partial explanation, &8¢ we will
see from the next theorem, what determines those situations where the PM is

S

efficient is the complexity, or richness of the cet of paretoc points., 1 leave it
as a simple exercise for the reader teo construct an example of a space of
economies where the set of utility functicns are sufficiently complicated so tnat

even if the total! amount of each commodity is kKnown, the PM is dimensionally

efficient,
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Theorem 6.4, Assume given a heoc]assical exchange economy with two agents and c
commodities where, for each choice of the utility functions, the set of pareto
points is a smooth curve, Assume that, at least locally, this curve of pareto
points has a parametric representation uj(b,w,t)=Cu!y,u2;), j=1,...,c, where

b is the parameter identifying the utility functions, w is the vector of initial
endowments, and t is a scalar parameter of the curve, Let the structural
information set be where C; is the jTK agent’s parameter space and where Pr;

is the identity map, Jj=1,2. Let grad;Cux) represent the gradient of ux with
respect to the jT¥ agent’s variables b;s and wys, Jj=1,2. Suppose for Jj that

the set of vectors {gradyCulyg)}, L=j, kK=1,..,c, forms at most a linearly
independent set of iy vectors. Then, no pareto allocation can be found which
can be implemented by a mechanism with a message space of dimension less than
6.13) iy + iz - 2.

In particular, if there is an open set of parameter values sc that i|=iz=c,

then the PM is dimensionally efficient,

Nate that c 2 igs.

Corollary. Assume that the number of defining parameters for each agent is
bounded below by c¢. Then the general (generic) situation for a neoclassical

economy with two agents and ¢ commodities is that the PM is efficient.

Theorem 6.4 gives only a sufficient condition. £ necessary and sufficient
condition wouid }nuo]ue the integrability conditions which are part of the
definition of a differentiable ideal. In particular, it is possibie for the above
conditions to be violated, and yet the PM iz dimensionalily efficient, Thiz occurs

when the differential versions of the gradients do not satisfy the integrability
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conditions, so additional forms must be added. An simple example where this
occurs is the ccalar product éxqmp]e which was mentioned at the end of Secticn &,

The example in Section 2 illustrates that the bound in &6.13 ﬁeed nct be
sharp. This is because in this model, {1=iz2=1, but the minimal dimension is
2, This chows that the sharpest dimension needs to be determined by a direct

analysis of the system by usze of these technigues.

7. Externalities

The techniques developed in this paper are intended tc be applied toc a wice
variety of economic models. To emphasize this, we will anzlyze & simple model
with externalities, 1In doing so, we will show how the representaticn of & pareto
allocation and the partitioning of the space of economies for a mechanism change
ac externalities are admitted; both depend upon the form and the magnitude of the
externality., To see this and to facilitate compariscns with an economy without
externalities, we will perturlt the utility functicns given in Section 6. So, let
Ui=U+{e/23X2,y and Vz=Uz where e is & scalar and where Uy, j=1,2, are
the utility functions defined in Section &, Whether e ic negative or positive
indicates the type of impact on the first agent caused by the amount of the first
commodity held by the second agent.

The pareto points for these utility functions are given by
7.1 Xpg={{1-edwy+tb;i-b213/(2-e), Xyz={watbia-b223/2, X3=
ulh,w,ed;

Kor={withz-by3/¢2-e), Xz2={wz+bz2-b123/2, X23= wa-u.
Thus, the line of paretc points is parallel to the X3 axis, but it doesn’t agree
with the line defined for the economy without externalities; i.e., the setting

where e=0, From thies it follows that the P¥ is not a pareto seeking mechanism for
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this economy .
First concider the case Qhere e has a fixed, given value. Assume that the
structural information set D has the private iﬁ{ormation sets cbrresponding to the

each agent’c space of initial endowments, and the public information consists cof

Il

each agent’s component of the alilocation function. For this setting, it turne ocut
that this system can admit pareto seeking mechanisme with a message space of
dimencion 4. But, for thic to be so, the allocation u must assume the form

7.2 u= wiatH

where H is a smooth functions of the terms C(wypr=biid, (wiz=bi23,

{{1-edwz1~bz12, and {wzz2-bz2). Notice how the value of e modifies the

value of wz). I1f e=0, then we recover Theorem 6.1. 1{f e=1, then H does not
depend upon wzi, sc this term is superfluous for the design of a mechanism. In
particular, note that the fircst agent‘s externality ic reflected in how the second
agent’s parameters are partitioned. The communication rules are functions g which
depend upon thece four terms and m in a four dimencional space. These functions
must satisfy the regularity conditions specified earlier.

