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ABSTRACT

This paper investigates the Stochastic Generalized Transportation
Problem with recourse when the demands (column totals) are random. The
basic philosophy and assumptions are those of the two-stage linear pro-
gramming under uncertainty. It is shown that the problem can be converted
to an equivalcent conver program where the random components are explicitly
addressed in the functional thus retaining the dimensionality of the constraints
unchangcd. Utilizing Kulhn-Tucker conditions écrtain qualitative propositions
and theorems are proved. These results lead to an efficient computer code
which proceeds in an iterative process solving once the deterministic generalized
transportation problem, 1In this first problem,which iterates, the column
totals are given the values of the medians corresponding to their marginal
density functions. It is shown a "wnews-boy' type relation could be established
which utilizes the duals of the previous iteration to obtain the next set of
values for the succeeding iteration. Then, via 'operator theory' developed,
the next set of solutions are obtained without resolving. It is shown that
the optimal solution is attained ven the column totals for cach column is
unchanged for two consecutive iterations. A convergence proof is also pro-

vided for the algorithm developed lLere.



I. THE STOCHASTIC GENERALXZED-TRANSPORTATION PROBLEM. (SGTP)

This paper investigates the Stochastic Programming with recourse

[11, 12, 13, 14, 15] as applied to a special type of linear program

Generalized Transportation problem (GTIP). The basic theory and the

theoretic approach of reaching an optimal solution for GTP is given

and Thompson [2]. An operator theory of parametric programming for

Transportation problem are given by Balachandran and Thompson

This paper will utilize the properties and results

referred to above. The G. T. P. formulation

proved in these
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- viz. the
graph

by Balachandran
the Generalized

[3} 4; 5].

papers

arises in different contexts

[2, 10, 16], but the most familiar application
contexts [z, 10, 1b), DutL LUE Lo a e —

the machine loading

rObl ‘ 2 I III thls m txDCS Of ((.achlnes (IOWS) are aVallable fOl’ the
p en 4 3 A

p - o y IOUUk-tS COlld[lS Ihe p[OdUCtlon plOCeSS 1S
[Odu tion f n t peS Of ( ur ).
—_—— P

i ; ingle machine
oncerned with each unit of product being processed by a sing
c -rne

a l(l “()t l)y a s (:lEl(. (!q nce ()f mac ne ach p d ct avy b OduCed
'pe S ue hl eS8, E TOdu m e 'Pr

ili i i i for product ]
b e or more machines. The utilization of machine type 1 P
y any one . )

5 it “ing a
i dollars per unit, Duril
¢ . hours per unit and costs Cij )

equires
req i3

. . e a.
achines of type 1 have 2 mavimum total capacity of i
nac

fixed tiwe peried,

1ours < l\! ‘II()dUCt L&Pe l 1S requ ed b an anmot nt b {“L' “lachlne 10ad1[lb
P
¢ t P } J

])]()!)lc' 15 1 A\ at am \lllt.s ()i Y. S p 2 1 S
. (S h 1
0 ou k¢ l().ll[( S e al |(|1 € O [‘na(:i] nes

t attal(l p ()dllCt:lOl f qlllled a lLUntb \1]tk in L}l ava able < HCIEIES Of
1 e V 11
L (¢} TE cap
6] 3

i - « o < g L 1 }Q pI.' 1 152
minilrs 1 t ta (()qt O u ated as a ne p ogrammii [¢]
F rm 1 e 11 8 T g m de th Ob e S
i [&] 1 . 2 Py

j 5 ; v (Deterministic Case)
Minjmize hX 2 cij"ij
i=1  3=1
n
j T 2 P Ty0e.,)
(1 Subject to .L inij < e ( s s
i=1
™
Sy = h (i =1, ,n)
A i
i=1
~ S0 (1= 1,0,y jo= 1,. , 1)



-2 -

A two-stage linear programming under uncertainty, which is also called
as stochastic programning with recourse [12, 13, 14, 15, 22] is of the

following form:

Minimize Clxl 4 Eb (C2)€2)

Subject to

1171 1

Agp¥p T Ay%y = by
) x1; Xy > 0

. . L tant
In the problem given above, All’ A21 and A22 are matrices with constan

elements of dimensions Onl X nl), an X nl) and (m2 X no) respectively.

