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THE KNOWLEDGE REVEALED BY AN ALLOCATION PROCESS

AND THE INFORMATIONAL SIZE OF THE MESSAGE SPACE

by

Stanley Reiter 1/

We consider resource allocation processes in which each agent starts
with certain fragmentary knowledge of the environment, (in important cases,
an agent knows his own economic characteristics,e.g.,admissible holdings set,
production sect, preferences, etc.) and in which actions are chosen after
a process of interchange of messages hgs been completed. Such allocation
processes may be characterized by a correspondence from the space of environ-
ments to the message space;and a function, called the outcome function, from
the mescage space to the space of joint actions. (Definition 1 of [ 7 ]. See
also [2] and [3]. In evaluating such an aliocation process, it is of
interest to know the '"deduction" from gross performance due to the "costs"
of operating the process [3]. However, the function relating these costs
to the process to which they attach is generally unknown. One line of
approach to this problem is to look for properties of these processes which
capture at least some features of information processing which seem important
to an informal, intuitive view. 1In this the hope is to find a property which
orders the class of processes (at least partially) in agreement with the
ordering that would be determined by the true but unknown "cost" function.

Two such ideas arc examined in this paper.
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In [8] the knowledge of the environment and joint action acquired
by an agent as a result of communicating according to the rules of a process
was studied. This was formalized by means of a correspondence from the
space of environments to>the (product) space of environments and joint
actions [Definition 1 below]. This correspondence characterizes what
the agent knows after communication stops about the environment and action,
for each possible environment. For example, in a centrally planned economy
in which each agent transmits his environmental component to a central
agent who computes an "optimal' joint action, the central agent acquires
precise knowledge of the environment and the joint action. In the
Malinvaud planning procedure [6] the central agent does not acquire precise
knowledge of the environment (in that case, the production sets of individual
firms) but does acquire precise knowledge of the joint action (the input-
output vectors chosen.) In certain versions of the competitive process no
agent acquires precise knowledge either of the environment or of the joiant

action, but knows precisely only his own component of them.

A second 1idea relates to the size or complexity of the messages used by
a process. It seems intuitively clear hat '"larger" or '"more complex
messages can carry more information than 'smaller" or "less complex'" ones.
A precise concept of the informational size of a message space has been given
in pefinition 9 of [f]} which attempts to capture this notiﬁn. g/
According to that concept, one message space (assumed to be a topological
space) is informationally larger tﬁan another (topological space) if every
message of the first space can be translatcd by a fixed contlnuous function
Into a message of the second space in such a way that -every message of the second

space can be decoded in a locally continuocus way. Tt is natural to expect

=" lurwicz has studied the dimencsion of Euclidean message spaces in this
connec:zion [5],
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that the knowledge transmitted should be related to the information-carrying
capacity (informational size) of the message space used for communication.

We are thus led to study the relationship between the knowledge of the environ-

ment and joint action revealed by a process to its participating agents and

the informational size of the message space of the process,

SUMMARY

To make this paper more nearly self-contained, we restate from
[ 81 the definition of the knowledge revealed by a process, (Definition 2)
and the concept of a condensation of a process (Definition 3). One
process, say T, 1is a condensation of another, s, 1if T wuses an
informationally smaller message space than 1 does, and in suchh a way
that the message used by T (the condensed process) in a given environ-
ment 1is a translation of the message used by w in the same
environment. Two wain results are established. First, if 7 is a condensa-~
tion of m, then 7 reveals mc.e than T (Theorem 1), Second, if m is a process
realizing a function f (Definition 1 of [7] and if the message correspondence
of m is a locally sectiouned continuous function, then the message space of m
has minimal informatiomal size in the class of all processes whose message
correspondences are upper semi-continuous and which reveal more than ¢ (Theorem 2).
Theorem 3 establishes sufficient conditions that one process reveals more than
another. Specifically, if the performance function varies enough on the class
of environments (Definition 4 ) then any privacy preserving message correspondence
is forced to distinguish environments (Lemma2). Hence, a privacy preserving
process realizing the given performance function reveals more than any process
realizing that function (Théorem 3). Finally, the informational minimality

of the mcssage space of the competitive process, first established by

Theorem 31 of [7], is cshown to follow as a special case from Theorems 2 and 3.



Tes AND DEFINTITIONS

IR YR SN
{1,...,n} - the set of agents,
1 . .
E - a topological space, the set of characteristics of
the ith agent, for 1 = 1,...,n.
nog
Es [l E.
i=1
Z - @ topological space; the space of joint actions.
f: E+ Z - @ given continuous locally sectioned function;

the performance standard.

