DISCUSSION PAPER NO. 605
HOW A NETWORK OF PROCESSORS CAN SCHEDULE ITS WORK
Stanley Reiter*

Center for Mathematical Studies in
Economics and Management Science
Northwestern University
Evanston, Illinois 60201
and
The Institute for Mathematics and its Applications

University of Minnesota
Minneapolis, Minnesota 55455

April 1984

*This research supported by NSF grant #IST 8314 504

How a Network of Processors can Schedule its Work

By Stanley Reiter

Consider a collection of processors, capable of communicating with each
other and so forming a network. This network is confronted with computational
tasks arriving as a flow in time, requiring different computational steps and
procedures, and bearing different degrees of urgency. A task consists of a
collection of operations each of which has a program and prescribes data such
that the execution of the program on that data carries out the operation. The
data may, of course, be the outputs of other operations. This collection of
operations has a structure of precedence relations, expressing constraints
on the order in which operations may be carried out. Some operations may be
carried out at the same time, some must await the results of other operations
before they can be performed.

The problem addressed in this paper is to design a method by which a network
of processors confronted with a flow of tasks may distribute the computing to be
done among the processors so as to make effective use of them to perform the
required computations. The method, and its variants, presented in this paper
gives weight to the objectives of carrying out the prescribed tasks in short time,
and to the relative urgencies associated with those tasks. This problem is
reminiscent of the problem of schedu]ing the flow of jobs through a machine
shop. The methods presented here are adapted from a method developed for that
problem which were described in [1].

One might naturally ask that the network distribute its tasks optimally, in
some sense. This presents difficulties. What is to be the criterion of
optimality? What is to be the time horizon over which optimization takes place?

If it is a finite horizon, then boundary conditions are likely to play a role,

because in this sort of problem present decisions effect the options available
in the future. Statistical approaches are also conceivable. I do not explore
these here. However, I suspect that the main difficulty with optimization lies
in the fact that the network itself would be doing the optimizing. This means
that time and capacity used to calculate a better schedule is time and capacity
not available to work on the flow of computational tasks. Then full optimiza-
tion would require that the value of foregone computing be weighed against the
value of the improvement of scheduling resulting from the diversion of time and
capacity from computing to scheduling. In turn, the time and capacity spent in
doing that weighing must itself be evaluated to decide whether it is worthwhile
to carry out that comparison. This leads to an infinite regress. Perhaps this
regress can be cut off by some sort of fixed point property, making optimization
a possibility. In any case, to demand that a network distribute its workload
optimally leads to very difficult and complex problems. One common theoretical
approach is to limit the problem by considering an artifically simplified and
therefore manageable optimization problem. Another is to try to take into
account more of the important considerations of the full problem, but to accept
“sufficiently good" performance characteristics, rather than demanding “"optimal"
scheduling. This is the approach I take here. It should become evident that
the methods presented here are designed for a large network working on a large
number of tasks.

Two versions of a common basic method are described in this paper. They
each permit a network of processors to schedule in a decentralized fashion the
work presented to it by a flow of tasks, that is, to schedule the work without
having a central decision - maker who makes the required decisions. The method
described below distributes decision-making among the processors in a way that
depends on the flow of work in time. Each processor, when it is free to do

something, decides what to do next.

The procedure described in this paper leads to coordinated decisions with
some desirable properties. The two variants of the method presented here differ
in that the second emphasizes performance of the required tasks in shorter time,
but involves use of more information about the operations to be carried out, and
exposes more of the network to the consequences of failures. (Failure here
refers to events which stop or delay processing. Failures which could
generate false information are not considered here.) The methods seem to me to
be quite robust under loss of parts of the network, allowing the surviving pro-
cessors to proceed with the remaining work, and to accommodate the return of
previously non-functional processors with no disruption.

Tasks. A computing task consists of one or more operations. An operation is a
computation to be performed by a single processor. An operation has associated
with it a program and possibly data. The execution of the program on those data
carries out the operation. An operation, while it is the elementary unit of the
method described here, may consist of a sequence of steps, perhaps repetitive,

for example to calculate the square of each of n numbers Xp+we X . Because

n

the processors are not assumed to be capable of parallel calculations, this
calculation would be performed by first calculating x%, then xg, and so on.
If the squaring of each of the n numbers Xy were taken to be a single
operation then the n squaring operations might be carried out in parallel by
different processors. The structuring of tasks into operations is taken as
given.