The proof of this statement follows the linec given in Se

M

tion &. The
allocation functions for an agent determine certain entries in the ideal for the

other agent. To minimize the dimension of the ideals {and the dimension of the

message cpace), these entries determine the TCF. If the entriec form differential
tdeals, then we have the partitioning of the space of economies which ic the basis
for any implementing mechanism.

In this model, any implementing mechanism will be based upon the four

elemente ot H, This means that such an implementation cannot be in terms of net

trages., In particular, thic again demonstrates that the price mechanizm iz not
a pareto determining mechanism for this space of economiecs. (0n the other hand,
the PM would be if the externality term had been eX2;3 instead of the given

form. Thus, an analycis of "externalitiec" must be sensitive to their functiong!



form.)

For this space cof economfes, the fact that the fircst agent has an externality
manifests itself in how the éecond agent’s pérameters are partitioned. However,
for the corresponding representation of the ailocations, we find that the TCF are
the same as in.Section 6 with the two exceptione that f4;,=(e-2}, j=1,2, Thus,
for each agent in this economy, the reallocations should be stated in terms of net
trades of the second and third goods. But, for the firet commodity, it should be
of the form X3 y-Cl-edwyy, Jj=1,2, Thus the exictence of this simple externality
affects the optimal choice of the reprecentation of the allocation for both
agents, Note fi 4 whien €55 e ophindal rvepicnontetion o5 e amivtuve o8 ret yeades
an~d  Sinal allitetionmsg . ’

(Ta cee how the form of the externality canm strongly influence this
characterization, consider the above but where the externality ic eXz:. Here,
the mechaniems, the allocations and the reprecentations are the same as in Secticon
é6 except that b2y is replaced everywhere by hbaoyte.)

Consider the same externzlity problem, but now assume that the value of e ic
a parameter which partially characterizes the first agent. This meanc that the
gomain for the allocations changes from a 10 dimensional space to an eleven
dimensional space. This is because the parameter space for the first zgent is six
dimencional as it includes the initial endowment, the b,y parameters, and &, By
changing the role of e from a constant of the system to a parameter, the above
mechanisms do not apply. This is because e is the private information of the
tirst agent, so it cannot be used to define £%,;.

Consider three different situations. The first ic where the e parameter does
not belong in the private information set T, and the second is where it does.

The fhird is where e belongs to the information set of both agents., 1t would seem
that this should make a difference in the resulting mechanism. The reasoning is
that in the second setting, the first agent can use the additicnal information to

determine the final allocation. While examples can be constructed where this will
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make a difference, in this model, it doesn’t. This will be explained in what
follows., However, the third ﬁode] does differ from the first two.

Treafing e as a paraheter, the form of the second agent’cs allocations forces
the terms
2.3) (2-e){dwii-dby)-Cwi+tbzi-byidde, dwiz-dby2z, and dw;a-du,
to be in Iy, The first term is the Key one to determine the TCF which lead to a
dimensionally efficient mechanism. In order for n;=2, f'1; must be selected so
that {(2-e) 24! +4(2-e){1-e)2dw, +{2-e)db;-{w,+bzi-byylde can be
represented as a linear combination of the first two terms in 7.2. Thics means

that it is a scalar multiple of the first term, so this is true if and oniy if

m
w

fliy=-1, From this we have that if ni=2, then du,=dw;ata where a is
one-form which is a linear combination of the first two terms in 72.3. This
implies that the representation for the first agent will be in terms of hic net
trades, but the messages are not in terms of net trades.

The first agent’s allocations contribute to the ideal 1; the cne-forms

7.,4) (i1-eddwzi-db2:1, dwzz~dbz2, and duz.

el

he allocation function Xz, for the second agent contributes the cne~form

7.3) dwzi+dbz

to 12, Becauce e is a parameter for the first agent, it cannot be Used far that
part of the TCF which pertains to the second agent. Therefore, the form in 7.5

cannot be mcdified so that it becomes a multiple of the first term in 7.4, This
means that these two forms are independent, and that nz23 ac Iz contains

dwzi, dbzy, and dwzgz-cb2;. 14 nz=3, then this impiies that duz iz a

combination of these three preceeding term. .

In order for there to be a allocation which can be implemented with a message

space of dimension five, the choice of aliccation must be u=w;3+H where H is

ne

emocth function such that dH is a linear combhination C(with functicocne ac

coefficients) of the five one—-forme described above. The reprecentation of the,
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second agent‘s final alloction of the second and third good must be represented in
terms of net trades. It doesﬁ’t matter how the first good is represented.
Furtherhore, if the allocation is of this type, then a2 dimensionally efficient
mechanism muct be derived by a partitioning of the space of economies &s given by
the ideals I, and I2.

