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ACCEPTABLE AND PREDOMINANT CORRELATED EQUILIBRIA

by
Roger B. Myerson

1. Introduction

As defined by Nash [1951], an equilibrium of a game is plan of behavior
for every player in the game such that each player is willing to behave as
planned if he expects all other players to do so. In an equilibrium, there
may be some events that have probability zero, as long as all players behave
as planned. The concept of equilibrium allows players to completely ignore
all the outcomes of the game in such zero—-probability events. 1In some
equilibria, however, a player's willingness to obey the equilibrium plan would
disappear if he gave any consideration at all to these zero—probability
events. In such equilibria, the rationality of players' behavior often seems
questionable, and so game theorists have searched for refinements of the
equilibrium concept which exclude these equilibria.

For example, consider a two-player game in which player 1 can choose x;
or yy, player 2 can choose Xy or yg, and their payoffs (uj,us) depend on their

combination of choices as follows:

) Y9
%, 1,5 1,5
¥4 0,0 2,1

There are two equilibria of this game: (%7,%y) and (yy,yp). However, the
(Xl,xz) equilibrium is imperfect, because player 2 would not be willing to
choose X, if there were any chance that player 1 might choose y, (perhaps as a
result of some tremble or mistake). Or to look at it another way, the action

Xy 1s (weakly) dominated for player 2 because, no matter what player 1 may do,



Y9 is always at least as good as x9 for player 2.

These two concepts, perfection and domination, exclude the same
equilibrium (x;,x%9) in this example and may seem logically very similar, but
in fact they do represent two different strands of the literature on

~noncooperative games. Concepts of perfect equilibria were introduced by

Selten [1975], and related concepts have been developed by Myerson [1978],
Kreps and Wilson [1982], Kalai and Samet [1984], van Damme [1983], and
Kohlberg and Mertens [1982]. 1In each of these papers, the basic idea is that
a reasonable equilibrium ought to be stable in some sense when small
probabilities of players' mistakes (or some small perturbations in the
payoffs) are introduced into the game. The concept of eliminating dominated
actions was developed by Luce and Raiffa [1957], and two related concepts of

inferior actions and rationalizable actions have been proposed by Harsanyi

[1975] and by Bernheim [1984] and Pearce [1984]. TIn these domination
concepts, the basic idea is to identify some actions that would be
intrinsically unreasonable (in some sense) for a player to choose, and then to
consider only equilibria that do not use these actions.

Unfortunately, there have been few logical connections between these two
strands of noncooperative game theory. (See McLennan [1983] for a recent
paper that does make such a connection.) It has been recognized.that, for two-
player games only, an equilibrium is perfect i1f and only if it does not use
any weakly dominated action. But in games with three or more players, an
equilibrium may be imperfect even though there are no dominated actions.
Conversely, iterative elimination of dominated actions may eliminate
equilibria that are not excluded by any perfgctness concept .

In this paper, we show that these two strands can be unified for games

with communication, where the fundamental solution concept 1s correlated



equilibrium, as defined by Aumann [1974]. TIn Section 2, we define acceptable
correlated equilibria, which are stable against small probabilities of
players' mistakes. In Section 3, we define unacceptable actions in a way

which includes all weakly dominated actions, and we show that a correlated

equilibrium is acceptable if and only if it does not use any unacceptable

actions. Thus, for games with communication, a natural analogue of Selten's
concept of perfectness is equivalent to a generalizated concept of elimination
of dominated actions. 1In Section 4, we consider the process of iteratively

eliminating unacceptable actions, to develop a concept of predominance, which

is analogous to the concept of iterative or wide domination discussed by Luce
and Raiffa [1957].

Given a game in strategic form, we say that it is a game with
communication if the players can communicate before each player chooses his
action. Following Aumann [1974], we allow that the players may communicate
either directly or through a mediator, and the communication may be either
deterministic or influenced by some random variable with an objective
probability distribution. However, after the communication is over, each
player still controls his own action or strategy separately; that is, we are
assuming that jointly binding commitments are not allowed. (Thus, as Aumann
has emphasized, a game with communication is different from a cooperative
game, in which such commitments are allowed.) A correlated equilibrium of the
given game is any probability distribution over the possible outcomes that
could be implemented by a Nash equilibrium of any such extended game with
preplay communication.

As a special case of the revelation principle (see Myerson [1982, 1983]),
it can be shown that there is no loss of generality in considering only

communication systems of the following form: a mediator randomly selects an



outcome to recommend; then the mediator confidentially tells each player only
the action that is recommended for him; and the probability distribution that
generates the recommendations should be designed so that it is an equilibrium
for each player to plan to obey the mediator's recommendations.

It _is straightforward to show that the set of correlated equilibria is a

convex set and includes all Nash equlibria. However, there may exist
correlated equlibria that are not convex combinations of Nash equilibria, as

Aumann [1974] has shown. TFor example, in the following game

%y Iy
x, 5,1 0,0
y1 4,4 1,5

there 1s a correlated equilibrium in which each of the outcomes (x,x5),
(y1,¥2), and (y1,xp) gets probability 1/3. (This correlated equilibrium could
not be implemented if the players could only communicate with noiseless face-
to-face communication. A mediator or noisy channel is needed, as Farrell
[1983] has discussed.)

It is worth remarking that correlated equilibrium is in many ways a

1/

mathematically simpler concept than Nash equilibrium.-— For many games, it
may be easier to compute the set of all correlated equilibria, which is
convex, than the set of all Nash equilibria, which may not even be a connected

set. Thus, it is not surprising that refinements of the equilibrium concept

also become simpler in games with communication.

l/In a universe with an omnipresent deity, no observer could ever be sure
that players in a game were not getting correlated guidance, through the
medium of silent prayer. Thus, game theorists would have to use correlated
equilibria rather than Nash equilibria in all analysis.