The description of an operation includes information which identifies its
program and data, each of which may be the result of other operations carried out

previously. I will suppress formal reference to the program and data associated

with an operation. [assume that when a processor finds an operation to be per-

formed, it also finds information allowing it to retrieve the associated data and
program. The labelling required to enable processors to retrieve needed infor-
mation is not difficult to supply, and the method of scheduling ensures that
processors consider operations only when data needed from other operations will
in fact be available.

The collection of operations that make up a task has a structure. Certain
operations may require that others preceed them, because they use the results of
those preceeding operations, while others may be carried out independantly in
parallel. Loops are excluded, i.e., there are no distinct operations i and j
such that 1 preceeds j and Jj preceeds i. Conditional precedence relations
are permitted. An example of this is given in Table 1'.

Tasks are most conveniently thought of as self-contained entities independent
of one another. But, if it is for some reason desireable to classify the work in
such a way that two tasks are interrelated, then this will be expressed in terms
of precedence relations among the operations of those tasks. Precedence
relations among the operation of a task may be expressed by means of a graph. A
simple example follows.

Task 1

¥
O,

Figure 1.

Task 1 consists of 6 operations, designated 1 ,..., 6 . Operations 1 and 3
have no preceeding operations, operation 2 requires that 1 should have been
performed before it can be carried out; operation 4 requires both 2 and 3

to have been carried out before it can be executed, and operations 5 and 6

s

produce the final results of the task and require the output of operation 4

before they can be carried out. They may be carried out in parallel, as can

operations 1 and 3, or 2 and 3

This graph may be described as follows.

Table }
number number of preceeding succeeding
task operation preceeding succeeding operations operations
number number operations operation number number
1 1 0 1 - 2
1 2 1 1 1 4
1 3 0 1 - 4
1 4 2 2 2 3 5 6
1 5 1 0 4 -
1 6 1 0 4 -

The first column of Table 1 shows the task number, in this case the same for all
operations. The second column shows the operation number. The third shows the
number of operations which immediately preceed the given one in the graph of Task 1.

This is the initial value of the scheduling ipdex, which is adjusted dynamically

in the course of scheduling. The third column shows the number of immediate suc-
cessors. The fourth and fifth columns show the identity of the operations which
immediately preceed and immediately follow (resp.) the given one.

The description of an operation will also include the processing time
require to carry out that operation. One variant of our method of scheduling

uses this information, another does not. This processing time may depend

on the processor that carries out the operation. 1 will here assume that all
processors take the same time to perform a given operation. No special dif-
ficulty arises when the times differ, only the description of the procedure is
more complicated.

A further refinement is to be considered. Operations 1 and 2 , for
example, may each consist of a sequence of steps executed on an array of data.
For example, operation 1 takes two arrays xl...xn, Y1s+-s¥y and produces
X1 ¥ Y1s---2Xp + ¥p , while operation 2 takes x; +yj,..,Xxp +yp and produ-
ces (xl + yl)z,...,(xn + yn)z. Suppose the time required to perform an addi-
tion is 1 unit. Then the total time needed to execute operation 1 is n

2

units. Suppose further that it takes 1 unit of time to form zl given Zl'

Then operation 2 also takes n wunits. The total time required for the two
operations 1is then at least 2n units. However, if the results of operation 1
were made available to operation 2 piece by piece, the two operations could be
carried out in n+l wunits, operation 2 receiving (xl + yl) one unit after the
)2

start of operation 1 and producing (x1 +y one unit of time later. Similarly

1
for the others, receiving (xn + yn) n units of time after the start of opera-
tion, and producing (xn + yn)2 n+l units of time after the start of the first
operation. I shall refer to this mode of functioning as overlapping of opera-
tions.

Each task also carries with it information permitting the calculation of a
priority number, which may be any function of the information associated with a
task, including such additional information as the time it is desired that the
task be completed. The priority number may be used to decide the order in which

operations of the various tasks are carried out. The priority numbers of tasks

may be revised dynamically in the course of scheduling.

Processors: Processors are devices capable of executing the programs associated
with the operations which make up tasks. I assume that processors can com-
municate with one another for the purpose of exchanging information about opera-
tions, including programs and data, and to coordinate these activities.