~

Further, bl’ cq and c, are vectors with constant elements with fy, 0 and n,

elements, whereas b, is a m,~-vector of random variables. The decision

2 2
varizables % and %y arc vectors of oy and T, elements, The decision rule
is given below,
Here, E refers to the expectation of the random vecter b of m

2’ 2

elements with a jeint density function £(b,). We will represcnt the marginal

densities of the random variables b”k( k = 1,2,...,m2 ok

Chouse x,, observe b2 aud then cheose X, such that all constraints are

) by (b, ).

4

cchecetic pregramning with recourse

ot

satisfied thus rmaking either the namo, s
or the name two-stage linear programning under uncertainty, appropriate,
Hereofter, we will vse the former name and use the abbreviation SPUR,

The fellewineg ascumpticns proposed by Deéntzig and Madausky ave used herve:

(A1) The distribution of b, is knowm,

2

(A7) tho Jdistribution of b2 is independent of the choice of X .
(A2) Tor every bz end zny 7 > 0 satiefying the consiraint
A _u, = b (2) an », > 0 exists smisiiying the coustraint
1171 1" 2 - ’
3 t’r]'\h‘:x‘A !\’ N, oo :'\’ c
(3) » ¥ty 7 bym A
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Charnes, Cooper end jhouwpson [10] have shown that the problem given
earlier is cquivalent to a constrainted generalized median problem

when A22 can be partitioned to the iollowing form: (in their notations)

[Azz] = [D’ -F]

o .

where D, and ¥ are non-singular matrices satisfying the following:
(a) There existg an h > 0 such that

7 hp

"

(F_lD)' and

(b) D ip

[/
>

This formulation is important since it encompasses the 'simple recourse"
case where A22 = (1,-1)., The coustraincd mediar formulation given

in [10] is as follows:

i = ” I -
Min =z g% + Cat(lb3 A3x1!) + ey

Subject to

-1
/ :
(1 2)c22F A21

4

b3 = D'lbz

By = D‘1A21 and

¢ - E(bz)(1/2)(c21D_1- C22F_1)
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It is to be noticed that the absolﬁte value ope}aLor appears in Ehe
functional which may lead to some computational difficulties,
Gartska [ 17 has developed a mathematically tractable equivalent to the
problem given below as (2 )-(4 ), and derived the necessary and

sufficient conditions utilizing his fermulation,

m, bBim n1
1 = 2 - 4
2) Min z cq%) + iél 43 f (b3i zlaijxj) f(bBi) db3i + o
™
Z a,.x,
jop 133
3 Subject to Allxl = b1
) and X, 2 0; where
b3im = the Qedlan of the random variable b31 with density function f(bBi)
¢t =c_ + £’ Elb,. - |
0 0 . 3i 3im
i=1
Xj = j-th elemant cf X and
aij = components of A21 (following the notations of Dantzig [12]).
In the '"Simple reccurse" case (A,, = (I,-I) as given in [ 12], the

22

objective function (14) reduces to the following form:

h) Pt

1
(5) Min z = ¥y + 2 % €Lk f (b2k - -§1 aijj) f(bZk) db2k'
k=1 ny i=1
Z &y X
jzlA J J
where bzhw = the median of the randan variable bZP' The cbjective function (17)

is convex. (Sec Cartska [17].

Following the sane approach given by Garstka in [17] and from equations
(2)-(4) earlier for any lincar progrew, the Stechastic Generalized

P2

Troneportation Problew will be az given holow:
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(6) Min E[ T Toeoxi o+ 172 T 4. {]Z x ,-b.l+ (T x .-b))
iel' jegr MM jerr 3 pert M ierr

+1/2 T o, {]bj- T xijl + (b,- I xij) 13

jear 3 iel" iel’
(7) Such that ¥ e,.x.. < a, ieI'

jer ij7ij = i
(8) x,. >0 for iel', jeJ!

1]

where the index sets are I' = {1,2,...,m} and J' = {1,2,...,n}.

