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Abstract

A queue with Poisson arrivals and two different exponential servers is

considered. It is assumed that customers are allowed to stall, i.e., to wait

for a busy fast server at times when the slow server is free. A stochastie
analysis of the queue is given, steady state probabilities are computed, and
policies for overall optimization are pharacterized and computéd. The 1issue
of individual customer's optimization versus overall optimization is also

discussed.
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Introduction

This is a study of queuing systems with Poisson arrivals and two
different exponential servers. Server 1 1s the fast server and Server 2 is
the slow server (in the sense of mean service times). The problem is to find
the best operating policy so as to minimize the mean sojourn time of customers
in the system.

In Rubinovitch [1983] it was assumed that the controller of this system
has only two options. He can either always make the slow server available for
rendering service or not use it at all. It was shown that the optimal policy
is characterized by a single critical number. When traffic intensity exceeds
this number both servers should be used. Otherwise, the slow server should be
removed and never used. The critical number depends on the ratio of mean
service times of the two servers and on customers' behavior. Three cases were
considered: (i) customers who arrive to an empty system choose their server
at random; (ii) customers who arrive to an empty system always join the fast
server; and (iii) customers who arrive to an empty system join the fast server
with probability p and the slow server with probability (1 - p). (1) is the
case when customers are uninformed; (ii) is the case of informed customers;
and (iii) 1is the case of a partially informed population of customers. The
critical number is smallest in (i), largerst in (ii) and increases with p in
(111).

In this paper the same problem is considered except that customers are
allowed to 352112 i.e., to wait for a busy fast server at times when the slow

server is free.



Let A be the arrival rate and p;, py be the service rates of Server 1 and
Server 2, respectively (p, < py). Let r = py/py and consider the case when
customers are fully informed and can choose their server. Then an arriving

customer who finds a free fast server will join it. If he finds a busy fast

server, an idle slow server and j customers waiting for the fast server he
will join the slow server whenever j + 1 > 1/r, will prefer to join those
waiting for the fast server if j + 1 < 1/r, and will be indifferent if
j+1=1/r., Following this rule he will minimize his expected time in the
system. Thus, if M is the integer part of 1/r, then customers do not join the
slow server as long as the number in the system is M or less. As can be seen,
the decision problem of individual customers is simple (although the queuing
process that optimal customer behavior gives rise to 1is complex).

On the other hand, the problem of overall optimization, i.e., of

assigning customers to servers so as to minimize the mean time in the system
over all customers is more interesting, more difficult, and also of more
practic;I importance. It 1s the problem of interest wherever "customers” are
inanimate—ffor example in computer systems or data communications networks
where "customers”™ are jobs to be processed or messages to be transmitted,
"servers” are processorsior communication channels, and the space for waiting
is a buffer. Then there 1s usually a controller that monitors the number of
jobs in the buffer and, depending on the state of system, assigns jobs to
processors.

Lin and Rumar [1982] provided a proof that the overall optimal policy is
of the threshold type—~that is, of the same type as the optimal policy that
individual customers follow but presumably with a different M. They use
policy iterations on the discounted cost problem and then take the average

cost (mean waiting time) problem as the limit. Warland [1983] gave a proof



for the same result using a coupling argument. In any case, irrespective of
whether it is individual customers optimizing their welfare or a central
agency that assigns customers to servers in a socially optimal way, the

queuing process is of the same type. A number K is specified and customers

enter the slow server only when the number in the system is K + 1 or more.

The term queues with stalling seems an appropriate name for such systems.

In this paper we provide a stochastic analysis for a two-server Markovian
queue with stalling. We show how the underlying stochastic processes can be
analyzed without solving any new problem, but rather by appealing to known
results on processes whose structure is well understood. With this the steady
state probabilities, the optimal threshold levels, and other system
characteristics can be readily computed. The present analysis can also be
used to solve a hierarchic system of several servers, each with its own
buffer, where the input to a buffer is the overflow from the buffer above it
in the hierarchy. This will be taken up in a separate publication.

In Section 1 we outline the main ideas behind the present appraoch.
Detalls are given in sections 2 and 3. The former section studies a modified
(loss) system which may be of indepedent interest, and the latter provides the
results for the queue with stalling. Section 4 is a short discussion of

issues regarding social optimization and individual customers' optimization.