It is convenient to describe the network of processors as if it had a
central memory containing the relevant information about tasks and operations,
but this is for convenience only. Tasks may enter the network through a
variety of channels and memory may be distributed in the network. What is
required is that processors be able to communicate in such a way that the infor-
mation exchanged via the central memory in the description I give here can be
exchanged directly among the processors when there is no central memory without

interrupting operations being carried out on the processors being queried. It

would therefore be desireable to have processors that are to this extent capable
of a degree of parallel operation, i.e., they can communicate from memory and
compute at the same time.*

I shall describe a procedure by which the processors of the network,
confronted with a collection of tasks to be performed, schedule the execution of
the operations of those tasks among themselves through time. HNew tasks may
enter the network as processing goes on and old ones are completed. I describe
first a procedure that regards operations as elementary units without internal
structure and does not seek the benefits of overlapping. This procedure does
not plan ahead in any way, hence, it does not require information about pro-
cessing times of operations.

Scheduling I. At any time, the processors of the network are busy with opera-

tions. Suppose at time t some of them complete their current work and become

*) This is not strictly speaking necessary. Processors with memories could
operate like time-sharing machines. But the point of parallel processing is to
speed-up computations. It would therefore be better to have processors of the
type described.

free. The free processors decide which of them is "first", say the one with
lowest identifying number. At time t there is a collection of operations,

all of whose preceeding operations have been completed. These are ready - to -
go. The scheduling index for such an operation is "0". The first processor
free at t selects an operation with highest p}iority from among those ready -
to - go at t. If there are several such, the tie is broken, say, by

choosing the operation among them with lowest identifying number. Suppose
operation i is selected. The processor involved changes the scheduling index
of operation i from "0" to "*", indicating the operation is in process, and
executes operation i starting at t. When the operation is completed, say at
time T, the processor changes the scheduling index of i from "*" to “-1",
and reduces by one unit the scheduling index of every operation which is an
immediate successor of 1. At each time an operation is completed, i.e. when a
processor seeks a new operation to carry out, the priorities associated with
tasks and operations may be updated to reflect changes in the variables on which
the priority indicator depends. This updating might be done by the first free
processor itself.

The way this procedure-works can be made clear by applying it to a simple
example. In this example we have a network of three identical processors Pl, P2,
P3, confronted with two tasks. The first is Task 1, whose graph is shown in
Figure 1., the other, Task 2, has the graph shown in Figure 2.

Task g

—~0—6

Figure 2

Combining Table 1 with a similar table for Task 2, Table 2 summarizes the
precedence relations for both tasks. The operations have been renumbered in
sequence so that each operation has an identifying number, operation 2 of Task 2

now has the number 8.

TABLE 2
number number of preceeding succeeding
task operation preceeding succeeding operations operations
number number operations operation number(s) number(s)
1 1 0 1 - 2
1 2 1 1 1 4
1 3 0 1 - 4
1 4 2 2 2,3 5,6
1 5 1 0 4 -
1 6 1 0 4 -
2 7 0 1 - 9
2 8 0 1 - 9
2 9 2 1 7,8 10
2 10 1 1 9 11
2 11 1 0 10 -

The information from Table 2 used for scheduling by the first method is
extracted and shown in Table 3; Table 3 also has columns for the start and
finish times of operations on the three available processors. In this example I
assume that Task 1 has higher priority, and that this remains unchanged

throughout.

{*) If there were precedence relations between Tasks 1 and 2, say, that operation
9 (Task 2) must be completed before operation 5 (Task 1) can be carried out,
there would just be different numbers in the various columns of Table 3.
Specifically in the row for operation 9 the column for number of succeeding
operations would show "2" rather than "1" and the column for succeeding operations
number(s) would list " 10, 5 " instead of just " 10 " , while the column for
number of preceding operations would show " 2 " in place of " 1 " in the row
corresponding to operation number 5 , and the column for preceeding operations
number{s) would show " 4, 9 " instead of " 4 " in that row.

10

TABLE 3
opera- sched- succeed- process- P1 P2 P3

task tion uling ing ing
number number index operation(s) time start finish start finish start finish

1 1 0 2 1

1 2 1 4 2

1 3 0 4 1

1 4 2 5,6 1

1 5 1 - 2

1 6 1 - . 2

2 7 0 9 1

2 8 0 9 2

2 9 2 10 1

2 10 1 11 1

2 11 1 - 1

In Table 3 the column labelled "scheduling index" has the initial values
given by the "number of preceeding operations” shown in Table 2 for each opera-
tion. The scheduling index is adjusted as work is done to show the number of
operations preceeding a given one yet to be completed. When that index has the
value, 0, it signifies that aTTApreceeding operations have been completed and
the operation in question is ready-to-go. Processing times have been included in
Table 3 to make it easier to follow; they are not used by this procedure.