We interprete f as designating the joint action f(e) ¢ Z which is

to be taken when e 1is the enviroament

X, Y - topological spaces, (usually message spaces)

Following [8] we characterize the state of knowledge of an agent

af{ter communication has take.. place according to the rules of a given allocation

process, We suppose that initially an agent knows the space E of joint

cuvironments and the space Z of joint actions; in additicn we suppose that

i . . .
apent 1 knows directly "his" component e  of the joint environment

n
1 Ei = E. We suppose further that each agent knows

1 i
e = (c,...,e ,...,en) € =
i=1

the precess, i.e., the message correspondence and the choice functiom,
Thus, if the process 1a

and that he reccives the full message.

“ (:,{), then agent i knows p: E -+ X and £f: X+ Z and receives the

“rasage p(e) when the environment 1s e ¢ E.
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Definition 1. Let nn = (b,f) be an allocation process and let

1 i
E;f E*Eand” N E+ 2, {=1,...,n,
be given by
1 -1 { n
E_@ =p "@wEenNn | {e) x nel}
J=1
j#i
and

n:(e> = f@(e)

3/

for i = 1,...,n.

i .
The correspondeances gi and ﬂw characterize what agent i knows about the
T .

environment and action as a result of direct knowledge snd communication.

~

Definition 2. Let g = (w,£f) and 1 = (v,g) be allocation processes with

the-same space of environments F and actions Z. We say 11 reveals as much as

T Lf for every i ¢ {1,...,n} 1) < g¥(e) and (o) ciee) for all e ¢ £, &/

3/

In case agent 1 receives a function ei of the joint message u(e) we
i i
d define E- d by:
would define E_ an ﬂn )

-1
ed | |

1

i

e @ =u e e wen) n | el

B L= =

]
and 3
ﬂi(e) = f(Gl;i(GiQL(e)))), for 1 =1,...,n.

4/ . .
=" This relation was called "more informative than" in [8].

* AV MR uy
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Definition 3

The allocation process T = (y, g) with message space Y

is a condensation of the allocation process .y = (u,f) with message space X,

if there exists a mapping p of X onto Y which is continuous, locally sectioned

and satisfies
p(p(e)) < v(e) for all e ¢ E.
A condensed process is a sort of "quotient" process.

If 1 is a condensation

of m, then it is a quotient process whose message space Y has no more information

than X,

We note in passing,

~

Lemua 1. Let 7 = (u,f) be an allocation process with message space X.

If T = (v,g) with message space Y is a condensation of i, and T realizes £,

then there exists a process ' = (u,h) such that 7 is a condensation of

w' and ;7' realizes £.

Proof: Let h = gop, where p is the mapping of X onto Y according to

Definition 3, Then h maps X onto Z. Since p(u(e)) Cv(e),

gp@(e)) = g(v(e)). Since T realizes f, glv(e)) = f(e).
Hence, h(p(e)) = g-p(e)) = f(e).

Finally, h is continuous, since p and g are continuous.

Theorem 1, Let ¢ = (u,f) and 7 = (v,5) be allocation processes

realizing f with message spaces X and Y respectively and let 1 be a condensa-

tion of w. Then g reveals as much as T.



Proof: The process ¢ reveals as much as 7 if for cachi = 1,...,n,

Since 1 and T both realize f,
1 (e) = fou(e) = £(e) = gov(e) =n1{(e) , for i =1,...,n.

Thus,
i .
N c ﬂ; for i = 1,...,n.

It remzins to show E; c 5: for i =1 n
- ,..ll, -

Let e ¢ E and let

—- 1 -1 i o
ee € (e) =pu ()N {e} x T E ’ i=1,...n
3t

Since

i -1 i oo
§.(e) =v ")) N{{e} x 1 o
=1
: _ . J#i :
to show e ¢ §;(e) it suffices to show that ¢ ¢ v—l(v(e)).

s i=7,...,,n,

- i . . = -1
Now, e ¢ ET(e) implies e ¢ p “(u(e)), which in turn implies
P,(E) Nupe) #06. Let X ¢ p(e) N u(e). Then by

Definition 3 p() e p(e) N ple)) Cv(e) N y(e).

It follows that T e v L(u(e)).
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Theorem 2. Letm = (u,f) be an allocation process with message
space X which realizes f, and let p be a locally sectioned continuous
function. If T = (v,g) is an allocation process with message space Y such
that.T rcalizes f, where v 1s an upper semi-continuous correspondence, and

i1f T reveals as much as r, then Y has as much information as X.