The analysis of this paper is limited to games in strategic form——that
is, games with a given structure consisting of: a set of players, a set of
possible strategies or actions for each player, an& a payoff function for each
player. There is no specification of any dynamic structure to the play in a
-strategic-form game, so we generally assume that all players choose their
actions simultaneously. The advantage to studying the strategic form is that
it is a structurally simple and yet very general model. Furthermore, game
theorists have long argued that there is no loss of generality in studying the
strategic form, since any dynamic extensive form game can be normalized to an
equivalent game in strategic form. (See Kuhn [1953], Luce and Raiffa [1957],
and Mertens and Kohlberg [1983], for example. Selten [1975] suggested an
alternative concept of agent-normalization.) Certainly the set of Nash
equilibria of an extensive-form game and its normal form are identicalrg/

However, there are limitations to studying refinements of the equilibrium
concept in strategic-form games only. TFirst, the problem of imperfect
equilibria may appear to be a "knife-edge"” phenomenon in strategic form. In
fact, van Damme [1981] has shown that there is an open dense set of games in
strategic form that have no imperfect equilibria. TFor the first example in
this paper, the imperfect equilibrium at (xl,xz) exists only because player 2
gets exactly the same payoff from (xy,%X9) as from (xl,yz). If the payoff of 5
in the upper right were perturbed slightly, all else equal, then (xl,xz) would
either become a perfect equilibrium or cease to be an equilibrium at all.

However, the equality of payoffs in (%1,x%5) and (x%;,yy) is not a mere

%/In this paper, the terms "strategic form” and "normal form" are not
used synonymously. The strategic form is a general mathematical structure for
characterizing games, formally described in Section 2. The normal form of an
extensive~form game is a specific game in the strategic form that is the
normalized equivalent of the extensive-game form.



coincidence if this game arises as the normal form of the dynamic extensive-

form game shown in Figure 1. Thus, we should recognize that the existence of

imperfect equilibria may be a result of the underlying dynamic structure of

the game, even though we ignore this structure when we study the normal form.

[Insert Figure 1 here.]

A more serious issue has been raised in another paper by this author

(Myerson [1985]).

For games with communication, the normal form is not an

adequate representation of the dynamic extensive form, because the

possibilities for

communication during the game are suppressed when we

normalize the game. That is, unless we assume that players can communicate

only before the play begins, two extensive-form games that have the same

normal form may have different sets of communication equilibria. (See Myerson

[1985] for examples.)

In Myerson [1985], a concept of sequential communication equilibrium is

defined for dynamic multistage games with communication. The relationship

between this paper and Myerson [1985] can be most simply described by stating

that acceptable correlated equilibria (as defined in this paper) are related

to the sequential

communication equilibria of Myerson [1985] as Selten's

[1975] trembling-hand perfect equilibria are related to Kreps and Wilson's

[1982] sequential
for dynamic games
actions should be

zero probability.

equilibria. Xreps and Wilson define sequential equilibria
without communication by requiring that players' beliefs and
rational in all possible events, including events that have

(For a Nash equilibrium,-rationality would be required only
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in events that have positive probability.) Myerson [1985] defines sequential
communication equilibrium by imposing a similar rationality requirement in
dyﬁamic games with communication. In both of these "sequential"™ concepts, the
players' beliefs in zero-probability events are generated by taking the limit
- as.small. probabilities of players' trembles or mistakes go to zero. In static
strategic—-form games there are no problems about players' rational beliefs
after zero-probability events, because all players are assumed to make all
decisions simultaneously. However, one may still ask whether an equilibrium
or correlated equilibrium is stable against the introduction of the small
probabilities of trembles that would generate rational beliefs in a
corresponding dynamic game. Selten's perfect equilibria and our acceptable
correlated equilibria are respectively the equilibria and correlated

equilibria that are stable in this sense.

2. Basic definitions

Let us consider a game I' in strategic form, with the following structure

(2.1) = (Ciepr (U)ien)s

where N is a nonempty finite set and, for each i in N, Ci is a nonempty finite

set and ug is a function from C into the real numbers IR, where

= x C,.

jEN
Here N denotes the set of players in the game, Ci denotes the set of actions
or strategies available to player i in the game, and uj(c) denotes the payoff

(measured in some von Neumann-Morgenstern utility scale) that player i would

get if ¢ = (cj)jEN were the combination of actions chosen by the players.



For any finite set X, we let A(X) denote the set of all probability

distributions on the set X,

A) = {p:x > 10,11 ¥ ux) =1}.
x€X

A correlated strategy for the players in T' is any probability

distribution p in A(C). We may think of such a correlated strategy as being
implemented by a mediator as follows. First, the mediator randomly selects
some combination of actions in C, with p(c) being the probability that he
selects ¢ = (Cj)jEN' Then the mediator separately and confidentially
recommends to each player i that he should use the action c¢; that is the ith
component of the selected vector c.

We do not assume that the mediator can compel the players to obey his
recommendations, so he must use a correlated strategy that gives no player any

incentive to disobey. Following Aumann [1974], we say that a correlated

strategy p is a correlated equilibrium iff it satisfies the following

incentive constraints:

¥e.€C, .
i i

(2.2) y p(c)(ui(c) - ui(c_i,ei)) > 0, ¥ieN, VciECi,

(We use here the following notation:

C_.= x C,, where N-1 = {jeN| j2i};
ogen-i

th

(C—i’ei) is the vector in C with i~ component e; and all other components the

same as in c_j; and ¢ = (c_i,ci).) Constraint (2.2) asserts that player i
would not get higher expected utility from using e; than from using c; when

1

the mediator has recommended action c¢;. Thus, obedience of the mediator's



recommendations by all players is a Nash equilibrium if and only if their
correlated strategy is a correlated equilibrium.