Now consider the cption of allowing e to belong to ). The only way this
could only reduce the value of ny is by allowing for a more general choice of
the reprecentation of the allocation Xyi. This more general reprecentation
might then permit the new form to be & linear combination of the foms in 7.3,
Since this is already so, it isn‘t necessary, But, while this doesn‘t achieve a
saving here, in other examples it may.

Finally, consider thebmode}ling where e is a parameter which is Known to
both agents. That is, both C; and C2 include the parameter e. In this cace,
the system admits a allocation and a mechaniem with a message space of dimencicn
4, The partitioning of the parameter space is the came ac the first example.

The above characterize the forme of the allocations, but it doeen”t admit an
obvious one. Namely, the first agent could simply annournce the value of &, and
then the first mechanism would suffice. This is because the second agent wouid
Know the value of e, so it could be accounted for in the representation of the
allccation. This means that the TCF would depend upon the meszaogesz, and thics is a
class of transformation functions which are not discusced in this paper. However,
in this setting, ni=3 and nz=2,

The above is for only a special space of economies wjth a simple externality,
Conceguently, we cannot expect to derive any genera} principles about the pareto
geeding mechanisms for economies with externalities, Inctead, the lesccns from
this example are more procedural and technical. For instance, we see that the
representaticon problem concerning how an externality is modelled can have an

important influence on how any allocation can be implemented. This is in the
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choice of the solution concept, the choice of the representation of the allocation
(which appears to be nonstandérd)_and in the choice of the structural informaticn
set D. Moreover, this approach offers an alternative theoretical manner in which
economies with externalities can be analyzed, and it is an approach which can lead
to the construction of mechanisms. <(Khile I haven’t described how to construct
mechanisme from the differential ideals, & discussion can be found in [7].) For
inctance, since our central tool is not only a sufficient condition, but also za
nececsary condition, this provides an alternative way to analyze whether a
particular mechanism will implement an economy with externalities. <(For example,
will certain taxes and subsidies implement a particular space of economies with
externalities? So, this approach can be used in place of a medification of the

usual "supporting hyperplane” arguments.)

8. Proofs of the Theorems

In this concluding secticn, we will give the proofs of those theorems which
havern’t been verified earlier. The basic idea for the theoremc in Section 5 is
that the space of all possikle changes of representation define a manifald in

function space. The conditions characterize this manifold.

Proof of Theorem 5.1. Conditioen 5.1 is just the condition for the local
invertibility of Fy to define a smooth function By. Condition 5.2 is the

condition corresponding to the local invertibility of a smooth F to a smooth

[}

Prooft of Thecrem 5.2. According to the Frobenius Thecrem, (for example, cee [10]
and the Appendixd, Cendition 5.5 implies that in & neighborhood of ¥, there exicts

Fa.

a emooth function EL, L=1,..,N, from thics neighborhkcod tc a neighborhocd of a
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predetermined point in the Euclidean Space RNK,

The level sets of ft haué the following properties. When the one-forms
wly are interpréted as vectors (see the Appendix), then they are normal to the
level sets of FL. Furthermcre, the differentials of the components of FL lie
in the span of the one-forms {wt;}, and conversely, the crne-forms wly are all
in the span of the differentials of the components of FL. This last fact and
5.3 ensure that S.1 is csatisfied. Similarly, this fact and 5.4 ensure that 5.2 is

satisfied. The conclusion followes immediately.

Proof of Thecorem 5.3. Suppose that F is a transformation function definec by the
TCF {flLys5}., Then, when the differentials of Flcy,..,cn,E2 are uced to
define the ideale 1; and I, they must saticsfy the conditions of Theorem 4.2,
This is egually true of any basis which is derived from the differentials of thece
composite functions. That is, it is true for the forms {whl;l.

Convercely, suppose that the hypothesis of Theorem 5.3 ic satisfied. Then it
will be catisfied for any basis which ic derived from the basic {wtysl.
According to the above, thie includes the set given by the differentials of the
components of Fic,,...,cn,P3. Thus, according to Theorem 4.1, the conclusicn

of Theorem 5.3 follows.

Proof of Theorem é.4. An allocation is given by the choice of the parameter t,
S0, let ti{b,w> be a smooth function which determines the adopted, pareto
allocation. No matter what is the choice of the TCF, in 1; there will be the
differential forme

8.1) (aradslug2+Bug/Jt2das),(dby,dwsdd

where ay is the vector grad;{t), and (8.1) is the formal inner product of the
vector and the differential form (dbs,dw;? where by and wy are the

parameters identifying the jTH agent. <That is, 8.1 gives the differential form
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(dukdsy, j=1,2; this is the part of dukx which has the differentials in the
JTH agent‘s parameters.)