1. Outline of the Analysis

Let a number K be specified and consider the queue with stalling in which
customers join the slow server when the number in system in K + 1 or more. A
good way to visualize this is to think of a wafbuffer system as shown in
Figure 1. Buffer S is of size K - 1 and. Buffer Q is of unlimited capacity.

As customers come in they join Server 1 if they can. If this server is busy

they are placed in Buffer S and if this buffer is full they try to enter



Server 2. If the latter is also busy they are placed in Buffer Q. Buffer S
feeds Server 1 only (the customers in it are committed to Server 1). Buffer Q.
feeds both S and Server 2, whichever can first accept the head-of-the-line

customer in Q.

buffer Q buffer S
R —>

Figure 1. Buffered Queue with Stalling

Let X% be the number of customers that, at time t, are in Buffer Q, or in
Buffer S, or in service with Server 1. let X% be the number of customers with

Server 2 at time t so that X% + x%

is the total number of customers in the
system. Then X = (X%,X%)t>0 is a Markov process om {0,1,2,...} x {0,1}. A
direct derivation of steady-state probabilities by solving the steady-state
equations 1s of course possible but will unavoidably be lengthy and
complicated (see Larsen [1981] where a different state space is used). The
following stochastic analysis is simpler and yields more information on the
underlying processes. It is based on the following ideas. First is thé
observation that it is enough to solve the modified loss system which ceases
to accept new arrivals when there are K + 1 customers in the system.

A A

let X = (xt,

xt)(t>0) be the same as X but for the modified system (i.ef,



under the assumption that X has a reflecting barrier at state (K,1)). Then
note that X! is the same as the number of customers in an M/M/1/K loss system
that is simple and well understood. Finally, observe that in the modified

system the input to Server 2 is a renewal process so that %2 is a GI/M/1/1

queuing process. In fact, %2 is the same as the procEEE—EEEEEIEIEE‘EEE’
"locked"/"unlocked” states of type I counter for which all the necessary
results are readily available. With these we can completely analyze the

modified and the original queuing processes.

2. The Modified (Loss) System

The modified system is as shown in Figure 1 exept that buffer Q is
removed and customers arriving when the system is full are lost. This may be
of independent interest.

We use the following notation:
b=y + g,
r=p.2/p.1 (0 <r<l),

Ay,

o
[}

p; =Apy = QA +1)p

Consider first thé input to Server 2. Let Zt = I{il _ K} and note that Z
is an alternating renewal process which stays at state ltfor exponential
intervals (mean le). The input to Server 2 is a Poisson process which is
turned on when Z = 1 and off when Z = 0. Thus, successive times of arrival to
Server 2 form a renewal process, Let Nt be the number of renewals in (0,t]

and U(t) = E[N.]. Suppose that Z; =1 and let Ry,Ry,... be the lengths of

successive intervals during which Z, = 0. Then by a straightforward renewal



argument

—,
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(2) Ce(8) = Ele 1

I.

To evaiuate CK(B) nofe that R; is the same as the first passage time from
state K — 1 to state K in the process x1 which, in turn, is the same as the
first passage time from state K ~ 1 to state K in an M/M/1 queue with
parameters A and pj. Let Ty be this first passage time. " Then

Cg(0) = E[e-eTK] is given in Bailey [1957] in terms of the roots cf a
quadratic equation. The following recursive relation can provide an easy
proof for Baily's old result (see Appendix) and is more suitable for numerical
computations which we later do. Clearly, T, is an exponential random variable

with mean le. Hence
c,(8) =A/(x +0).
Then using again a renewal argument
(3) Ce(0) = A/Oh + 1y + ) + i Ce (OGO /(A + 3y +8) (K> 2)

Thus ,



(4) Ce(®) =Alh +p, +0 - pch_l(e)]'l.