In some correlated equilibria, a player may be willing to obey his
recommendations only if he is absolutely sure that all players will also be
*obedientTﬂ'It'might—be"that~player—ifwould_bemunwillingrtonusefactionmcimif,he,W, .
believed that there was any chance of player j disobediently using ey-
A correlated equilibrium that required an absolute certainty of obedience
would be less stable, in some sense. Thus, to develop a refined solution
concept in which such unstable correlated equilibria are ruled out, we now
consider a model of mediation with mistakes, similar to the perturbed games of
Selten [1975]. 1In this model, we suppose that, for any player j and action ej
in Cj, there is always a small positive probability that player i might
"tremble” and use d; by mistake, no matter what the mediator and the other
players do. Thus, eQery other player i must always take into account the
possibility of player j using dj'

First we need some more notation. For any S c N, if S # @ we let

(so Cy = C) and we let

For any ¢ in C and any eg in CS, we let (c_s,es) be the combination of actions

in which the jth player's action is e, if j€S, and is c; if j¢s.

J

For any e > 0, mn 1is an e—correlated strategy iff m is a probability

distribution in A(C x (U CS)) such that:
ScN
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(2.3) e nlec,e) > (A-€) z n(c,e oa)
S eieci su{i}

¥cEC, ¥iEN, ¥S c N-i, ¥e €C;

2.4) if n(c,es) > 0 then n(c,eSU{i}) > 0,

Vceq, ¥i€EN, ¥S c N-i, veSU{i}ECSU{i}'
(Here, the ith component of esu{1i} is ej, and all other components of egu{i}
form the vector es.) We interpret n(c,es) as the probability that the
mediator will recommended ¢, and all players not in the set S will choose
their actions rationally, but the players in S will tremble and accidentally
use the actions in the vector eg. Thus, n(c,®) is the probability that the
mediator will recommend ¢ and all players will choose rationally. Condition
(2.4) asserts that every possible tremble for player i must have strictly
positive conditional probability, given any recommendation vector and any
vector of trembles among other players. Condition (2.3) asserts that, given
any vector of recommendations selected by the mediator and any vector of
trembles among players other than i, the conditional probability of player i
also trembling is not greater than €. Thus, in any limit of e—correlated
strategies, as £ goes to zero, the conditional probability of any player
trembling would be always equal to zero, independently of any given
information about the other players and the mediator. WNotice also that if 7
is an eg-correlated strategy and ; > e, then n is also an ;—correlated
strategy.

An e-correlated equilibrium is defined to be an e-correlated strategy n
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that satisfies the following incentive constraints

(2.5) ) ) T nered(u, (e cre) (e o oinsCacce)) > O
c_;€C_, SEN-1 e €Cy S/t TitT=-87"s” it T=-(su{i})’ su{i}

S UWHEN; Fe €Cy Fe €C e e e
1 1 1 1

That is, player i should not expect to gain by using action e; when he is told

to use ¢y and he is not "trembling"” or out of control.

We say that p is an acceptable correlated equilibrium iff, for every

strictly positive e, there exists some e-correlated equilibrium n%

such that

(2.6) lim 1%Cc,®) = p(c), ¥cecC.
e+0

That is, an acceptable correlated equilibrium is any iimit of e-correlated
equilibria as & goes to zero. We may think of an acceptable correlated
equilibrium as a correlated equilibrium in which obedient behavior by every
player could still be rational when each player always has a positive but
infinitesimal probability of trembling.

Our first result is that acceptable correlated equilibria are, in fact,

correlated equilibria, and do exist. (All proofs are in Section 5.)

Theorem 1. The set of acceptable correlated equilibria of the game T is
a nonempty subset of the set of correlated equilibria. Furthermore, any
perfect equilibrium in the sense of Selten [1975] is an acceptable correlated

equilibrium.
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3. Acceptable actions

We say that c; is an acceptable action for player i iff, for every e > 0,

there exists some e—correlated equilibrium 1 such that

Yy nic,® > 0.

c €C - T T ) T
-i ~i

That is, c¢j is acceptable iff it can be rationally used by player i when the
probabilities of trembling are arbitrarily small. We let E; denote the set of

acceptable actions for player i, and we let

The following useful lemma is proven is Section 5.

Lemma 1. A combination of actions ¢ is in E if and only if, for every

e > 0, there exists some e~correlated equilibrium n such that n(c,®) > O.
We can now state the main result of this paper.

Theorem 2. p is an acceptable correlated equilibrium if and only if p is
a correlated equilibrium and

(3.1 Y u(e) = 1.
cEE

Proof. The proof is deferred to Section 5.

This result offers a much simpler characterization of the set of
acceptable equilibria. Once the set E is known, the set of acceptable
correlated equilibria is just the set of p in A(C) that satisfy (3.1) and the
incentive constraints (2.2). Notice that these are a finite collection of
linear constraints on p, so the set of acceptable correlated equilibria is a

convex compact polyhedron (as is the set of correlated equilibria).
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For this characterization to be useful, we need a practical way to verify
whether an action is acceptable or not. The definition of acceptability
provides a direct way to show that that an action is acceptable. We now need

to develop a criterion that can be used to show when an action is not

‘acceptable. T 77 o T S

We let

That is, if a € A then, for each i1 in N and each ¢; in C;, ai(eilci) is a
nonnegative number, which one may interpret as a shadow price for the
incentive constraint (2.2) that player i should not expect to gain by using e;
instead of c; when c; is recommended to him.