Suppose all the processors become free at time t=0, and that the rule for
deciding which is the first processor is that the one which became free earliest

is first, and in case of ties the one with lowest identifying number among those

11

tied is first. So, processor Pl is the first free processor at t=0. It finds
operations with scheduling index, O, namely operations 1, 3, 7, 8. Since Task 1
has higher priority it selects from 1, and 3, and according to the rule for
breaking ties, operation 1 is selected. Then the row of Table 3 corresponding

to operation number 1 is changed as follows:

opera- sched- succeed- process- Pl P2 P3
task tion uling ing ing
number number 1index operation time start finish start finish start finish

1 1 p * 2 1 0

The scheduling index is changed from 0 to *, indicating that operation 1 is in
process, and the blank entry in the Pl start column is replaced by 0, indicating
that operation 1 is running on Pl starting at t=0.

Processor Pl _informs the others that it is no longer free and P2 is now the
first free processor. It finds three operations in Table 3, as modified by Pl,
with scheduling index, 0, namely operations 3, 7, 8 . Since Task 1 has higher

priority, P2 selects 3. The row for operation 3 now appears as follows.

opera- sched- succeed- process- Pl P2 P3
task tion uling ing ing
number number index operation time start finish start finish start finish
1 3 p * 4 1 0

The time taken by processor Pl to select the operation it runs is here assumed
to be zero. Generally this would take some time, during which processor P2 (and
P3) would have to wait. By assuming that this selection is done instantaneously
P2 can also start at t=0. It would not change anything essential if we
recognized that the communication and selection process takes time.

Processor P3 is now the first free processor, also at t=0 , it finds opera-

tions 7, 8 ready-to-go, and according to the rule for breaking ties, selects 7.

12

The row of Table 3 corresponding to operation 7 now appears as follows.

opera- sched- succeed- process- P1 P2 P3
task tion uling ing ing
number number index operation time start finish start finish start finish
2 7 p* S 1 0

Now all processors are occupied, and if all goes well, become free at t=1,
having completed the selected operations. At t=1 processor Pl is the first free
processor. It "reports" that operation 1 is completed by changing the sche-
duling index of every operation immediately succeeding operation 1. This
results in changing two rows of Table 3, the row for operation 1 and that for

operation 2, as follows.

opera- sched- succeed- process- P1 p2 P3
task tion uling ing ing
number number index operation time start finish start finish start finish
1 1 pr -1 2 1 0 1
1 2 10 4 2

Processor Pl, then proceeds to select a new operation to perform.
There are now two operations ready-to-go. These are operations 2 and 8. Pl

selects operation 2, and row 2 appears as follows

opera- sched- succeed- process- P1 P2 P3
task tion uling ing ing
number number index operation time start finish start finish start finish

1 2 19~ 4 2 1

13

Then P2 becomes the first free processor and alters the rows of operations 3 and

4 as follows.

opera- sched- succeed- process- Pl p2 P3
task tion uling ing ing
number number index operation time start finish start finish start finish
1 3 ¥ -1 4 1 0 1
1 - 4 21 5,6 1

Processor P2 then finds only operation 8 ready-to-go and selects it,

changing the row corresponding to 8 to,

opera- sched- succeed- process- Pl P2 P3
task tion uling ing ing
number number index operation time start finish start finish start finish
2 8 p* 9 2 1

Processor 3 is now the first free processor and it alters rows 7 and 9 as

follows.
opera- sched- succeed- process- Pl p2 P3
task tion uling ing ing
number number index operation time start finish start finish start finish
2 7 p¥ -1 9 1 0 1
2 9 21 10 2

At t=1 processor P3 finds no operations ready-to-go, and so waits.