Here,
xij = the amount of product type j to be produced in machine
type i with 1eI' and je J'.
a, = availability of time units in the i~-th machine type.
bj = random demand of product type j.with density function f(bj).
pj and dj = the linecr penalty costs per unit of under and over preduction
of j~th product typ=.
In (6 ), o = represents actual cost producing units of

2. c, . X.,.,
iel'  jegr 3 H

product type j from machine tvpe i. 7Tf we actually produce 2 x,, unlts of
iel!

s

product type i it {s quite likely that the total demand bj exceeds or be less
thau the actucel realjzation, since b, is randem. If p, denotes the
] ]
penalty cost per unit corrcsponding to o demand in evcess of the amount
sroduced ; thoe penalty cosis can be oxpressed as
3 I b ;

(%) (1/2) p. (v~ ¥ x|+ ®~ T %]
J J if’f‘ ]J J ic].'

following Charues) Cooper and Thoempsou [10]. On the contravy, if
A
L

proeduction actunlly excecds the realized dewand, i.c. = x,. >b._,

iext 4



then (9) is zero. Similarly the penalty cost associated with excess

production will be

(10) 1/2) d, (] £ x,.-bj + (Z - b}
( / ) J klicI'XlJ Jl (iﬁ:I'Xij bJ)}

Thus the objective function (6) is minimized over the expected value of
total production costs and the penalty costs due to under and excess
'production for all product types. The constraints (7), (8) takes care
of the machine hour availabilities and non-negativity of amounts to be
produced respectively.

Charnes, Cooper, and Theapson [10] studied the theoretical insights
of the Stochastic Transportation problem while Garstka has discussed the
solution procedures and has given a computer code [17]. Szwarc [211,
Wagner [22], Williams [23], Midler [ 187 have also discussed different
approaches to the Stochastic Transportation Problem, while nothing to my
knowledge has come in print on the Stochastic Generalized Transportation
problem except [16] which appears to be computationally inefficient. This
paper is a beginning to fill up this gap.

If the Stochastic Generalized Transportatieon preblem (SGIP) is
written in the equivalent form 3)-(5) with constraints (3), (&)

then (6)-{8) will becoac

(11) HNin = = 21 -} “,
(12) Suhjzct to b)) e..x,. < a, for ie7?
feyr MR T
(13) :ij > 05 del', jeJ’
(11-1) «wlhere 2y = ; by (e, .= (p.72) -+ (d¢.72)) L
ieit  jed! =

(the lincer pave of 2)



b,
jm

(11-ii) and 2z, = ¥ (p.+d,) T (b, - T x.,) f(b,) db,.
2 jed! it fept 1 k| b

z xf.

iel’ ]

(the convex part of z)
Let us deunote S x.,=Db, for convenience,
¢ 13 JO ' -

with f(bj) = the merginal density function of demand for the j-th

product type: jeJ' with bjm the median of bj'

Applying the Kuhn-Tucker conditions for optimality, the optimal solution

o
S

X (and lw) satisfy the following:

(13 l: < 0 for iel'
b,
jm
-
(157 c..- {p./2) + (8.72) - (p.+4d.) | f(b,) db, - e..A. > 0 for all i,j
1] \LJ ) ; ) PJ J) J ( J) ; ijh 2 s ]
jo
(whera b,o = ¥  x ., in (15);
ielt 1J
i6y T Y x.. (left hand sice of (33)) = 0O
T |
jeJ iel
(17) T ¢, .%o < a, iegl'
gop MRS
(18) ¥ (ag- E e..%, .} =
iel! jeJ! 1yl

The conditions given by (15)~(18) yicid a basis for cobtainirg come

tlic Stochiosiie Generalized Transportation

o
—
™
4]
[
]
-
o0
-
e}

interesting qualitativ

proviom,  One iotuitive and obvicus result is that no preduct j will be
-

prafuced {vom machive & 1L the por unit cost of preduction is strictly

greafer than the per urit cost ef underproduction of product j.



PROPOSITION 1

WVhatsoever may be the value of dj’ > pj for any i,j=> x., =0,

c..
ij 1]

(If the lowest cost of delivery is higher than the per unit cost of under-

production, don't deliver any.)