For any ¢ in C, any a in A, and any S that is a subset of N, we define

(3.3) Vs(c,a) = 7 ) ai<ei'ci)(ui(c) - ui(c_i,ei)).

ieS e,€C,
i i

Vg(c,a) may be called the aggregate incentive value of ¢ for S, with respect

to . Notice that it is a weighted sum of the contributions of ¢ to the
incentive constraints for the members of S.

When the mediator recommends c and the players in S tremble to eg, the
aggregate incentive value for the nontrembling players, with respect to «a,
is VN\S((C_S,eS),a). For any ¢ in C and a in A, we let V,(c,a) denote the
vector of all such aggregate incentive values for the nontrembling players,

with all possible combinations of trembles from ¢ (including e, = #); that is,

S

V*(c’a) = (VN\S((C_S ’es) ’a))SEN’eSGCS.

We may write V*(c,a) =0 iff

VN\S((C_S’eS)’a) = 0, VS E N, Ve G C .
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We may write V, (c,a) <x 0 iff

S c N, 3e, €C such that V

- S S N\S((C-S’es)’a) * 0,

and, for each T ¢ N and each d¢ in Cg,

if Vv T((c_T,dT),a) >0 then 3Qc T such that VN\Q((C-Q’ Q

N\

(In this definition, dQ denotes the subvector of dy consisting only of those
components indexed on the members of Q. Read </Q as "1is lexicographically less
than.”) Thus, if V,(c,x) = O then the aggregate incentive value (with
respect to a) for the nontrembling players is always zero when the mediator
recommends c¢. If V*(c,a) </Q 0 then, when ¢ is recommended, for any set of
trembles that leaves the nontrembling players with a positive aggregate
incentive value, there must exist a smaller (and therefore much more likely)
set of trembles that leaves the nontrembling players with negative aggregate
incentive value; furthermore, there is some set of trembles that actually
does leave the nontrembling players with negative aggregate incentive value.
For any positive integer X, we say that (al,...,aK) is a (weak)

k

codomination system iff, for every k in {1,...K}, a” is in A, and for every c

in C, either

(3.4) Vio(c,al) =0 %je {1,...x},
or
¥
(3.5) m € {1,...K} such that V,(c,a™ <, 0 and, ¥j<m, V,(c,ad) = 0.

(A related concept of sequential codomination is introduced elsewhere, by

Myerson [1985]. The concept defined here may be called a weak codomination
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system whenever it is necessary to distinguish it from the concept of
sequential codomination.)

| It can be shown that, if (al,...,aK) is a codomination system, then, for
sufficiently small £ and any e—correlated strategy mn, the expected aggregate

incentive value_ for the nontrembling players,

k
(3‘6) 2 2 z 'ﬂ(C,d ) v ((C_ ,d ),O.’ )’
c€C  ScN  dgECq 57 MST-STS

is either zero for all k, or else it is negative for the lowest k such that it
is nonzero. Furthermore, (3.6) will be negative for some k whenever there is
positive probability under 1 that the mediator will recommend some action c
such that (3.5) holds. This is important because the expected aggregate
incentive value for the nontrembling players (with respect to any «) must be
nonnegative if n is an g-correlated equilibrium, since the incentive
constraints are all satisfied. Thus, if (al,...,aK) is a codomination system
and (3.5) holds then, for all sufficiently small £, ¢ cannot be used in any
g~correlated equilibrium. This observation motivates the following criterion

for identifying unacceptable actions.

Theorem 3. A combination of actions ¢ is in E if and only if, for every

codomination system, (al,...,aK),

k
Vo(c,a ) =0, ¥ € {1,...,K}.

Proof. See Section 5.

Thus, to show that c¢ € E, it suffices to show that, for every positive
g€ there exists some e-correlated equilibrium under which the probability of

recormending ¢ is positive. Conversely, to show that c¢ ¢ E, it suffices to
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. . . . k
find some codomination system with some k such that V,(c,a ) <l 0. Once we
have used these two tests to identify the set E, we can use Theorem 2 to
identify the set of all acceptable correlated equilibria.

As the name suggests, codomination systems are logically related to the

-———more familiar—concept of domination of actions_in strategic form_ games (see

Luce and Raiffa [1957]). To see how, suppose that o = (c(ei))e_ep is a
i~~i
randomized strategy for player i (so o & A(C;)) that weakly dominates some

action c.

i» in the sense that, for every c_; in C

i -i»

<
u, (e) Y ole;du (e ye,),
eiECi

with strict inequality for at least one c_;. Then we can construct a

codomination system with K =1 by letting

]

L
aj(e;le;) = ale)), ¥e.cc,,

and

1
a.(e.}d. 0 if j#+ i or d, # c,.
J( Jl J) J ] 1

Then it is straightforward to check that V*(c,al) <2 0 for every c_;, and
V*(d,al) = 0 for every d such that di # cye. Thus any weakly dominated
action is unacceptable or codominated.

However, there also exist games in which there are unacceptable actions

and unacceptable equilibria but there are not any weakly dominated actions.