It would be possible to split into two phases what happens when a processor
becomes free at t . The first phase would have each processor that becomes free
at t report the completion of the operation it was working on and update the
relevant scheduling indexes. In the second phase the processors would.in turn

select the next operation from among those ready-to-go at t.

opera-
task tion
number number

sched- succeed-
uling ing
index operation

1 1
1 2
1 3
1 4
1 5
1 6
2 7
2 8
2 9
2 10
2 11

¥ -1 2
L8f-1 4
g r -1 4
218%-1 5,6
28¥ -1 -
Le¥ -1 -
pr -1 9
pt -1 9
218¥%-1 10
187¥-1 11
197t -1 -

TABLE 4

process- Pl
ing
time start finish

start finish

14

P3

start finish

1 0 1

2 1 3

Table 4 shows the history of this scheduling method over time and shows the way

the processors would distribute and perform the tasks using the single phase

procedure. Figure 3 shows what the processors end up doing over time.

| I]
Pl Op. 1 | Op. 2 | Op. 4 | Op. 5 |
| | l] |
[[[|
P2 Op. 3 } Op. 8 , Op. 9 } Op. 10= 0p. ll}
I S T

P3 Op. 7 idle , Op. 6
0 1 2 3 4 5 6

Figure 3

15
Use of the two phase procedure in this example, with the given priorities,
would result in a redistribution of the work, (for example, P3 would perform
operation 4 instead of P1l), but no change in the completion times of the two
tasks, (in this example}.
If we consider the same example with priorities changed so that Task 2 has

higher priority than Task 1, then the schedule shown in Figure 4 results.

T | [

Pl op. 7 | op. 3| idle l Op. 6 |

| | | |

[] T

p2 Op. 8 | Op. 9‘ Op. 10| Op. 11{ idle {

I [B]

P3 Op. 1 | Op. 2 l Op. 4 Op. 5 }’
i L t

0 1 2 3 4 5 6

According to this schedule Task 2 is completed at t=5 while Task 1 still finishes
at t=6.

Other distributions of the work are possible, but none with earlier completion
times. For example, the principle of selecting operations with shortest pro-
cessing times first leads to a-schedule essentially the same as that in Figure 3.
Of course, use of a different priority rule might have resulted in a different
schedule for the same tasks.

A task may contain operations whose precedence relations have a conditional
character. For example, operation 4 in Task 1 might require either one of the two
preceeding operations, 2, and 3, to be completed before it can be carried out. In
that case the coding of precedence relations, as in Table 1, would show in the row

for operations 2, 3 and 4

16

Table 1°
: number number of preceeding succeeding
task operation preceeding succeeding operations operations
number number operations operation number number
1 2 1 1 1 4
1 3 0 1 - 4
1 4 1 2 2 or 3 5,6

It is easy to verify that the scheduling method described in connection with Table
4 are unaffected by the presence of this sort of precedence relation.

Another important possibility is that of conditional branching in the graph
of a task. Using Task 1 as an example, suppose, that whenever the result of
operation 4 is, say, A, then operation 5 is to be carried out, but not operation
6, while whenever the result is other than A, then operation 6 is to be carried
out, but not 5. Then, the rows for operations 4, 5, and 6 in Table 1 are

replaced by,

Table 1"
number number of preceeding succeeding
task operation preceeding succeeding operations operations
number number operations operation number number
1 4 2 1 2,3 5 if A 6 if not A
1 5 1 0 4 -
1 6 1 0 4 -

In the case of such an operation as 4, operation 5 becomes the immediate

successor of 4 if and only if the result of 4 is A, otherwise operation 6 is the

successor. The scheduling index is revised as described in Table 4.

17

Table 5 shows the scheduling process applied to the example in which operation 4
of Task 1 has one immediate predecessor, which may be either operation 2 or 3, and
has operations 5 or 6 as immediate successor conditional upon the outcome of
oper&tion 4. For definiteness the schedule calculated in Table 5 is based on the

assumption that the outcome of operation 4 is A.

TABLE 5

nutber preceed- succeed-
opera- sched- succeed- ing ing process- P1 P2 P3
task tion uling ing operation operation ing
nuber number index operation nutber nuber time start finish start finish start finish 1>2

1 1 p*-l 1 - 2 1 0 1

1 2 187%-1 1 1 4 2 1 3

2 3 pgr-l 1 2 4 1 0 1

1 4 10r-r-2 1 2or 3 5/A, 6/~A 1 1 2 (outcane A)

1 5 10¢-1 O 4 - 2 2 4

1 6 I16r-1 0 4 ; 2

2 7 pr1 1 ; 9 1

2 8 p¥-l 1 7 9 2 0 1
2 9 210Fr-1 1 7ors8 10 1 1 3
2 10 1g*x-1 1 9 11 1 3 4
2 11 10*-1 1 10 - 1 5 6

Figure 5 shows the schedule.

