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Abstract

A differential game is considered in which players accumulate capital,
their payoff functions depend upon the capital stocks of both players and
their cost functions are convex. Previous existence and stability results are
relied upon to show that the game, under an additional assumption, possesses
the following properties: (a) Every equilibrium of the infinite horizon game
converges to the unique stationary equilibrium. (b) For a time horizon long
enough the finite horizon equilibrium stays in the neighborhood of the
infinite horizon equilibrium except for some final time. (c) For a time
horizon long enough the finite horizon equilibrium stays in the neighborhood

of the stationary equilibrium except for some initial and final time.



Turnpike Properties of Capital Accumulation Games
by
Chaim Fershtman and Eitan Muller

1. Introduction

The asymptotic properties of optimal or efficient capital accumulation
path are usually referred to in the literature as “"turnpike theorems".l The
purpose of this paper is to investigate the turnpike properties of the
equilibrium path of capital accumulation games, rather than those of the
efficient or optimal capital accumulation path.

Capital accumulation games are a class of dynamic games in which each
player accumulates some form of capital. The instantaneous payoff depends on
the players' capital stocks and the cost of investing in capital is an
increasing convex function of the investment rate. The objective of players
is to choose an investment strategy that maximizes their discounted payoffs.

Existence of a Nash equilibrium and existence of a unique stationary Nash
equilibrium for such games were shown in our previous work on the subject
(Fershtman and Muller (1984)). 1In addition, we have shown the existence of a
Nash equilibrium that converges to the stationary equilibrium. In this paper
we investigate capital accumulation games and discuss three related notions of
asymptotic stability usually referred to as turnpike properties.

First we prove that every two equilibrium paths of the infinite horizon
game converge to each other as time approaches infinity. Moreover, we specify
the conditions under which every Nash equilibrium of the infinite horizon game

converges to the unique stationary equilibrium. This property, which is

lThe first turnpike theorem was proposed by Dorfman, Samuelson and Solow
(1958, Ch. 12). For a survey of turnpike theory, see McKenzie (1976).



usually referred to as global asymptotic stability, was investigated for
capital accumulation growth models. See for example, the special issue of JET
(February 1976) and in particular, Cass and Shell (1976) and Brock and
Scheinkman (1976). Note that this property implies that regardless of the
initial stock of capital, the equilibrium path converges to a particular
stationary point which does not depend on the initial conditions.

The second turnpike property describes the relation between the
equilibrium paths of the finite and infinite horizon games. Specifically, for
a time horizon that is long enough, the finite horizon equilibrium path stays
in an e-neighborhood of the infinite horizon equilibrium, except for some
final time. As a corollary we show the following: consider a sequence of
finite time horizon solutions such that the time horizons approach infinity.
If the equilibrium paths converge to some function, this limiting function is
an equilibrium of the infinite horizon game. Note that the theorem implies
that the equilibrium path of the finite horizon game closely resembles a
truncated equilibrium path of the infinite horizon game. This has important
implications for attempting to characterize the infinite solution of such
games by simulation techniques.

In the third theorem we use the first and the second theorems to come up
with the following turnpike property: For a time horizon that is long enough,
the finite horizon equilibrium path stays in an £ neighborhood of the
stationary equilibrium except for some initial time required to accumulate
capital and some final time in which "end game™ considerations take over.

This last result is an extension of the "balanced,” or "modified golden rule”
result of the optimal economic growth (see Cass (1966)).
The three properties are depicted in figure 1. Note the similarity to

McKenzie's (1976) properties. The main difference is the second property. In
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McKenzie, the early turnpike path was close to the stationary path K* for some
initial period. In our analysis the early turnpike path is close to the
infinite horizon path K*°(t) for an initial period. In addition, note that we
have applied the concept to a game in which capital is accumulated.

With respect to Theorem 1, there are two interesting results concerning
asymptotic stability in differential games. The first by Brock (1979) assumes
existence and shows the conditions for global asymptotic stability (GAS). His
conditions, however, are more restrictive than ours (e.g., upper limit of the
discount rate) for a more general model. In addition, what we show in our
approach are the conditions for GAS (Assumption 6) over and above the
conditions for existence (Assumptions 1-5) since we have separated the
existence and GAS issues.