For example, consider the three-person game with C; = {Xlsyl}’

Cy = {xz,yz,zz}, Cy = {X3,y3,Z3}, and utility functions (ul,uz,u3) as follows:
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* X3 73 Z3
X9 2,1,1 0,2,0 0,2,0
o 0,0,2 0,3,0 0,0,3
.. ___=z3 | 002 0,03 | 0,30 S
1o X3 J3 23
%5 1,3,3 } 1,3,3 1,3,3
Yo | 1,3,3 i 1,3,3 1,3,3
Zy 1,3,3 | 1,3,3 1,3,3

(This example is derived from a similar game suggested by J. Farrell.) Each
action of each player is the unique best response to some combination of other
players' actions, so there are indeed no dominated actions. However, yj, z9,

¥3s 23, and y; are all unacceptable actions. To prove this unacceptability,

consider the codomination system (al,az) such that

0 (xyly) = a(xglz) =1, W€ (2,3],

2

k 1 .
and all other ai(eilci) are equal to zero. So V,(c,a’) <l 0 if
¢, € {yz,zz} or c, € {y3,z3}, and V*(cl,xz,x3) =0 Vcl, which proves
that y9, 25, y3, and z3 are unacceptable. Then y; is unacceptable because

2 2
V*((yl,xz,xs),a ) <l 0 and V*((xl,xz,x3),a Y = 0,



- 18 -

Thus, E = {(xl,xz,X3)}, and so the unique acceptable correlated
equilibrium is the Nash equilibrium at (Xl,X2,X3)- There are other correlated

equilibria which are unacceptable, including the Nash equilibrium at

(Y]_,YZ,YS) .

4, Predominant actions and equilibria.

The theory of acceptable correlated equilibria has led us to the
conclusion that players should be unwilling to ever use their unacceptable
actions. This conclusion suggests that elimination of all the unacceptable
actions from a game should not change the outcome. Thus, given any

strategic—form game I' as above, we define the acceptable residue of ', denoted

R(T'), to be the game that differs from I' only in that each player's set of
feasible actions in R(I') is his set of acceptable actions in I'. That is, the

acceptable residue of T is

R(T) = O, (), s (8 00

i7ieN

where Ei is as defined in Section 3. A correlated strategy u in A(E) is a
correlated equilibrium of the game R(I') iff it satisfies the following

incentive constraints:
(4.1 z p(e)(ui(e) - ui(e—i’di)) > 0, WieN, VeiEEi, VdiEEi.

Any correlated strategy for the game R(I') can be considered to be a
correlated strategy for I' as well, by simply assigning zero probabilities to
all combinations of actions that are in C but not in E. (That is, we may
think of A(E) as a subset of A(C).) To verify that a correlated equilibrium

of R(I') 1is also a correlated equilibrium of I', it suffices to check that the
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above incentive constraints also hold for all 4, in C;, not just for di in E;
as (4.1) requires. That is, we must check that no player could gain by

disobediently choosing an unacceptable actiomn. In fact, this is always true.

Theorem 4. If p is a correlated equilibrium of R(I') (that is, u

satisfies (3.1) and (4.1)) then p is a correlated equilibrium of T'.
Proof. The proof is given in Section 5.

Theorems 2 and 4 together imply that the set of acceptable correlated
equilibria of T is exactly equal to the set of correlated equilibria of
R(T'). However, the set of acceptable correlated equilibria of R(T') may be
smaller than the set of acceptable correlated equilibria of T', because
g-correlated strategies in the game R(I') will not assign positive probability
to any combinatidns of actions that are outéide of E, since such combinations
of actions are simply not part of the game R(I'). Thus the set of acceptable
actions for player i in R(I') may be a proper subset of E; .

In this way, we can analyze a sequence of successively smaller games by
iteratively eliminating all unacceptable actions from the game that remains.
Formally, for every player i and every positive integer m, we define R™(T') and
E? by induction, as follows. To begin, let Rl(P) = R(I') and let E% = E;
for all i. Then, for every m > 1, let E? be the set of all acceptable

actions for player i in the game REL(ry, and let

m m
'@ = O, ED e )00+

That is, each R%(T') is the acceptable residue of Rm_l(F). Thus we may call

Rm(F) the miterative residue of I'. Clearly,

1 2 3 .
Ci > Ei 2 Ei > Ei D eve ¥i€EN.
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Since there are only finitely many actions in the original game I', there
%
must exist some number M and some sets of actions Ei such that

*
E, =FE =E, ~=...=E, ¥eN.

*
© 7 That is, B, is the set of-all-actlons that-are acceptablefor-player—i-in-all —

iterative residues of I'. Let

* *
E = xE,.
i

ieN

We say that c; is a (weakly) predominant action for player i in TI' iff

%
¢y € Ei' Similarly, we say that p is a (weakly) predominant correlated

equilibrium of I iff u is a correlated equilibrium of T' and

(4.2) Y u(e) =1,
eGE*

Thus, a correlated equilibrium of I' predominant iff it is acceptable in all

iterative residues of T'. (A related concept of sequential predominance is

defined by Myerson [1985]. The concept of predominance introduced here may be

called weak predominance whenever it is necessary to distinguish it from

sequential predominance.)

Because the set of correlated equilibria of the acceptable residue is a
nonempty subset of the set of correlated equilibria of the original game, it
follows inductively that the set of correlated equilibria of every iterative
residue is a nonempty subset of the correlated equilibria of the original
game. Of course, every iterative residue has at least one Nash (uncorrelated)
equilibrium among its correlated equilibria, by Nash's [1951] general
existence theorem. But the set of predominant correlated equilibria of T is
just the set of all correlated equilibria of an M-iterative residue of T', for

some sufficiently large M. Thus, we have derived the following general
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exigtence theorem for predominant equilibria.

Theorem 5. The set of predominant correlated equilibria of T is nonempty

and includes at least one Nash equilibrium.