Proof: Let x, 6,6 > 0. Then

1]
b.
_]m
. . 2 + (a7 - 4+ d. f(b.) db, - x,e.. =0
e 5 (y/2) + (4,72) - (b, J>f (b)) by - A,
bjo
(where b, = ¥ x_,).
iert 3
Since c.. > p.
1] pJ
b,
. Jjm
- /12y + (4.72) - 4+ d. f(b.) db, - x.,e.. <O
Pym (p/2) + (4572 - (ptd) [ £(by) dby - ey
bjO

which implies

jm

(p.+d.)/2 - 4 d) f(b.) db, < X.e,.
pJ J (pJ J ( J) J 11]

o e T

jGC

Since the integral is less than or equal to half, the above inequality

implies A,c. . is non-negative nuaber, Since the per unit production time
iij

Cij > 0, we lead to a coatradiclion, since ), < 0, and thus the proposition.
Z i =

PROTCSITION 17

For ary specific j aund for every iz1', if c¢., > (p.- ¢.)/2
x ; ; 52 (5 gy

tohen ¥ ¥, <k, du the eptimel sclution. (Note if p, < ¢, the
jel! iy T Ju . ] .

inequality tvivielly hoide
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Proof: From equation (15), we have

b
/ I
c,.~p./2+4d. /2~ _ . .
Yy RENCEED J £(;) dby - Aje . >0 for fel', je'.
bjO
If x., =0 for every iel' the z X = 0<b f
i . ij = Pipe I xij > 0, then (15)

is exactly equal to zero. Since cij > (p.~ d.)’2 we have
- J ]

b,
jm

(p,-d.)/2 - (p.-d.)/2 - (p+d -

i 7% (gt dp [ £ dbi- ne <0
b

jm
or - (p.+ d, f(b.) db. -
Pj J) J ( J) 57 AjeyS 0
j0
b.
_]m

sothat X.e.. > -~(p.4+ d.) f(b.) db,
LSRG J (b)) db,
bjo

Since p,, d., and €. > (0, this inrquality will be consistent with

jm
li < 0 to yield a soluticn, if and conly if f f(bj) dbj is non-
ij

negative, which forces b, to be not less than b,. (= ¥ x..) which
G j0 feT! i

inplies I "x.. <b, . (¥ote that the statemant given by Garstka [17)

oun page 1% relative te the gencralized trausportation prohlem is thus

erronzous),  Thus thie preopesition chows that we will alwzys preduce

less than the median annunt of demand of & product tvpe if the costs per

unit of oreoduction from every machiune arve not lens than ene helf the

difierence boetween the per unit cests of under to over production of a

particular product,
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The conditions given in proposition II are not very restrictive,
For instance, if the penalty costs are equal, say pj = dj for all j,

then c¢,. > 0 is a sufficient condition for insuring that T x..<b
1= ier' 7 im

in the optimal solution. However, we generally assume, that the
shortage costs exceed the inventory or over production costs and
proposition 1T is not intuitive. In the next section a computational

algorithm for solving Stochastic Generalized Transportation problems

satisfying conditions of proposition II is given. Later we show a procedure
which always preserves these conditions. (Refer to propositions 1 and 2 of

Balachandran and Thompson [2]).

PROPOSITICN TIT:

= a, for iel’.

If ¢c,., +d, <0 for all i and j then ¥ ¢, . x,,.
1] J ij 1] i

jeJ'

From equation (33) of the Kuhn-Tucker conditions

2n
c..~- 1/2(p.~d.) - (p.+ d | f(b.) db, >
i3 (py=dy) - (py j) J (550 dby 2 Ay
bsg

Since the marzimum for the integral given in the above inequality is 1/2,

and since cij > 0, the largest possible bound for L. is attained when
Z i

the integral is (-1/2) i.e. when bjm Thus
f(b,) do, = -1/2,
bjO J J
c.. = 1/2(p, - d,) +1/2(p. +d.) = r.e,.; i.c. .+ > h.e., ..
i by Ay T2, T A 19550 F0r O35 T Ay E 80y
1
= . < RO -— (. .
)1 < [c. A dil

el 6)ij +J -

=> ¥ e..x,. = a,, since A < O0aund e ., >0 fron (19,
ij =

It iz casy to see that from this propositvicn, if fer any particular

machine type i#p, ¢ ,+d. < 0 fer all jed', thea ¥ o4

: S “piTea P’
jed :
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It is known that in a deterministic generalized transportation
problem in which c¢,, < 0 for all possible values of i and j, it
{3 =
can be shown that the maxinum amount possible will be produced

= a., for iel'). Powaver in the stochastic case, these

(z e
jeJd!