The second is by Haurie and Leitman (1983) who assume existence and
uniqueness to a more general model, but with zero discount rate. Thus, the
conditions are not compatible.

One interesting notion of stability that we have not dealt with, studied
by Cheng and Hart (1984), is the Cournot-Nash reaction function notion of
stability, i.e., the stability of the Nash equilibrium path under small

deviation.

2. Notations

The formulation follows our previous work on the subject (1984). We
consider a game G with two players where the payoff for each player is its
total discounted profits. Capital stock Ki accumulates according to the

Nerlove—Arrow capital accumulation equation

(1) Ki = Ii - 6iKi, Ki(O) = KiO’ i=1,2



where I; is the investment in capital stock K; of firm i, and §; is the
depreciation constant. The planning horizon is denoted by T.

Considering the strategy space for such differential games there are
several possibilities which depend on the information structure. In this
paper we consider the open loop solution concept although it is known to have
some limitations. The closed loop Nash equilibria, however, are known to
exist only with some limitation on the structure and duration of the game.
For the class of capital accumulation games, the closed loop Nash equilibrium
is not tractable unless we impose a linear quadratic structure. For further
discussion about strategy spaces in differential games see Basar and Olsder
(1982). Thus, we assume that player i's strategy belongs to the following
vset:

Si = {Ii(t): [0,T] > [O,Ei]lli(t) is piecewise continuous on [0,T]}

where I, is given in assumption 1. The payoff for firm i is defined by

_ (T ~-rt -
(2) J, = fo e {ﬂi(K1 JKy) Ci(Ii)}dt
where t is the discount rate, T might be finite or infinite, ni(KI,KZ) is the

instantaneous profit function, and Ci(Ii) is the cost of investing I unitse.

Assumption l. The control Ii(t) takes its value in a compact set [O,Ii].

Assumption 2 The instantaneous profit function m;(K{,K,) and the cost

function Ci(Ii) satisfy: ni(Kl,KZ) € Cz, is increasing and strictly concave
function of K;, decreasing in Kj (for i # j, 1,j = 1,2), Ci(Ii) € Cz, is

strictly increasing, strictly convex, and C{(O) =0 (for i = 1,2).



Define the game G(K;(,Ky,T) as the game with strategy spaces S; X Sy,
payoff functions as in (2), time horizon T, and at t = 0, the game starts at

the initial stocks of K(0) = Kj = (KIO’KZO)'

A Nash equilibrium for the game G(KO,T) (for T € [0,®)) is a pair of functions
((If(t), Kf(t)), (I3(t), K3(t))) such that I;(t) maximizes (2) subject to (1)

given I;(t) i +# j), and Kz(t) is generated by Iz(t) through equation (1).

A stationary Nash equilibrium for G(Kp,T) is a pair of values ((IT,KT),

x % x %
(IZ,KZ)) that constitute a Nash equilibrium for the game G(Kl,Kz, ») and

. X % .
satisfy I, = §;K; for i = 1,2,

Assumption 3: ﬂ; = 6ni/aKi is bounded, i.e., Inil < L for some L > O,

. . ijg . . ij e,
Assumption 4: |ni l is bounded, i.e., Iﬂi l < Li for some L; > 0 and C; 1is

11
D €

bounded from below, i.e., C; ; for some g; > 0.

Assumption 5: ﬂi(Kl,Kz) i=1,2 satisfy the following inequality for all K; and

Ko: nil néz > niz niz and niz # 0 for i=1,2 and all K; and K,.

In our previous work we showed that under assumptions 1 through 5, for
every initial conditions K, the following holds: (i) there exists a Nash
equilibrium for the game G(Ky,T) (for both finite and infinite T); (ii) there
exists a unique stationary Nash equilibrium (I*,K*) for the Game G(K*,m);

(iii) for the game G(X(,T) there exists a Nash equilibrium that converges to

K*.

Although formally a Nash equilibrium is a pair (I(t),K(t)) we will often
refer to the capital path K(t) as a Nash equilibrium for simplicity. Finally,

since for every t K(t) € H@ we will use the Euclidean norm that will denoted

by Hel.