J— — - . .

" TFOT a simple example, comsider the following two=person games —

w2 %2 Yo o zZ2
Wy 2,2 1,1 0,0 0,0
xi Il !; 1ﬂ1 B é,o P 2,0
v, 0,0 i 0,2 | 3,0 0,3
zy 0,0 0,2 | 0,3 | 3,0 |

There are no dominated actions in this game, but the only predominant
equilibrium is at (wy,wy). The equilibrium at (xl,xz) is acceptable but is
not predominant. It is straightforward to check that, for each player i,

1

E, = Ei = {wi,xi} and E: = Ei = {wi} in this example.

5. Proofs

Proof of Theorem 1. To check that an acceptable correlated equilibrium p

is a correlated equilibrium, observe that condition (2.5) for n = ne

converges to condition (2.2) for p as € goes to zero, by (2.6). (Notice that

(2.3) implies that 1lim ne(c,es) = 0 for every c¢ and eg such that S # §.)
e~>0

Now, suppose that ¢ in X A(Ci) is a perfect equilibrium. Then there
ieN

exist sequences {ek}:=l, {ck}z=l, and {qk}:=1 such that
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0<ef <1, o€ x aCcy), e x MC, ks

ieN ieN

k . .
qi(ci) > 0, ¥k, ¥ie€N, vcieci,

[}
<
-
[
1
Q

]
Q

- 1im ¢
k> k>oo
and

k. k k k
o< éc . (jeg_i((1~a Yogle ) + eage))ofle)(u;(e) ~ uyle_y,ep))
1

¥k, ViEN, ¥ci€C;, ¥ey€C; -

That is, ck

i is a best response for player i when every other player j is

independently using either his 6? strategy, with probability (1—ek), or his q

k
J
"trembling-hand” strategy, with probability ek, Now, for any € > 0, let eX be

the largest number in the sequence such that ek ¢ €, and let

£ k k k k, |N\S
i (c,es) = ( I ci(ci))( I ¢ q.(e.))(l—e )| |
1€N €S 33

¥c€C, ¥8 c N, ¥eg€Cq,
and let

ple) = 0 ci(c,), ¥ceC.

ieN *

Then n8 is the e—correlated strategy that simulates the equilibrium Gk to

Selten's perturbed game with equ trembles, and p is the correlated strategy
that simulates the perfect equilibrium ¢. It is straightforward to check that
the conditions for perfect equilibrium imply that each n® is indeed an

g—-correlated equilibrium, and that
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1lim ng(c,¢) = pn(c), ¥ceC,
>0

so that p 1Is an acceptable correlated equilibrium.
It is well-known that any finite game in strategic form has at least one

perfect equilibrium. (The proof is that each of Selten's perturbed games has

at least one equilibrium, and X A(Ci) is compact, so a limit of perturbed
i€N
game equilibria exists.) Thus, the set of acceptable correlated equilibria

is nonempty. Q.E.D.

Proof of lemma 1. If, for every £ > 0O, there exists some e£-—correlated

equilibrium 1 such that n(c) > 0 then each cy € By and so

Conversely, suppose that c¢ € E, and let € be a positive number. We
want to show that there exists some g—correlated equilibrium 1 such that
n{c) > 0.

By definition of E, for every player i there exists an e-correlated

1

equilibrium A" and an action vector b’ in C such that o% =cy and

A(pl,0) > 0. Let
\ = 1 ) hi
TET .
ieN
Then A is also an e—-correlated equilibrium, and X(bi,¢) > 0 for every i.

Let v be a correlated strategy with e—trembles defined as follows:

v(d,es) =0 if d# c,

v(c,eg) (1-ey 8] (E)IS'/ICS|.

That is, the mediator in v always recommends ¢, each player independently

trembles with probability e, and every action for a trembling player is
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equally likely. For any d in C, let vz(d) be the probability under v that

players use the actions in d and player i does not tremble; that is

v(d,es).
ScN-i {eS|(c_S,eS)=d}

the

. * . * .
Notice that v;(d) =0 if d; # ¢4, and vi(d) >0 if d4 = c4.

Now choose & so that

8 = min min X(bl

i e ,eN_i).
N-1i

Notice that & > 0, because k(bi,¢) > 0 and A is an e-correlated

equilibrium. For any player i and any e in C such that e, = c. let

i i’
atie. ) =amle, )+ (/2 0mhe, ) - vie).
PUN-1 *TN-1 >UN-1 i
For any (d,eq) not covered by the preceding sentence, define %(d,es) by

n(d,eg) = Aldeg) + (5/2) v(deg)-

This ﬂ satisfies the conditions (2.3) and (2.4) that are required of an

g~-correlated strategy, because A and v satisfy them. Condition (2.5) is also

satisfied by ﬂ because, for any player i and any vector d4 in C, the

probability that the players do d (after trembles) when player i does not

tremble is the same in both ﬁ and \; that is

) ) ) (M(a,eg) - %(a,e )) = 0.
a€C ScN-i {esl(a_s,es)=d} S 5

Let m = n/inl, where

Il =Y Y y n(d,eg) -
dEC ScN  eg€Cy
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Then 7 also satisfies conditions (2.3)-(2.5), and so 1 is an e-correlated
equilibrium. Furthermore, n(c,®d) > 0 because v{(c,®) > O.

Q.E.D.

Proof of Theorem 2. By Lemma 1, for every e in E and every € > 0, there

€

n

; . - e S NN T
exists some e-correlated equilibrium v&'® such that v &(e;8)> 0: Let

1
>\€=_.__

z e ,E
|E| ecE

\Y) .