1371
non-positivity conditions are not sufficient since we need a further
condition that these cij mist dominate the per unit overproduction
cost,

It was observed by Charnes, Cooper and Thompson {10}, that the
medien formulation implies that iterative procedures of computations
should start with the median values initially, It was also suggested
by them that the optimal solutions are frequently attained with the

median values, If so, the Kuhn-Tucker conditions given by (14)-(18)

imply that, for

b..= ¥ x .=0b, for all jeJ' there must exist L < 0,
i0 fepr 13 jm . i-—
ieI’ such that
19 c. .~ e,.X* - - dY2>C
(1% ij 1371 (pJ i’ T =
(20, ¥ ¥ x.. (left haund side of (37)) = O
jel' jeJr I

(2 T e..x.. <a, iel'

]f‘J' lJ l] ]
(v2y £ N (a,- ¥ e ..x..) =0
iart 1 qegr MM

The elgovithm te be develeped can be applied for both diccrete and

continvons distributicons associzied with vandom demands (b's).  Siuce

]
ve kvow thizt only ascunptions Tinoa GTP arve those given in AL to A3

of [ 27 «u? 2lvo the coluticns ace nal necossarily ‘ntegers, the coutin-

ihutione are uet wholly unrdalfetice, Further i b.'s ave
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required to be only integers, in continuous distributions we can approx-
imate and associate with any given integer for bj’ the probability
associated within the range bj-1/2 to bj+1/2, similar to the approximation
of a 'binomial' probability to a 'normal' probébility. Thus,

b;+1/2
23 babilit b‘::b-":- b%,‘:inte er) = f(b.) db. = *
(23) probability ( 5 51P; ger) f ( J) j P;

bf-l/z
h

Let us consider how this affects the possibility of the median value

being optimal., Equation (23) becomes

b, +1/2 b, b, +1/2
jm jm jm ,
=1 fmbyav. = [ f£b.) db, + f(b.) db. = p. . + p. say).
PJm J (.J) j J ( J) j I ( J) 3 mel meZ (say)
b, -1/2 b, -1/2 b,
jm jm jm

Thus the optimality conditions would be satisiied if there exists a A, < 0
. i 1~

and P, such ti /2 - . 12 4
n PJ suchi that (1 pjml) < PJ <(/2 A pij)

satisfying (21) and (22) aund

24) ¢ <% e .- 1/2(p.-d.) - (p.td) P, > 0O
(25) ¢ 1% (pymdy) = (gt @ Py 2

(25) ¥ by X. ., (left hand side of (24)) =0
iel! jeJ

Notice that the conditions given by (24), (25) are not ncarly as restrictive

as the correspoending conditions (192, (20) of the old set. Thu§ in this

se (16) and 20 will be satisficd vp to cortain tolerance limits as

-’

. et i one G ¢
iven by (23, Hovever in discrele distributions such approximations ¢ DO

£a Lhd
i cpr oS oe possible consacutive volucs of
cise { a < g Tq, represent three poosible covs
avisv. 1 ‘r-1 'y ry1

. . . -~ - P . . F e . ‘. . - r tl‘,‘;
a discyete c¢isivibution, tien g wvill be the ouvtimal gsolution 31 ¢

" R C e s e T  following:
countions ( 24) and (22) can be catisiied with a P, satisfying the foll g

J

r-1 &
T Prob. (b)Y P, <% yrolh (b o).
v Prob. (b)) ) i

1 o N}
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b9
~

This essentially views the probability associated with the point qj as being

uniformly dispersed over the interval (qj-l’qj+1)'

2. SOLUTION PROCEDURE FOR THE STOCHASTIC GENERALIZED TRANSPORTATION PROBLEM.

We will provide in this section, an algorithm for the Stochastic Generalized
Transportation problem whose cost coefficients satisfy cij 2 (pj-dj)/Z for all
i and j and assumes the existence of a feasible solution for the problem (26) -
{(29) below with each bj replaced by bjm' This algorithm will be useful when
the per unit production costs are comparatively larger than the penalty costs,
or whén the penalty costs under production are only slightly larger than the
over production penalty costs, On the contrary, if cij < (pj-dj)/Z the problem
can be converted, utilizing propositions 1 and 2 of (2] which ensures the

assumption c;. 2 (pj—dj)/Z. Thus consider the following deterministic generalized

transportation problem.