3. Asymptotic Stability

In this section we show the condition under which every Nash equilibrium

of the game G(K(,») converges to the unique stationary equilibrium (I*, K*).

Assumption 6: |n%i| is bounded, i.e., lniil < Mi for some M; > 0 and
‘niil > ‘nijl.

Note that this is a somewhat stronger assumption than assumptions 4 and

5. Specifically, assumption 6 implies the first parts of assumptions 4 and
5. In order to see the economic intuition of Assumption 6, assume that it
does not hold so that |nii| < |ﬁij|, The effects therefore of j's action on
i's marginal profits are larger than the effects of i's own actions. Any
action of j will result in a larger reaction of the rival which causes a
"chain"” recation that diverges rather than converges. Indeed, in the proof of
Theorem 1 we use exactly the "dampening”" effects of the reverse condition
|nii| > lnij| to show that such "chain™ reactions become smaller and smaller

and converge to zero as time approaches infinity.

Theorem l: First Turnpike Property. Let K(t) be a Nash equilibrium of the

* *
game G(Kg,»). TUnder assumptions 1 through 6, lim IK(t) - K 1 = 0, where K is
tr»
the unique stationary equilibrium.
Before proving the theorem, note that it implies that every solution of

the capital accumulation game converges to the stationary equilibrium. This

extends our previous result that showed the existence of such a converging

solution.

Note in addition that the theorem implies the following corollary:

Corollary 1. Let K(t) and R(t) be two solutions of the game G(Ky,=). Under
assumptions 1 through 6 lim lﬁi(t) - Ki(t)l =0 for 1 = 1,2. Thus, if there
t>o

are more than one solution, every two solutions of the game become close to



each other as t goes to infinity. Friedman (1981) proved this property for

time dependent supergames, and denotes it by a "turnpike” property.

Proof of Theorem l. An equilibrium path (I(t),K(t)) has to satisfy the

following necessary condition (see, e.g., Brock (1977)): adjoin the

constraint to the objective function to define the current value Hamiltonian H

so that the necessary conditions are:

(3) A "IN S —aHi/aKi = —ani/bKi + xiai

\
(4) bHi/GIi =0 = —Cl(Ii) + hi

We divide the proof into two steps. In the first we assume that for both
players there exists a time point from which the capital paths are
monotonic. In the second step we assume that such a time point exists just

for one player or does not exist at all.

Step 1. Assume there exists t* such that Ki(t), i = 1,2, is monotonic for
t € [t*,m), i.e., either ﬁi(t) > 0 for all t € [t*,m) or ii(t) < 0 for all
t € [t*,w).

By standard arguments (e.g., Gould (1970)), the equilibrium path K(t)
cannot tend to either zero or infinity. Therefore it converges to some level
of R. It remains to be shown that i = .

From the uniqueness of the stationmary Nash equilibrium it follows that it
is sufficient to show that f = ﬁ = 0. The solution of equation (3) for Ki is
given by

- —(x+8;)s (r+8,)t
(5) A =g - IO 7; (K, (s),K,(s))e dsle



where

o i ‘(r+5i)s
g, = IO ni(Kl(s),K (s))e ds

Using l'Hospital's rule we conclude that

lim A, (t) = ni(ﬁl,iz)/(r +68,)
tro

Substituting this into equation (3), it is evident that Xi = 0. Moreover,
L]

equation (4) now guarantees that fi = 0.

The solution of equation (1) is given by:
— t 8s 5t
(6) R, () = [K. o + [ eI (s)ds]/e

Using 1'Hospital's rule we conclude that Ei = lim Ki(t) = T1/8. From equation
. t>o

(1) it is evident that Ki = 0.