Then A® is an e-correlated equilibrium and AE(e,®) > 0 for every e in E.

Now, suppose that p is a correlated equilibrium and Z ple) = 1. Let
ecE
n€ be defined so that

n€(c,8) = (1-e) ule) + ¢ £\%(c,®),  ¥eec,

and

n%(c,eq) = e A¥(c,eg), WceC, ¥S#P, ¥egCCg.

That is, 1% differs from p in that we have mixed in an e probability of A%.
The incentive constraints (2.5) are satisfied by n8 because they satisfied by
A% and because p satisfies (2.2). The conditions (2.3) and (2.4) are also
satisfied by n® and because they are satisfied by A& and because
A€(c,®) > 0 for any c such that p(c) > 0 (since such ¢ must be in E).
Thus, n® is an e-correlated equilibrium. Furthermore, (2.6) is satisfied, so
p is an acceptable correlated equilibrium.

Conversely, suppose that p is an acceptable correlated equilibrium. If
u(e) > 0 then for any € > O, there exists some eg~correlated equilibrium n®
such that n%(e,®) > 0, by (2.6). So e € E if p(e) > 0, and therefore

Y u(e) = 1. Q.E.D.
c€E
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Before proving Theorem 3, we need to prove the following mathematical fact.

Lemma 2. Let H be a convex subset of EP, and let m& denote the
nonnegative orthant of Hgﬂ Then H NRY = ® if and only if there exists some

K, where K < L, and some finite sequence of vectors (al,...,aK) such that

each a~ € E¢ and, for each & in H, there is somé k in {1,...,K} such that

ak°e <0 and a’+0 =0 for every j such that j < k.

Proof of Lemma 2. To prove the "if" part, notice that if

p €EHN E& # ® then a6 > 0 for every ¢ in B&, so no such vectors

(al,...,aK) could exist.

To prove the “only if" part, suppose that H n B& = @, By the
separating hyperplane theorem (see Rockafeller [1970]), there exists a nonzero
vector al such that a1°9 < 0 for every 6 in H and a1°w ? 0 for every w in B&.
Clearly, this al € Ry.

k

We now construct o inductively, for k = 2,...,K. Let

ek = {» € RY| adew = 0, %5 € {1,...,k-1}}.

Since H N Qk and B& n Qk are disjoint convex sets in the finite-

k in Qk such

dimensional vector space Qk, there exists some nonzero vector f
that ﬁk'e € 0 for every 8 in H n Qk, and Bk-w > 0 for every w in

E& n Qk. This vector ﬁk = (B%,...,B%) may have some negative components,

but only where al + ...+ ak_l is strictly positive. That is, if B? < 0,
and a% = 0,...,a§—1 = 0, then we could construct a vector w in B& n Qk such

that Bk°w < 0, by letting wy = 1 and all other wg = 0. Thus, for

sufficiently large M, Bk + M(oc1 + .. + ak_l) e RY. Let

of = gk + mal + ... o+ oKD,
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By definition of Qk, ak°9 = Bk°9 < 0 for every 6 in H N ok, Notice also

ks linearly independent of {al,-..,ak_l}, because Bk is not zero and

that «
is orthogonal to these vectors.

The above construction of al,az,... terminates when H N Qk =@, in

which case K = kflww§E4_(“¥1:f°’“K) satisfy the conditions of Lemma 2. The

construction must terminate for some k < L + 1, because k =L + 1 would
imply that X = {0} (since {a’,...,a"} would form a basis for W)

and O ¢ H. Q.E.D.

Proof of Theorem 3. By Lemma 1, for any c¢ in C\E, there exists some ¢

such that there is no e-correlated equilibrium n with n(c,¥) > O. Since C
is a finite set, there exists a number a* > 0 such that, for every c in C\E,
there is no e —correlated equilibrium n with n(c,3) > O. That is, c¢c € E

if and only if there exists some e*-correlated equilibrium 1 such that

n(c,3) > 0. Let

0(n) = (ei(n’dilci))d.EC.,C.EC.,iEN
i 1°1 1

where

ei(n,dilci) = CX SZN-i g n(e,dg)(u,(e_g,dg) - ui(c-SU{i}’dSU{i}))‘
i "= S

% %
Thus, an € —correlated strategy is an & —-correlated equilibrium if and only if
all components of 6(n) are nonnegative.

*
Let &(c) = {n' n is an € -correlated strategy and n(c,®) > 0 }.

C,.xC,
Notice that {e(n)l n € ®(c)} 1is a convex subset of x R T ', and that A
i€N
(as defined in Section 3) is the nonnegative orthant of this vector space.

Thus, ¢ £ E if and only if
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fo(m) | neae)} na=09.

Then, by Lemma 2, ¢ £E if and only if there exlsts some sequence of vectors
(al,...,aK) such that each ak € A and, for every m in A(c), there exists

some k in {1,...,K} such that

(5.1) ak-e(n) < 0, and aj-e(n) =0 ¥j<Kk,

where

(5.2) a“eo(n) = ) g ) “E(ei|d1) ei(n’eildi)
1 . e

i i

L)
d 5c

k
. z n(d,eg) Vi o((d_gre5) 50 )
S

Suppose now that ¢ ¢ E and (al,...,aK) satisfies (5.1) for all n in
®(c). Without loss of generality, we can assume that there exists some 7 in
&(c) such that (5.1) is satisfied for k = K (otherwise, we could reduce X).