5/

Proof: To show that Y has as much information as X it suffices to
exhibit a locally sectioned continuous map of Y onto X. We shall show

that ¢ & uov-l is such a map, where v-l(x) ={eecE \ x e v(e)}.

We show first that » is a function. If,for y ¢ Y, @ and ¢ belong
to v-l(y), then p(e) = p(Z). This is established as follows. Since T
reveals as much as =, it follows that
_1(

v i) cptuie)) for a1l e ¢ E. (% )

Since € and ¢ in v-l(y) implies y ¢ v(e) N v(:), which can be written
cev (v(e)), it follows from ( ** ) that e ¢ p-l(u(g)). Since y is a
function, it follows that p(Z) = u(Z). Hence, y 1is constant on the sets
v—l(y) for y ¢ Y. Since p is a function so is ¢ = pov-l.

We show next that ¢ 1s continuous. Because v 1is upper semi-continuous,

-1 .
so is the correspondence v ~, since they have the same (closed) graph.

Regarded as a correspondence i is upper semi-continuous, since it is
continuocus. Hence the composition p*y = = ¢ is continuous  (See [1]
pp. 109-11).

-1
It is immediate that ¢ is onto X since vy is onto E and , is onto X,

We show finally that ¢ is locally sectioned. Let x ¢ X and let U be

5/ . .
=" This proof follcws that of Theorem 31 in [7], except for the first part.



an open neighborhood of x in X, such that t vV E is a local section of p.

Since T is an allocation process, v is a locally slticed ' correspondence.
Therefore, given ¢ ¢ E there exists an open set H containing e and a

continuous function v: H- Y such that v(e) ¢ v(¢) for e ¢ H. Given H,

by continuity of ts there exists an open subset V C U such that tx(V) C H.

Hil

The function ¥ = v*t : V- Y is a local section for ¢, since it is

(S

continuous and satisfies Y-«p = IdV. The last equality is established as

follows. Let X ¢ Vand let e = tx(g). Then v(e) ¢ v(e) which implies

- -1, - — -
e €v (v(e)). Hence Y-@(E) = p(e) = x. Thus Yoo = IdV'

Thus according to Theorem 2 if a process 1 which realizes the
performance function £, has a message correspondence which is a locally
sectioned continuous function, tﬁen any other process which also rezlizes
f and has an upper semi-continuous mossage correspondence, and which reveals as
much as  does i, must use a message space which is informationally as large
as  that of the process 1.

in order to apply Theorem 2 it is of interest to know when a process re-
veals as much as another. Theorem 3 gives sufficient conditions for this
which are of particular interest because they cover the case of the

conpetitive process,

Definition 4. The performance function f: E -+ Z is said to be

personally sensitive on E (or,briefly, sensitive on E) if, for every pair

of points e and e in E, there exist points of the "cube"
6/

{e,e, e<91e,...,e(3%e, e GiC,...,eCKQG,] generated by e ana e at which £
takes distinct values.

6/

Following [7] if e = (el,...,en) and ¢ = (El,...,En)thmJ CCQBE =

(Zl,...,cj,...,gn).



Lemma 2. Let f: E + Z be personally sensitive on E, and let « = (u,f)
be an allocation process realizing f such that y is a coordinate correspondence.

If e and ¢ are distinct elements of E, then p(e) N p(e) = B.

Proof: Suppose e and € are distinct elements of E and p(e) N p(e) # 0.
Since p 1s a coordinate correspondence ;t satisfies the crossing condition
for e and e. I.e., pfe) Nule) = p(e GGE) n u(E(ghe) for all j e {1,...,n}.
Hence, ';fop(e) = Eou(-é) = Ecp.(e ®j'€) = Eop,(a®je) for all j e {1,...,n}.
~Since nm realizes f on E, it follows that f(e) = f(g) = f(e(ghg) = f(E(XBe)

for all j ¢ {1,...,n}, i.e., £ is constant on the "cube" generated by

e and e. This contradicts the hypothesis that f is sensitive on E.

Corollary tc Lemma 2, Under the hypotheses of Lemma 2, if p is a

functicn, then y is 1-1.

Theorem 3. lLet f: E -+ Z be sensitive on E, and let it = (u,f) and
T = (v,g) be allocation processes vwhich rcalize f such that v is a coordinate

correspondence. Then T reveals as much as .