We shall also need the mean interarrival time to Server 2. For this,

take derivatives in (3), let 8 » 0 and then, by induction; obtain

1 - p?
z . ) °y + 1,
(5) “ert = ey
E[T,] =
K/p.1 py = 1
Let
b, (t) = P{X_ = i} (1 =1,2)

bi = 1lim bi(t)'
too
The limit always exists and by is the steady state probability that the slow
server is in state i, Also Bi are the state probabilities of a type I counter
with arrivals according to U and locking time exponential with mean p—l. This

is given by

s 1 - TPt

U(t)dt]'l,

where m is the mean interarrival time to the counter (See Prabhu [1965a], page
180). It can be obtained directly from (1) but this is not necessary since
here interarrival times have the same distribution as Tg+p the first passage

time form state K to state K + 1 in an M/M/1 system. Thus, using (5) and (6)



we have

( T (L = p A + T - Celn,))
(L + D)1+ p) = Celpy))

(7

l1+r - CK(uz)
r{(1 + o)(1 + p) - CK(uz)]

Again, the number Cp(py) can be computed recursively using (4) or using the

explicit expression in the Appendix. let

- =plxl =1 %2 = i

ﬁij(t) = P{Xt =1, Xﬁ = j}

a,(t) = P{§1 = i}
i t

%, = limx, (t), a, = lim a(t)
ij & ij i & i

and note that

(8) a, =

Since a, are the steady state probabilities of an M/M/1/R system we

immediately have

- (1 - pl)pi
(9) ai =___‘———.K‘_T:1—- i =o,1,0.o,K
1 -p

1

see, for example, Prabhu [1965b]. Also, is is not difficult to check that

4 - ) R R
I bl(t) = -uzbl(t) + mKo(t),



SO

(10) o = Xbl/pz

which, together with (8) for i = K gives

. (1 + r)pa, - b
(11) TRy = T+ e

lr

We thus have explicit expressions for the following steady-state
probabilitiies: gl(go), the probability that Server 2 is busy (idle); ;i’ the
probability that there are i customers committed to Server 1l; and ;Kl the
probability that the system is blocked. The latter is the "loss formula" (11)
for a two-server system with stalling and no waiting space. From here one can
proceed recursively in a straightforward manner to compute alllsteady-state

probabilities from the steady-state equations:

(123) nOI(x + pz) = plﬂly
(12b) uij(x +u) - w3 ol 1<1i< K-l
(12¢) Tt = Mpgg + Mty

Such a computation would start with (12¢) and work backwards to (12a) using
along the way (8) and (9). We will not pursue this here. Note that

since gi(t) are known (see Prabhu [1965b]), a complete time dependent analysis
Aof X can be carried through if it is of interest. Here we need only the mean

number of customers in the system
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where Bl is known and the first term on the right hand side is the mean number

of customers in an M/M/1/K system, with arrival rate A\ and service rate j.

Hence

K K
R p, Il = Ko (1 = p,) + o] "
(13) Ly = 1 1 ﬂ} L+ b,
1 -p))A =p; ")

3. The Queue With Stalling-—Optimal Policies

Consider now the system with stalling and its underlying queueing process

X = (xé,xg)t>0. We use the same notation as in the modified system except
that the "hats" are removed. Assume that p < 1 so that a steady-state
distribution exists and we first compute the steady state probabilities.

For this, note that the transition probabilities of X and X are the same

on {0,1,...,K} x {0,1}, while for i > 1 we have
(14) . =plx
8g+i = P Tg1°
It follows that there exists a number, say, ag, such that

(15) “ij = aK%ij’

(16) a

1= %0 7t T %y

for 1 = 1,...,k, ]

0,1, Furthermore, from (14) and (16)

K ©
~ iA
a, =a L a,tao 1 pm
1 1=0 1 1=K+l N



- 11 -

SO

______ &h(ll) Q. = 1 —P A hd
K 1 ~- + o1
P T PTry

Since %Kl is known (see (11), (7) and (9)) one can compute all the steady-
state probabilities using (14) and (15) together with (12) and (17). In
particular, the mean number of stalling customers is czK(LK - bl) and the
fraction of time Server 2 is busy is

~ TP

The mean number of customers in the system is

Yy if, + b
i=0 *

(19) Ly

1

K » :

if, + ) if  + b
i=0 1 q=k&1 LT 1

. e LR+ DA =) + 1]
(L, +
o (L 1o

)

Other system characteristics can also be evaluated. For example, the
distribution of idle and busy periods for Server 2 can be computed directly
from b;(t) which is known since gl(t) is known (see Prabhu [1965a]). Also
note that exactly the same analysis as given here applies to a loss system
with stalling—i.e., for the system shown in Figure 1 except that buffer Q is
finite and arrivals which occur when buffer Q is full are lost. All the

results given above apply to this system except that that state space is
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finite and ag is given by

aéN)= 1 -p

~ N+1
1 -p+pnp, (1 =p"7)

where N is the size of buffer Q. The loss formula for this case is the
expression of (11) with aéy) replacing ag.