0 1 3
[1
Pl Op. 1 | Op. 2 |
| |
0 1 2 4
T
P2 Op. 31| Op. 4l Op. §
0 1 3 4 5 6
. I I l
P3 Op. 7 Op. 8 ,Op. 9 | Op. 10] Op. 11{

Figure 5

18

It should be evident that the arrival of new tasks would merely add to the
1ist of operation; no change in the method of scheduling is needed to cope with
that.

Furthermore, if there were failures in the network, the surviving pro-
cessors could continue scheduling operations. Those operations which are subsequent
in a task graph to uncompleted operations would remain stalled in their status at
the time of failure. If a processor that failed during the execution of a sche-
duled operation returned to full activity and completed its scheduled operation
with some delay, the system would simply pick up the situation as it actually
existed at that time, and continue scheduling the remaining operations in the
usual way. Depending on the priority rule used, the delay might result in higher
priority for the remaining operations of the tasks delayed.

The procedure described in Tables 3 and 4, does not require knowledge of the
time needed to carry out any operation. Moreover the method of scheduling
described there does not involve anticipating anything. It proceeds from one
event to another, making decisions on the basis of the then prevailing reality.
Because no foresight is involved, it may be expected to be robust under the
disturbances caused by unforseen events, such as arrival of new tasks, breakdowns,

delays and the like.

Scheduling 11, Overlapping Operations:

I turn now to the question of scheduling to take advantage of overlapping
of operations. It is convenient to discuss this in the context of a simple

example, say, a task consisting of two operations, whose graph is

0@

Figure 6

19

Operation 1 produces X + yi i=1,..., n from data xl,...,xn, yl,..., yn;
operation 2 produces zf from data Z, and the task involves setting
Z; = X + Yi o so that the two operations together produce (xi + yi)2
i=1,...,n from the data Xpsees xn, yl..., yn. Suppose each addition and
multiplication takes one unit of time. 1 suppose that no processor is allowed to
interrupt an operation in progress until it is completed, except for breakdowns.
While it is conceivable that processor Plvcou1d alternate operations 1 and 2 so
as to calculate (x + y1)%s (x5 + yp)%... this is ruled out here. 1 assume that if
the hardware of processor Pl permitted that, the task would be represented as one
operation.

I first describe the procedure in general terms, and then apply it to
examples. According to this procedure, there is a virtual schedule for the net-

work extending some predetermined time (or number of operations) into the future.

This is the schedule in force for the network, and the all processors follow it as

long as they can. 1If a processor, say Jj, should become free at a time when the
schedule in force either does not prescribe an operation for that

processor, (scheduled idle time may or may not be included as an operation.), or
prescribes an operation that cannot be run at that time, then j asserts itself

as the new scheduler, cancels the schedule and computes a new virtual schedule
which then becomes the schedule in force at that time.

To take advantage of overlapping of operations, the description of an
operation must be enlarged to include 1) the number N(i) of pieces of infor-
mation to flow from that operation, and 2) the time p(i) required for operation
i to produce one piece from its inputs, e.g., if operation i computes
(x, +y.), (x, +y,)... (x_ + yn) (in the order given) then N(i) =n

1 i 2 2° n
and the time required to carry on the operation is p(i)-N(1).

20

The following dictionary of symbols will be useful.

i - Operation number
tl(i) - Finish time of the first piece in operation i
T(i) - Finish time of the last piece in operation i

N(i) Number of pieces in operation i.

(k) - Earliest time at which processor k becomes free.

i) - Min t(k) = earliest time at which a processor becomes free for
ogeration i.

e(i) - Earliest potential start time of operation i, defined for opera-
tions that are ready-to-go.

p(i) - Processing time per piece in operation i.

s(i) - Scheduled start time of operation i.

T(i) = S(i) - Scheduled Finish time of operation i.
(i) - Set of operations of which i 1is an immediate successor.
At any stage of the process each operation with scheduling index O has an

earliest possible start time, calculated as follows. For simplicity of exposition

I consider first the case of an operation, i, having just one immediate preceeding
operation, i-1

Let x(i) be the smallest non-negative number such that

x(i) + tl(i;l) - T(i-1) + p(i)(N-1) > O.
Note that this can be written as,
x(1) + p(i)(N-1) > p(i-1)(N-1).
Then
e(i) = max {t (i-1) + x(i), T(i)}
Suppose that at t=0 processor j is the first free processor. Processor j assumes

the role of scheduler for the network, selecting at each step from the ready-to-go

21

operations the operation i whose earliest possible start time e(i) is a minimum
and having highest priority among those whose earliest possible start time is

minimum. Ties are broken as in the first method. Then

s(i) = e(1)
and

T(i) = s(i) + p(i) N(i).