We show first that (al,...,aK) is a codomination system. If it were not
then there would exist some (b,ap) and some k such that V*(b,aj) =0 for
every j less than k, VN\R((b_R,aR),ak) > 0, and VN\S((b_S,aS),ak) = 0 for

1 2

every S © R. Now define 1~ and n“ as follows:

o1 * s, *.Is

n (byel) = (1 - ¢ )'N\ '(e )| '/lcsl, ¥SCN, ¥eg€Cg;
Al .

n (d,el) =0 if d# b

A % %

nz(b,as) =0 -¢ )‘N\S!(e )ISI, ¥ScR;

0 d,e,) =0 if d# b S¢R £ a.:

and nl = nl/unlﬂ; i nz = nZ/HnZH.
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1 is an e™correlated strategy, although it may not be in &(c) if

Then 1
b # ¢ (since nl(c,¢) > 0 would fail). n2 satisfies (2.3) but does not

satisfy the positivity condition (2.4) required of an e*~correlated

strategy. However, for any number y such that 0 <y < .5, when we let

2 1 -
n=@0Q=2y)n +yn +n
then we have n € ®(c). Notice that
k| 1 k| 2 B .
0 =a"¢6(n") =a”+8(n ) = a"*6(n), ¥j<Kk,
and ak°e(n2) > 0. Thus, for sufficiently small positive y, we get
2 k
a *0(n) =0 ¥L <k, and a *8(n) > O,

which contradicts (5.1). Thus, (al,...,aK) must be a codomination system.
Furthermore, if ‘V*(c,ak) = 0 for all k, then the above-constructed nl
for b = ¢ would be in ®(c) and would violate (5.1), since ak°e(n1) would
equal zero for all k. Thus, if ¢ £ E then we can find a codomination system
(al,...,aK) such that V*(c,ak) <X 0 for some k.
Conversely, let us now suppose that (al,...,aK) is a codomination system

and V*(c,ak) <y 0 for some k. We need to show that this implies that ¢ ¢ E.

Let € > 0 be chosen small enough so that

Was(@ogeg»ad] > T T e VgDl

R>S bRGCR

bS=eS

k
for every k and (d,eg) such that VN\S((d_S,eS),a ) € 0. ('-‘ here denotes

absolute value, and the second summation is over all by whose components for
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players in S are the same as in eg.) If c were in E, then we could also find
some g-correlated equilibrium n such that n(c,®) > O. Let m then be the
smallest number such that there exists some d such that n(d,8) > 0 and
Vie(d, o™ <X 0. Then the definitions of codomination system and s—correlated

strategy imply that

m
g SZ:N z n(d,es) VN\S((d-S’eS) N ) < 0.
- S

But this means that oMe8(n) < 0, and so there must exist some i, dj, and eg
such that ei(n,ei|di) < 0, by (5.2). Thus, 11 could not be an e-correlated

equilibrium, and so c ¢ E. Q.E.D.

Proof of Theorem 4. Let us pick an arbitrary number & such that

0 <eX e*, where € is as in the proof of Theorem 3. Let A\ = xa, where

A is as in the proof of Theorem 2. That is, A is an c—correlated equilibrium

and

Ac,8) >0 if ¢ € E,

AMc,0) =0 if c € C\ E.

Suppose that, contrary to the theorem, there is a correlated strategy p

that satisfies (3.1) and (4.1) but 1s not a correlated equilibrium of I'. We

pick a small positive number 5 and let v 5§ A+ (1 -8) u, so that

) K(c,bs) if bS 0,

v(c,bs) =
& Mc,®) + (1 - 8) p(e) if by = 9.

For any & between O and 1, v is an e—correlated strategy. We choose & small
enough so that v violates the same incentive constraints that p violates.

Since )\ is an e—correlated equilibrium and p satisfies (4.1), the only
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violated incentive constraints for v involve a player gaining by disobediently
choosing an unacceptable action when some acceptable action is recommended.
So let player i and actions e; and di be chosen so that e, € Ei

di € Ci \ Ei’ and d; is the optimal disobedience when e; is recommended to

player i under the g-correlated strategy v.

Choosing a very small positive number y, we now define 7 so that
n(e,by) =
9

Y V((C 1’ei)’bS)’ if e, =4d,,

A(c,b ) Y v(c,bs) -y v(c,bs_i), if e, = e i €8, and bi

i

‘} A(c,b ) - v v(e,db ), if ¢, = e i €38, and bi # di
|
i
f
i

x(c,bs) otherwise.
N—

Choosing y sufficiently small, we can assure that w is an s*—correlated
strategy. (Nonnegativity of n(c,bs) can be assured, for sufficiently small vy,
because v(c,bs) is only positive if ¢ is in E, in which case x(c,bs) is also
positive. Relaxing from e to e* assures that the bounds on tremble
probabilities for an e*—correlated equilibrium are satisfied, for all
sufficiently small y.) In effect, m differs from A only in that the mediator
is sometimes recommending di under ©t when he would have recommended e; to a
trambling i under A; and player i only obeys a recommendation to use d; under
m when he would have trembled to d; under A. Thus, any recommendatlion to any
player other than i, and any recommendation other than di to player i, must be
incentive compatible under m, because it is so under A. Furthermore, a
recommendation to use di is incentive compatible under m, because i's

conditional probability distribution over others' recommendations and actions
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when d; is recommended to him under m is the same as when e; is recommended to
him under v, and di is an optimal action for i when e; is recommended to him

under v. Thus, m is an e*—correlated equilibrium, and di is recommended with
positive probability under m. But by the way e* was chosen, this implies that

di must be in E:. This result contradicts our initial assumption that d, was

.
3
B

an unacceptable action preferred by i over e; when e; is recommended under

p. This contradiction proves the theorem. Q.E.D.
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