Turning now to computations of optimal policies, let Ky(r,p) be the
optimal number of stalling customers when the objective is to minimize the
mean time spent in the system and r and p are specified. 1In other words,

‘ Ko(r,p) is the optimal size of buffer S. This optimal number can be computed
along the lines of Rubinovitch [1983] by chacterizing the region in the (r,p)
plane for which Ly < Lg+1 and repeating this for each K. This involves messy
algebraic work, the outcome of which would be in terms of polynomial
inequalities in p that can be solved only numerically. Thus, a direct
computational approach is in order as follows.

Since for each set of values for r, p, and K one can readily compute the
value of Ly, it is easy to develop a search procedure which will find for each
r the critical value of p below which Lg < Lg;; and above which Ly > Lgyg-
Such a computation was carried out and the results are given in Figure 2., It
shows for K = 0,...,9, the boundaries of the regions in which Kqg = Kqo(r,p) is
optimal. As we see, Ko is decreasing in r for fixed p, and in p for fixed r,
as it should. Furthermore, as p + 0 the optimal K; becomes the same as the

optimal number of stallers when customers are allowed to pursue self

optimization (see section 4). On the other hand, as p + 1 there is a sequence

*
2

Lg <,LK+1 when r < r;. This author was unable to derive explicit expressions

* *
of numbers, say, rl,r ,ees, With the property that LK > Lg41 when r > ry and

for these numbers.
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Figure 2. Optimal Policies

Having obtained the optimal operating policies it is of interest to
compare the performance of the otpimal system with stalling to the performance
of systems without stalling. Tables 1 and 2 show computational results for
this comparison. For each p and each r the first column is the optimal

threshold level Ko(r,p), i.e., the optimal size of buffer S. The second
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column, Ly , is the mean queue length of this optimal system. The third

0
column (column (1)) is the percentage reduction in mean queue length when one
uses the optimal system with stalling instead of the system with two servers

without stalling. The entries in this column are 100 (ﬁo - LKO)/LO. The

fourth colum (2) is the percentage.reduction in queue length when the systenm
with Kj is used instead of the system which employs the fast server only. The
entries in this column are 100[p1/(1 - pl) - LKO]/(pl/(l - pl)]. Note that
when p; = (1 + r)p > 1 the system with the fast server only is saturated and
this is indicated by the symbol « in column (2).

Several interesting conclusions can be drawn from the data in Table 1 and
Table 2. First is the observation that while the system with Ky is always
better than the two other systems, the difference is substantial only fpr a
range of intermediate values of p. For small p the system with Ky performs
about the same as the system with the fast server only, while for large p its
performance is about the same as the two server system without stalling. The
intuition behind this is clear since when p is small the system with Ky rarely
uses the slow server and when p is large it uses the slow server at almost all
times. 1In any case, In practice one would probabily prefer to use the sytem
without stalling when p is large, the system with the fast server only when o
is small and the optiﬁal system with stalling when p is in an intermediate

range of values. This range depends, of course, on r. For example, when

r = 0.05 it could be from p = 0.70 to p = 0.90, For r = 0.3 it could be from

= 0.25 to p = 0.50.

o
[

Another interesting observation is that the performance of the optimal
system with stalling does not change much as r changes while p remains the
same. In fact, it may be surprising that even when r is small, substantial

savings can be achieved by employing the slow server and allow stalling. For
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Table 1. Optimal Threshold Levels and System Performance.