The first processor k whose earliest free time was t(k) = T(i) is the
processor on which operation i is run. Processor j now updates (k) to the
value (k) = T(i), decreases by one the precedence index of operation i and of
every operation which is an immediate succesor of i, and revises the earliest
possible start time of every operation now ready-to-go to take account of the
finish times tl(i) and T(i) and therefore 7(i) of the newly scheduled operation i.

If an operation 1 has more than one immediate predecessor, the earliest
possible start time of i may be calculated as follows. Let n(i) be the set of
operations i' which are immediate predecessors of 1.

Then define x(i) to be the smallest non-negative number such that

x(i) + p(i) (N(i)-1) » max {p(i)(N(i') - g%}%l)

ilen(i)
When N(i') = N(i) = N, this condition becomes

x(i) + p(i) (N-1) » max {p(i')«(N-1)}.
i'en(i)

This reduces to the previous condition on x(i) when q(i) = {i-1}.
If the time needed to retrieve the program and data needed to run operation
i is R(i), this may be accounted for by defining x(i) to be the smallest non-
negative number such that
x(i) + tl(i—l) + R(i) + p(i)(N-1) - T(i-1) » O,
and

e(i) = max {(t (i-1) + R(i) + x(1), (1)},

22
for the case w(i) = {i-1}. The case where n(i) is not a singleton parallels that
above.

This scheduling algorithm does not keep a processor waiting in order to
complete a sequence of operations more quickly by overlapping them. A simple,
but perhaps too crude, way of altering this is to schedule a ready-to-go opera-
tion of higher priority if its earliest possible start time is later than that
of every ready-to-go operation of lower priority by a critical amount. Let this
critical number be c. At a particular stage of scheduling, among the ready-to-go
operations find those with minimum earliest start time, e. Consider all ready-to-
go operations, j, with higher priority than any with minimum earliest start time
e, which have earliest start time e(j) < e + ¢, and schedule the highest priority
operation in this class.

More sophisticated calculations could be used to decide whether to keep an
available processor waiting for a higher priority operation or an operation per-
mittting a different degree of overlapping. However such rules would have to
involve comparing starting and finishing times of several operations resulting
from different schedules. Such rules could get complicated rather quickly.
Examples: 1 turn now to some simple examples to illustrate the way this sche-
duling process works.

I consider first an example of a network of four processors P1l, P2, P3, P4 with

two tasks, whose graphs are

Task 1

Task 2
(D

Figure 7

Suppose each operation has N(i) = N = 10 pieces, and that the processing time
per piece of each operation is the same; p(i) = p =1 for all i. Suppose that
Task 1 has higher priority than Task 2, and that the critical number ¢ = 0, i.e.,

we don't schedule idle time to wait for an operation with higher priority.

THLE 6
‘ . succee@ing P1 P2 P3 P4
task operation scheduling operation .
rumber nutber N(i) P(i) index ntber t1(1) e(i) start finish start finish start finish start finish
1 1 10 1 0 2 0
1 2 10 1 1 3
1 3 10 1 1 -
2 4 10 1 0 5 0
2 5 10 1 1 6
2 6 10 1 1 -

Suppose all processors are free at t=0, and that Pl is the first free pro-
cessor at t=0. Since there is no schedule in force, Pl becomes the scheduler for
the network. It finds two operations ready-to-go at t=0, namely 1 and 4, and each
has earliest start time e(l) = e(4) = 0. Since task 1 has higher priority, Pl
selects operation 1 and schedules it on the first free processor, namely Pl. The
scheduling index of operation 1 is changed to -1 to indicate that the operation is
scheduled. The finish time of the first piece is tl(l) = 1 and of the last is
T(1) = 10; processor 1 is tied up from t=0 to t=10, so that t(P1l) = 10. Operation
2 is the only successor to operation 1. Its scheduling index is reduced from 1
to 0, and, since it is now ready-to-go, its earliest start time e(2) 1is calculated.
Since 1{(2) = 0, (there is a processor available at 0) and t (1) + x(2) =1, its
earliest possible start time e(2) = max{1,0} = 1.