Step 2. Assume that for at least one player there does not exist t such that
ii # 0 for t € [t*,m). Differentiating equation (4) with respect to time,
and substituting A; and ii from (3) and (4) yields the following equation

7 ". t i

() c, I, = (r + éi)Ci - ni(KI,Kz)

The analysis can now be represented by a phase diagram in the (I,K) space

where



o
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Ki = 0 is given by I; = §;K;
s . . ! _ i
Ii =0 is given by (r + 6i)Ci(Ii) = ni(Kl,Kz)
The I; = 0 curve is not stationary in the K;,1; space. Its movement depends

on the signs of n%j and ij’ When the path (K;(t), I;(t)) is in the region in
which ii <0 (i.e., above the éi = 0 boundary) it cannot cross the éi =0
boundary unless the ii = 0 boundary is below the path. This is evident in
Figure 2. 1In the same way, when the path is in the region in which éi >0 it
cannot cross the ii = 0 line unless the ii = 0 boundary is above the path.
Before the path can cross the éi =0 line again, the movement of the ii =0
boundary has to change direction so as to be below the path before it
intersects the éi = 0 line. Thus, if Ki(t) has an infinite number of extremal
points, Kj(t) has an infinite number of extrema as well. Moreover, as the
discussion above shows, the extremal points of Ki(t) and Kj(t) interlace——
i.e., ﬁi(t) cannot change sign more than once without éj(t) changing sign at
least once.

For a given path Kj(t), j = 1,2, define a EZElE.C(ta’ta) és the path of
Kj(t) between two consecutive extremal points that occur at ty and t2., Let
ﬁhe amplitude of a cycle be the difference between the maximum and the minimum
of Kj(t) in the cycle. From the previous discussion it is evident that the
amplitude of a given cycle is bounded by the difference between the maximal

and the minimal points of the intersection of I; = 0 and K; = 0. For example,

the amplitude of cycle a in Figure 2 is bounded by ﬁ? - K? and similarly for

cycles b and ¢ whose amplitudes are bounded by ﬁ? - g? and ﬁ; - g;,

respectively. Let c(ta,ta) and c(te,tB) be two consecutive cycles of K,(t),

a

i.e., t° =t . From the previous interlacing argument, there exists a cycle

B
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Figure 3
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c(ta,ta) of Ky(t) such that t, > t, and t2 < tB, See, for example, Figure 3.

We now claim that there exists an & > 0 such that

|k (£ ) =K D<A =) Max g % (1)) - &, ()]

£,Stpto<t

This will complete the proof since we have a damped series of cycles, i.e., an
infinite number of cycles with a decrease in amplitude in each cycle.
Moreover, since ¢ does not depend on the cycle, the amplitudes of the cycles
approach zero as time tends to infinity and thus Ki(t) converges for i =

1,2. By the argument of step l, they converge to the unique stationary

point. To show this last claim let ﬁl = g(Kz) denote the level of capital at

[ ]
the intersection of the curve Ii = 0 and the line K; = 0. From the previous

discussion it is evident that
a a
[k Ce) = K e[ &yt )) - g®y ()]

Observe that g(K,) is the solution of the following equation,

1 1]
nl(Kl,Kz) = (r + 51)C1(61K1). Therefore,

|dg/dK

o = [/t - 8, + 8dc |

11 ' 11
|n) " |/ (x + 80, = m)

A\

[L+6,( +6.)¢/(-m D17 <1 - ¢

where € = (8;(r + &;)g; M)/ (1 + 8, (x + 8;)e;/M;), and €] and M; are given in

assumptions 4 and 6.
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Since [ta,ta] c [ta,ts] it follows that

a
g,y () = g®y (PN [« Max  ola(®ye))) - gk, ()]
t <t,,t,<t
a 1’72
Since g is a continuous function on a compact set [ta,tB] it achieves a
maximum and minimum at times t and t, respectively.
By the mean value theorem, there exists a mean value ¢ such that the

following holds
|8, (E)) - g®y(£)] = |5 (]| Ky - Ry(eD)] <

CA-[® -K@| <=  Max R - RKy(Ly)
t _<t,,t,<t
o 1772 Q.E.D.

4, Finite and Infinite Solutions

In this section we explore the relationship between the finite and
infinite solutions. Specifically, we show that for a time horizon that is
long enough, the finite horizon solution stays near an infinite horizon
solution, except for some final time. Thus, the finite horizon solution is
similar to a truncated infinite horizon solution. This is especially
important for games in which more structure is given on the functional form of
the cost and revenue function. Simulation, which obviously works only for a
finite time horizon, can reveal much about the infinite horizon solution such
as the speed of convergence, monotonicity properties and the like. Moreover,
if one wishes to investigate the infinite horizon game, simulation techniques
make sense only in games that have such a turnpike property.