r = 0.05 r =0.10 r=0.15

0 Ky LKO ¢S ¢)) Ky LK(L (1 (@ Ky LKO a1 @
.05 14 .06 43.6 0.0 7 06 26,7 0.0 5 06 18.1 0.0
.10 14 .12 5.4 0.0 7 J2 36,9 0.0 5 g3 26,1 0.0
.15 14 .19 57.2 0.0 7 20 40.8 0.0 4 21 29.5 0.0
.20 14 .27 56.9 0.0 7 .28 41,5 0.0 4 .30 30.2 0.0
.25 14 .36 55.0 0.0 6 38 40,5 0.0 4 40 29.2 N
.30 13 .46 52,1 0.0 6 49 383 0.0 3 .52 27.2 .5
.35 12 .58 48.6 0.0 5 .63  35.3 .1 3 67 245 1.2
40 11 .72 447 0.0 5 .78 317 A 3 .83 2.4 2.6
45 10 .90 40.3 0.0 4 .97 277 1.0 3 1.02 18.2 4.6
.50 9 1.10 35.6 .1 4 1.19 23.6 2.3 2 1.25 151 7.7
.55 8 1.36 30.7 .3 4 146 19.5 4.4 2 1.51 12.4 12.0
.60 7 1.69 25.5 .8 3 .79 15.7 7.6 2 1.83 9.9 17.6
.65 7 210 20.4 2.1 3 220 12.4 12.3 2 223 7.8 24.6
.70 6 2.65 157 4.6 3 273 9.4 18.6 2 275 5.9 33.4
.75 5 3.38 11.4 8.7 3 3.44 6.9 27.0 2 346 4.3 449
.80 5 445 8.0 15.3 2 449 4.7 38.7 2 450 2.9 60.9
.85 4 6.8 5.1 25.6 2 619 3.2 56.9 1 6.20 1.9 857
.90 4 9,56 2.9 44.3 2 9.5 1.9 9.3 1 9.5 Il ®
.95 4 19.61 1.3 95.1 2 19.59 .8 = 1 9.58 .5 ®
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Table 2. Optimal Threshold Levels and System Performance.

r =0.20 r =0.30 r = 0.40

P K g O @ K g O @ K g @O @
.05 3 .06 12.7 0.0 2 .07 6.1 0.0 1 .08 2.3 3
.10 3—s146—18,7 0.0 2-— 15 8.8— .2 1 .16 3.0 1.3
.15 3 .22 21.1 .1 1 .24 9.5 .9 1 26 2.7 3.3
.20 3 .31 214 3 1 34 9.3 2.4 1 36 2.1 6.2
.25 2 .43 20.3 .8 1 .46 8.5 4.8 1 .48 1.3 9.9
.30 2 .55 18,5 2.0 1 .59 7.4 8.0 1 .62 4 146
.35 2 .70 16.3 3.8 1 .73 6.3 12.1 0 .76 0.0 20.5
40 2 .86 140 6.5 1 .9 5.1 17.1 0 .92 0.0 27.4
45 2 1.06 11.6 10.1 1 1.09 4.1 22.9 0 111 0.0 35.1
.50 2 1.28 9.3 14.6 1 1..30 3.1 29.8 0 1.32 0.0 43.6
.55 2 1.55 7.2 20.3 1 1.56 2.3 37.8 0 157 0.0 53.2
.60 1 1.8 5.8 27.7 1 1.87 1.6 47.2 0 1.87 0.0 644
.65 1 2.25 4.7 36.5 1 2.26 1.0 58.5 0 225 0.0 77.8
.70 1 276 3.6 471.5 1 2.77 .6 72.6 0 2.75 0.0 9.4
.75 1 3.46 2.7 61.6 1 3.47 2 9.1 0 344 00 o
.80 1 448 1.9 81.3 1 447 0.0 = 0 4.46 0.0 ®
.85 1 618 1.3 = 0 6.8 0.0 = 0 6.4 0.0 o
.90 1 9.54 8 0 953 0.0 o 0 949 0.0 o
.95 1 1956 3 = 0 19.55 0.0 = 0 19.51 0.0 =
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example, when the fast server is 20 times faster than the slow one (r = 0.05)
and if p, say, is 0.8, a substantial reduction of queue length (and waiting
time) can be achieved if the slow server is used in a correct way (i.e.,

allowing stalling). The practical lesson from this is that one should never

discard an obsolete service device when new technology provides a much faster
device. The slow server can be of value if ﬁroperly used.

Finally, it is perhaps proper to note that the model presented here and
represented by Figure 1 can be used to study situations when Server 1 is
preferred over Server 2 for reasons other than speed-—for example, because it
is less expensive to use. Such will be the case, for example, when Server 1
is the "in house” computer while Server 2 is an outside computer which can be
used for a fee. An optimization model for such situations can be developed

using the results obtained in this paper.