(265 Minimize 2' = T T {c.. - (.-d.)/2) x. .
fe1 jegr 1 § - ij

(27) S.T. £ e, .x.. < a, iel!

SRTERE B I I
(23) Y ox. . =b_, jeJ’

ier' M )
(29) and X, >0 icl', jeJ'.

J

The RKuhin-Tucker cenditicns for cptimality of a solution to the

At K
I

problem (20) - (29), vequire the existence of a wu., iel' and v_, jeJ'
3 J

of min variables satisfyieg the following

(30) c,, - (pj-dj)/? - Ciju; - v; > 0 for all i, i
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% * ) )
(32) uy < 0 for iel'; vj are arbitrary for jeJ'
33 e. . x.. < a. for iel'
(3 jzg' ijiij - i
*
(34) T ou (a; - eijxij) =0
ieI' 1 Jv\]'
¥ x..,=b,, ia g0
(39 S ju for jeJ
*
(36 T v, (T x4 - bj*) =0
jSJ' J iell J

.

I *‘,:
(Note we have changed the A of (14) - (18) to u , v here.)

Similarity of the above conditions (30G) - (36) to those of the original
generalized stochastic proegram (14) - (18) can be observed now. A solution

to (30 - (36 ) will satisfy conditions

b. :
* er )
37 v, = (p, + d, £(b,)db,
(37) ; (pJ J) | (J ;
b,
jo

by comparing equations (15 and (30). Since by proposition II, in the present

case c¢,., > (p.-d.)/2 = b, = v x, ,<b, , vf which were arbitrary in (32),
RS S T jo LT i< imt

actually becomes non-negotive., (This fact was alsc shown in [ 2], where the

dual variables v,'s associated with columns are non-negative while those
]

u,'s associated with yows are non-positive). Thus, in this case the problem
i

reduces to finding a b, such that
*l..'
b,
. jm
W r
(38) v, = (p, +d.) f(b )db
J v ‘
b..
J “
10 such a b, exists then the optinal solation to ( 6y - (&) will be
1
obtained by =olving @6)Y - (29) with the b., wuscd as rinm cenditions in
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THEOREM 1: An optimal solution to the stochastic generalized transportation
problem (11) - (13), whose cost cocfficients satisfy the relation cij > (pj-dj)/Z

can be obtained by the algorithm Al, given below:

ALGORITHM Al. For finding the optimal solution to (1ll) - (13) given

> _ C
Cij > (pj dj)/2 for iel', jeJ'.

(0) INITIALIZATION: Let k = 1, Intrnduce a slack column n+l and a

1 1 i N 2 = = = = 1 '
fictitious row m+l. Let Ci,n+1 P+l dn+1 0 and ei,n+1 1 for 1ieI’.
_ ) o R _ < rr.
Let Cm+1,j M (a large positive quantity), em+1’j 1 for jeJ'; let
= = 1 - '
Cm+1,n+1 0 aund em+1,n+1 1. Decfine the sets I I'U{(m+1)} and

J =J'U{(n+1)}. Find bjm the median of the random variable bj for jeJ'

and let bj* = bjn for jeJ'. Find the optimal solution and cost to the
X \

deterministic generalized transportation problem (26) - (29) and find the
dual variables us for iel' and Vj for jeJ'. (Note that the duals are

now solved with the rclation eiju. + v, =c¢c', =c¢c,, - (Pj-dj)/Z for (i,j)

i 3 ij ij
. . 1. . . o . _ ] . [
in the optimal basis., Le¢i the basis set be B and let ugoT oy for 1iel
1 . o . .

and vj = vj for jelJ . Let k, the iteraticah number, be 1. Let

1 .
b., =b., for jeJ'.