Proof: The process 7 reveals more than ¢ if v-l(v(e)) C|¢'1(u(e)) for
all e e E. This is equivalent to .
—- -1 L=, ot
eev (v(&)) implies e € p (u(e)),
vhich may be written
v(g) N v(e) # @ implies p(e) N u(e) # 0.
This in turn is equivalent to

(@) N p(e) = ¢ 1mplies y() N v(e) = B. (k)
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by hypothesis, f is sensitive on E. Since T = (vy,g) satisfies the other
hypotheses of Lemma 2, it follows that y(e) N v(e) = @. Hence the
implication (¥*%) is truc. Hence T reveals as much as 1.

(1f p also preserves privacy, then it follows from Lemma 2 that
v(e) N y(e) = @ implies () N p(e) = @. Hence n reveals as much as T, and
T reveals as much as -. 1f p does not preserve privacy then we may

not conclude that ¢ reveals as much as 7.)

Theorem 31 of [7] established the informational minimality of fhe
message space of the competititve process in the class of processes which
are Pareto-satisfactory on a class of pure trade cnvironwents including
the "Cobb-Douglas'" ones, and which have upper semi-continuous privacy
preserving message correspondences. This result is alse established by
Theorems 2 and 3, of which the result in [7] 1is an applicaticn. This may be
seen ag follows: Letmw = (»;;) denote the competitive process with message
space X, and E the class of Cobb-Douglas environments, and let 7 = (v,g) be
a process which realizes f (Definition 22 of [7]) such that v is an upper semi-

continuous coordinate correspondence with message space Y. Lemma 26 ¢€ [7]

establishes that y is a locally sectioned continuous function on E. Lemma 29 of [7]

estatlishes that f is personally sensitive on E. It follows from Theorem 3
that 7 reveals as much as m. It then follows from Theorem 2 that the
message space Y of T is informationally as large as X.

Interpreting these results a bit more, Lemma 2 tells us that if the

performance function is sensitive on the class of environmemts, a message

corrcspondence which is part of a process realizing £ will be required to
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distinguish points of E; if the message correspondence preserves privacy,
it is forced to distinguish all points of E. Hence all such processes
reveal the same knowledge of E to an agent who receives the full
(terminal) message. In the presence of regularity conditions, a message
function which separates all those environments uses a message space of
minimal informational size, i.e. such a function pefforms the required

separaticn in an "efficient' way.
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LIST OF SYMBOLS

e l.c. letter "e
(e) l.c. letter "e" in parentheses
; l.c. letter "e" bar
o l.c. letter '"e'" double bar
ei l.c. letter "e'" super l.c. letter "i"
e1 l.c. letter "e" super number 1
e' l.c. letter "e'" prime
E Capital letter "E"
Ei Capital letter "E" super l.c. letter "i"
f l.c. letter "f"
; l.c. letter "f" tilde
i l.c. letter "i"
< less than
> greater than
= equals
= identical
- minus
- times
* - asterisk
() - Phase

Single parallel

Double parallel

left and right brackets

left and right braces

left and right parentheses



l.c. letter 'm"
l.c. letter "m'" prime

l.c. letter "m" super number 1

l.c. letter "m" prime sub l.c. letter "i" minus number 1

" " " " " plus number 1

Capital letter '"M"
Capital letter ''M" sub number 1

Capital letter'M" sub l.c. letter 'n

"

l.c. letter 'n
l.c. letter ''p"
l.c. letter "u"
Capital Letter "U"
l.c. letter "v"
Capital letter "V"
l.c. letter "x"

Capital letter "X"

Capital letter "X" super l.c. letter "i"
Capital letter "X'" super number 1

Capital letter "X'" super l.c. letter 'm
Capital letter "Y"

Capital letter "2"

Is contained

Greek letter Gamma

Greek letter Omega

Greek letter Rho

Greek letter Xi

Greek letter Phi

Greek letter Xi, super l.c. lotter "i', sub

Greek 1l.c.

letter Pi



ua

Greek

Greek

Greek

Greek

Greek

Greek

Greek

Greek

Grezk

Zero

letter

letter

letter

letter

letter

letter

letter

letter

letter

number one

number two

number three

l.c.

l.c.

Greek letter capital Pi super l.c. letter '"n"sub l.c. letter i equals 1

Mu comma, 1.

Greek

Greek

Greek

Greek

Greek

Greek

Greek

letter

letter

letter

letter

letter

letter

letter

Xi

Tau

Psi

l.c. Pi

Capital Pi

Mu

Mu sub l.c. letter "i"
Mu sub number one

Epsilon

letter £ times 1. c¢. letter s

letter "f£f" tilde
l.c., Pi prime

Eta

letter f times l.c. letter s subscript l.c. letter p

super l.c. letter"i" sub Greek letter l.c. Pi

Eta super l.c. letter "i"
Theta

Nu

Nu super minus number one

sub Greek letter Tau