There are now two operations ready-to-go, namely operations 2 and 4, with
earliest possible start times 1 and 0, respectively. Therefore, Pl schedules
operation 4 on processor P2 to start at t=0 and finish at t=10. After the
prescribed updating, there are two ready-to-go operations 2, and 5, with earliest
possible start times e(2) = e(5) = 1. Therefore operation 2 is the next operation

scheduled by Pl. TABLE 7 shows the situation after operation 2 has been scheduled.

24

TABLE 7
succeeding P1 P2 P3 P4
task operation scheduling operation .
nnber nuber N(i) P(i) _index — mamber t (") e(i) start finish start finish start finish start finish
1 1 101 g -1 2 1 0 0 10
1 2 10 1 19-1 3 2 1 1 11
1 3 10 1 10 - 2
2 4 10 1 g -1 5 1 0 0 10
2 5 10 1 10 6 1
2 6 10 1 1 -
Operation 5 is the next operation scheduled, because its earliest possible
start time is 1 compared to the earliest possible start time of operation 3, which
is 2. (Operation 3 is ready-to-go after 2 has been scheduled.) After operation 5
is scheduled, the earliest possible start times of operations 3 and 6, both ready-
to-go, become 10, because no processor becomes available before 10. TABLE 8
shows the history of scheduling.
TABLE 8
succeeding Pl p2 P3 P4
task operation scheduling operation .
rutber number N(i) P(i) index nurber tlh) e(i) start finish start finish start finish start finish
1 1 10 1 g -1 2 1 0 0 10
1 2 10 1 19 -1 3 2 1 1 11
1 3 10 1 10-1 - 210 10 20
2 4 0 1 g -1 5 1 0 0 10
2 5 10 1 19-1 6 2 1
2 6 0 1 1p-l - 7 10 0 ® 1

11

25

Figure 8 shows the resulting virtual schedule.

0 10 20
I i
P1 op 1 | op 3 l
\ | |
0 10
[|
P2 op 4 | op6 |
' il
0 1 11
l
P3 op 2 |
|
0 1 11
|
P4 | op 5 |
I

Figure 8

A slightly more complicated example for the same processor network is as

follows.

TASK 1

Figure 9

Suppose that for each i=1,..,8, N(i) = 10 and p(i) = 1. 1If Task 1 has higher

26
priority than Task 2 and the critical number is ¢ = 0, the schedule shown in

Figure 10 results.

0 10 20
[l
P1 op 1 | op 4 |
| l
0 10 20
I I
P2 op 3 | op 7 |
| I |
0 10 11 21
] [| I
P3 op 6 | | op 8] |
|| d
1 21
T ﬁ[
pa op 2 l |

Figure 10

If task 2 has higher priority than task 1 and C=0, the schedule shown in

Figure 11 results.

0 10 20
| [
P1 op 1 ‘ op 4 }
0 1 11 21
|
p2 op 2 { op 7 |
| |
0 10
l I
P3 op 5| op 6 |
| |
0 2 12 22
] [|
P4 } op 3 I op 8 I
|

Figure 11

27

If Task 1 has higher priority than 2 and c¢=1, the schedule in Figure

12 results.
0 10 20
Pl op 6 op 8
0 10 20
P2 op 1 op 2
0 10 11 21
I I [[
P3 | op 3] | op 4 |
| | | |
0 1 11 12 22
I [[[
P4 | op 7 | l op 5 |
I

Figure 12

How a given task, or subset of them will be scheduled depends on the precise
timing of the arrival of those tasks and others coming to the network during the
relevant time interval, and on the priorities assigned to those tasks. Because
the function used to determine priorities can depend on any of a variety of dif-
ferent items of information, it can be used to give effect indirectly in the sche-
duling process to considerations that might be quite complicated to take account

of more directly. For example, if there is reason to prefer

28

assigning certain operations to certain processors, reasons not necessarily given
a priori, but generated as a result of the way processing has so far proceeded, it
should be possible to adapt the methods to give effect to such preferences. An
example might be to perform an operation on a processor which already has the data

needed for that operation, if that processor is free at the right time.
References

(1] Reiter, S., A System for Managing Job-Shop Production, The Journal of

Business of the University of Chicago. July 1966. pp. 371-393