For every T, define the following family of functions
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B, (10,T]) = {£ € ¢([0,T])|0 < £(¢) < I,/5, for all t & [0,T]
and lf(t) - f(s)' g ii't - s|}

Thus, BLi([O,T]) is a family of continuous functions on [0,T] that are bounded
by a common bound and have the same Lipschitz constant. By the Arzela Ascoli
theorem (see Dunford and Schwartz (1957)) By 1s a convex compact subset of
c(lo,Tl).

For each strategy I;(t) € S; define the induced capital path as K;(t)
which is the solution of equation (1). Assumption 1 guarantees that I;(t) is
bounded by Ei' Equation (1) guarantees that K;(t) is continuous and bounded
by Ei = Eiléi and that its Lipschitz coefficient is ii' Thus the set Bj; is

the set of all possible induced capital paths.

*
Definition. Let x,, %3, € By;([0,=]). x > Xg iff for every finite T

Sup|xn(t) - xo(t)|+ 0 as n » =,
t<T

Theorem 2. (Second Turnpike Property). Let Kp(t) be a Nash equilibrium for

the game G(Ky,T). Under assumptions 1 through 5, for a given & > 0, for every
Ty > O there is a Tp(T;) such that for every T > T5(T;) every solution Kp(t)

of the game G(K(,T) satisfies

Sup 1K (£) - Ko () < €

O<t<T1

For some solution K*(t) of the infinite horizon game G(Kg, ).
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Proof:
Step 1. Assume, a contrario, that there exists Ty and ¢ for which no Ty

exists as required. Therefore there is an infinite sequence T, + = and Ky
n

such that

(8) Sup MK () - Ky ()1 > ¢
n

0<t<T1

for every solution K* of G(Kg,»). Since Bp;([0,T]) is a compact set for every
T, without loss of generality (taking subsequences if necessary), we can
*
assume that KT + J. In step 2 we show that J is a solution of the infinite
n

horizon game which contradicts (8).

Step 2. Substituting equation (5) into (1) and solving for K* yields that K”

satisfies the following equation

© - L I © =(r+8,)(5-s)
(9 K() =¢g+ fo e ;) {f 7, (K} (9),K, (7))e dt}ds

0e_ét, and similarly for Kjp . Because of our guaranteed
n

where § = Ki
sufficiency (strict convexity of C and concavity of ) any pair of functions

that satisfies (9) for i = 1,2 is a Nash equilibrium for the game G(Ko,w)-

Observe the following expressions

-5.(t-s) , _, T . —(r+8.)(1—s)

(a) IS e ;) l{fsn ﬂ;(Jl(T), J,(1))e * dtlds
=6, (t=8) v _; . s ~(r+6, )(t-s)

(b) ffe b T A ), e 1T arkas

where J(t) is the value of the function J (the limit of Ky ) at time t. For a
n

given t, the difference between (a) and (b) tends to zero as n + .
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Next observe the following expressions:

-5.(t-s) , _, T . —(r+58,)(3-s)
(e) SPE fg e (Ci) l{fsn ﬂ;(Jl, Jy)e * dt}ds
-8, (t-s) , T . =(r+6.)(1=-s)
t i -1 n i i
(a) KiTn -Jye )/, ni(KlTn,KZTn)e dt}ds

The difference between (c¢) and (d) tends to zero as m + ®». This is true since

% . 1 L B ii i4
KiTn + J, and by Assumptions 3 and 4, s [(Cl) 1 and ﬂ}i and niJ are

bounded. Since (d) is identically zero, for any given t, by definition of
KiTn it follows that expression (c) tends to zero when n » », Now observe
that the second term in (c) tends to J; and to (b) and n + =. Therefore J;
satisfies

Lo i —(r+8, ) (7-s)
(10) J, = [ e (c) H{f, m Gy, Iy dr}ds

It follows therefore that J is a Nash equilibrium for the game G(Ko,w).
Q.E.D.
The following corollary is an immediate consequence of step 2 of the

proof of Theorem 2.

Corollary 2. Consider a sequence of finite time horizom solutions Ky such
n

that T, > «, that converge to some function J, i.e., 1lim KT = J, The limit
T +w

function J is a solution of the infinite horizon game G(Ko,m).