In +indiﬁg an allocation which will lead to a dimensionally efficient
mechanism, we wish to define t in such a way that the sets of vectors
{grads(utgi+{dulgs/3trad, L differs from j, span as small of a dimensional
space as poscible. This number will provide a lower bound for ny as defined in
Theorem 4.1. The only free variable here is the vector as5. PBut, because this
vector is independent of K, an elementary vector analysis argument yields the
lower bound of isj-1. Thus, nj2isj-1. The upper bound for iy is the
minimurm of c .(the number of gradient functions) and the number of variables

defining the jTH agent. The conclusion follows,
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Appendix

In this section, we provide a brief outline of differential forms, UWhile
this will suffice for a first reading of the paper, 1 strongly recommend that the
interested reader consult one of the many excellent references on this topic, such
as [107,

From a computational viewpcint, one of the uses we make of forms s to
describe conditions on vectorfields. A vectorfield VI={M .. ,MiN) on RN
can be identified with the differential form w'=i;U':dx:, where, for now, we
can view dxx ac a place holder which indicates the K'H coordinate cirection in
RN, A one-form, then, is any linear combination of the dxg’s with {(smocthi
scalar functional coefficients. Thus, it is possible to go between the
representation of a vectorfield and a one-form.

A two-form (and, by induction, a K-form} can be defined by a wedge product
where dxgAdxs=-dxjAdxk., This two-form can be loosely viewed ac being a
signed, twoc dimensional area measure., 14 w5=§:wJdeK, where the wlg’s are
emooth functions of x, then WlAW2=f§;wIJW2KdXJAdXK =
- IR

Loolwigwiy-wZysw!gldyy.dxg. One usze of the wedge product s to show
34N

the independence of the set of associated vector fieldse. For instance, if U7 iz
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identified with the one form w?,j=1,..,s, then a direct computation shows that
the s-form Wi ..Aw5 not being.equal to zero corresponds to the set of s
vectore {U¥) being linearly independsnt.

1f P is a smooth function, or a zerc form, then dF ie the cne-form which is
identified with the gradient of P. When the coordinate function x3 1¢
differentiated, we see that this definition is concistent with our use of dxs,
but it gives this term a different interpretation. For the one-form w!, the
exterior derivative dw! is defined as 2..{dw'js}Adxs. For example,
dix2ydx~xydy) = -(xZ+y)dx.dy.

An ideal of forms, J, which is generated by the j one-forms <w!,.. w’> ic

the cet of all forms which can be obtained by ta) taking the wedge product of any

—

form with & form in J and (b)Y by the linear combinations of forms in J where the
coefficients are smcoth ccalar functions. For example, if (xZ+1)dy+y2dx and

dx are in J, then so are dx and dv. Consequently, for any smooth functions fix,»3
and gix,v), fix,yydx+gix,yddy is in J.

For cne-formes, the above combinatoric process ie the same as finding an
equivalent basis of vectors for the acsscciated vector fields. Namely, with the
above example, we are saying that (loccally? the basis Vi={y2Z ,x2+1) ang
V2=¢1,0) can be replaced with the simplier system {{1,03,{(0,1)3. This
combinatoric procese of reducing the system to & simplier reprecentation is used
heavily in this paper.

Just as differential equations, or a vector field in a space, can be used tc
define a family of curves, defining a j dimensional vector space at each point in
RN may define & family of surfaces., Here, the family of vector spaces can be

viewed az being the tangent spzce for the j dimensional surface which is to be

or
m
mn

v
0
(o
(0]
0
+»

found, or the dual approach would ke that it is the normal space-t

. (The

vectore orthogonal to the tangent space for the (N-J) dimensional surface

un

switch in dimencsion of the surfaces corresponds to the role of the vector spaces.?
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In this paper, we use the normal space representation. This vector space which
changes at each point can be defined by the span of j independent vector fields.
But, thece vector fielde muct satisfy certain integrability conditions. In this
paper, we use the integrability condition as given by a differential ideal.
A differential ideal I which is generated by the j one-forms (w!,..,w?>
ie an ideal which satisfies the following two conditions:
¢(a) The j-form r=w'!A..pw’ ic not zero. (Indeﬁendence)
(b) dwx Ar =0 for k=1,..,J. (Integrability.)
The Frobenius Theorem (e.g., see [101> asserts that if I is a differential
ideal, then it defines a family of n-j dimencsional smooth surfaces. Moreguer, at
Smaot™
least locally, thece surfaces can be given as the level sets of aﬂ{uncticn E from
R¥ to RY, Alsp, the vector fielde ascsociated with the one-formes are all
orthogonal to the surfaces, and all such arthogenal vector fields have its

orne-form reprecsentation in 1. A combination of the last two sentences gives us

that the comporente of d5 are in I; that is, each companent can be exprecced &

N

=t

linear combination o+ the generating forms, This is used in Secticn 5.