4, On Social Versus Individual Customer Optimization

Studies of this topic began with the work of P. Naor [1969] and the
latest results, in a most general setting, may be found in Bell and Stidham
[1983]. They study a situation where customers have to make decisions on
whether or not to join a queue, or which server to join, when the cost
structure has a bullt-in tradeoff between a "reward” and a "cost”. The reward
(received by each customer who completes service) represents the value of
receiving service and the cost (per unit of time) represents the value of time
lost in wailting. The issue is whether customers seeking their own self
optimization follow a decision rule which is socially optimal in the sense of
maximizing average net reward (per customer) over all potential customers. It
was shown that in general this is not the case and customers tend to join the
queue more than is necessary for social optimality. However, a central

controlling agency may, by levying tolls, create an environment in which
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social optimality coincides with individual customer's optimality.
The present model provides another example of the same phenomenon with
some added nice features. Here all customers join the queue and it is not

necessary to introduce a special cost structure involving a "reward"” that is

difficult to measure. The natural “"cost™ is waiting time, or its value, and— :
decisions are made on the basis of this "cost™ only. On the other hand, since
we do not have a closed form expression for K; = Ko(r,p), our conclusions will
be either qualitative or in terms of K,.

For n = 1,2,3,... and 0 < r < 1, let p,(r) = sup {p: 1, < Ln-l} and
po(r) = 1. Thus, p, is the lower boundary of the region, in the r - p plane,
where the socially optimal system is the one in which n customers stall. Now
fix r and p and recall that a rational customer seeking self optimization
joins the slow server if, and only if, the number of st#lling customers is at
least 1/r. (His decision rule is, of course, independent of p.) This rule

may or may not coincide with the socially optimal value Ry. Let

>
]

{(r,p): I/(n+2)<r<1f(n+1), p< pn(r)}

o
n

{(r,0): (r,0)8A , p () <p <p_, (0]

and set A = U An’ B=u Bn. (These sets are shown in Figure 3.) Then if
(r,p) € A, social and individual optimality lead to the same decision rule;
when (r,p) € B they differ. In the latter case customers seeking self
optimization will stall more than 1s appropriate for social optimality.
Applying the language of Bell and Sidham to our case, self-interested
individuals tend to overcongest the fast server. But again, as in previous

studies, a central agency in charge can, by levying tolls, create an
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environment in which self-interested individuals will behave in a socially
optimal way. The necessary toll is a charge for using the fast server, and

its value is

\—-———————ﬂ - _
7 = ¥<Kylpordo ...
Hita '

where ¢ is the cost of waiting per time unit. This toll should be charged

whenever (p,r) € B.

R\ N
| \ V/)% 0
L \\\ 3} ik N
I\ NN N N
NN LOU N

1 Ve .2 1/4 3 13 4 5 T

Figure 3. Individual Optimal Policies Versus Overall Optimal Policies
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Appendix

Let Tij be the first passage time from state i to state j (j > i) in an
~-0T, .
M/M/1 queue with arrival rate A and service rate p;. ILet Cij(e) = Ee iJ.

Then for j > 1

( ) X(zf+1 - z§+1) - “1(21 - z;)
A1) c,.(8) = :

13 L S Y T3

Mzy 2y ) = uylzy - 2p)

(Baily, 1957), where z; is the larger root and z, is the smaller root of
(A.2) Az - O+ Wy + 8)z + by = 0.

The expressions in (A.l1) with j = K, i1 = K - 1, may thus be used in lieu of
(4) if desired. Here we wish to show how (A.l1) can easily be proven from (4).

To prove this let cij(e) be formally defined by (A.1). Then

i i-1

= = i_
Cp1(8) = A/(\ + 8). Also, from (A.2) Az = \ + By + e)zn B2, for

n=1,2. So, from (A.1l)
- _ -1
C1-1,1(9) = AN +p, + 0 “1C1-2,1-1(9)] .

Since this is the same as (4) it follows by induction that Ci-l,i’ so defined,

is the Laplace transform of Ty_; 4. Now, for j > i
b

= * *
Tij Ti,i+1 ese Tj-l,j
and
-8T
- 13
cij(e) Ee .