A slight modification of the proof yields the following. Given a
sequence of finite time horizon solutions KTn such that T, » T < », that
converge to some function Jj, then the limit function Jj is a solution of the

game G(KO,TO)-
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5. Modified "Golden Rule” Path

In this section we study the relation between the equilibrium capital
path of the finite horizon games and the stationary solution.‘ In capital
accumulation growth literature, the path that follows the optimal stationary
capital labor ratio is known as a balanced or "golden rule” growth path for
zero discount rate. We follow Cass (1966) in denoting the balanced growth
path at the stationary equilibrium K* as a modified golden rule path. Theorem
3 is an extension of the turnpike theorem by Cass to a game situation. It
states that the Nash equililibrium of the game G(KO,T) for long enough horizon
T occurs within an arbitrarily small neighborhood of the modified golden rule
path except for some initial time required to accumulate the capital and some
final time in which "end game" considerations (such as zero levels of
investment) take over.

Note that although the stationary equilibrium K* is unique, the
equilibrium paths for the finite and infinite horizon games are not
necessarily unique. The modifications in the extension of the turnpike
theorem by Cass are made precisely for this reason. The thrust behind the
proof is a combination of Theorems 1 and 2. Since Theorem 1 guarantees that
every infinite horizon solution path converges to K* and Theorem 2 implies
that the finite horizon solution (for a long time horizon) is close to the
infinite one, it follows that the finite horizon solution path has to be in a
neighborhood of K* for a sufficiently long time horizon.

Definition. Let AT c BLl([O,T]) x BLZ([O,T]) be the set of all capital paths
that constitute a Nash equilibrium for the finite horizon game G(Kg,T).
Similarly, let A c BL ([0,=)) x BL ({0,2)) be the set of all capital paths

1 2
that constitute a Nash equilibrium for the infinite horizon game G(Ko,w).
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Assumption 7. The set A of Nash equilibria of G(Ko,w) is finite.

Theorem 3. (Third Turnpike Property). Let Kp(t) be a Nash equilibrium for

the game G(Ky,T). Under assumptions 1 through 7, for every e > 0 there exists

Tl such that for every T, > Ty there is % for which for all T > T

*
(1) Sup Sup K - KT(t)ﬂ < €.
KTEAT T1<t<T2

Proof. Theorem 1 implies that for every K, € A there exist T(K,) such that

*
(12) Sup IK_(t) - K1 < /2
t>T(K )
Let T; = Max T(K_). The assumption that A is finite guarantees that Ty is

KQEA

finite. T; satisfies the following inequality:

*
(13) Sup Sup HKm(t) -X 1t < eg/2
KbEA t>T1

Theorem 2 guarantees that for every T > T; we can choose T such that for

every T > T and Ky € Ap there is K, € A such that

(14) Sup WK _(t) - KT(t)H < /2

0<t<T2

For such Ky it follows from the triangular inequality that for every

K, (t) (15) holds

(15) Sup HK* - KT(t)ﬂ < Sup HK* - K _(£)W + Sup IK_(t) - KT(t)H

T1<t<T2 T1<t<T2 T1<t<T2
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In particular, choose K_(t) such that (14) holds for t < T9. Since (13)

holds for every K, (t) for t > T; therefore the following holds:

(16) Sup IR - N OTRE

T1<t<T2

This completes the proof since (16) holds for every Ky € Ap as long as

T>T. Q.E.D.

Three remarks are worth mentioning at this point:
a. The assumption of a finite number of equilibria is essential for the
existence of Tl = Max T(Km). Another assumption that can replace it is that
K €A
by *
K” converge uniformly to K".

b. Note that for T, as large as we want we can find T such that for

time horizons larger than %, the equilibrium path Ky is in the e-neighborhood
of the stationary equilibrium K* between Ty and Ty. Thus, by choosing a large
enough time horizon, we have complete control over the time during which the
finite horizon solution stays near the stationary equilibrium.

Ce The turnpike property is satisfied uniformly on Ap. Thus for
appropriate Ty and T, all the equilibrium paths Ky € Mp for T large enough are

in the e-neighborhood of K* for t between T; and Tjy.
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