Jl\ Jn

k+ . .
(1) ITERATION STEPS:  Find bj*l from the following reltionship

(Algorithm A2 provides this):

b.
, . jm
(39) v, o= .ok dl) | {(b.)cb,.
j (IJ j ~'h1v+1 ]
J' st
. oo =l koo . .
(2) 1 v = hi¢ for ecach  jeJ', then an optimal solution for (11)-(13)
I e
. s . .. . Jktl ok
is found and 5T0P. Dlsco, d.e. if there 1is cven one  jo2' where D?¢1 i bjﬁ

o te (3.
. o T , k41 k+1 )
(3)  AREA RTM GPERATIR APDLICATION: Define & 0 =Dbh.. - b.. for jcJ'.
i i* 3

Let ., == 0 for ic¢T, Co to aleovithn A7, AS of | 7] vhere an avea operator
i

A '

s Ty ! BEPRREN gy . P ~ae . N
in with these  w's and B's are applicd

co that the rvevised eptimal sclution
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and the maximum extent o are computed. If pu° < 1, use algorithm A8 [3]

and compute the optimal solution. If uA.Z 1 use algorithm Al5, [ 5] where the

global rim operators are applied and obtain the optimal solution. 1In either

case find the new dual variables u§+1 and v§+1. Let k = k+1. Go to (1).

(Note that we are not explicitly using ui's.)
It is possible that cycling can occur -- i,e., the same set of vj may be

obtained on two diftercnt non-consecutive occasions while we iterate. To avoid
k f S S
bk = (b,, + bj*)/z where bj* corresponds to

this, 1if it does happen, let I e

, . - f
vj's which were generated at a second time, while bj_ corresponds to the

next smallest value of vj (in comparison to the current vj) which has been

L LN
~ -~

obtained so far. Then use these bj = bk and go to step (1).

PROOF: The proof of this theorem is essentially based on those given
by Charnes, Cooper and Thompson [10] and by Garstka [17] for the stochastic

transportation problem. Charnés, Cooper [9 ] have proved that the optimal

solution Z = Z1 + Z; (11) 1is a convex functicon of b.,. Moreover it is

finitely piecewise lincar. Following equarion (Il -ii), we will show that 22

is a convex function of b, and that the v, and b., for jeJ' are well de-
] ] 3=

fined in a certain sense. These results coupled with the theorem of Charnes

and Cooper [ 2] will show the convergence of algorithm A1 .

el

(i) Zv(bj) is a convex function of b.:

. k+1 .
Since b% > 0 for jeJ' as shown in [17] and bj* arc defined from (57), we
ko ‘ ry j end k that the optimun solution to (44)-(47)
sce that b < b. for every j aud k so that the optimum solution i« J
i im ’
. k41
always satisfy T x,, = b.. .
. o+ 1] 17
1el
b,
Logm
1f 2.¢b..) = (o, +~ ¢ | (b, -~ b, )I(b,)db]
(2( ._".'7) kl_] J '_yh i J” ]
J“
b,
dz, (. .) jm
2 1Y ] . P . .
thonw —— o= = - (D, 4 d) T{b.)dh,
ao, . 1 R Ub 1 1

g7
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a’z,(b )
and ——~—5—l—— = - (py + dj)(-l)f(bj) > 0,

db’,
Jl\

(ii) The bj*'s and vj's are well defined:

Existence of vj and the non-negativity of v% are given in [1 ]. It was
]

shown by Proposition I, that xij =0 1if cij >-pj. In implementing Step (0),

only the case Cij < P is considered. Thus, following Charnes and Cooper [9 ]

k . - (.- -
vl < max {Cij - (py - dy)/2) 5 Ty - (pymd )/2)= (pytd,)/2

i
k
V.
Hence 0 < ?EJ:E—S < 1/2 1is seen, This shows that one can always find a
J 3
vk bjm
k+1 j : . -
b., such that ——ig— = f f(b,)db, . Conversely, any bk¢1 will
Py ! J 37
j*

always yiecld duals vj, jeJ', since the ¢xistence of a solution to the
deterninistic problem (44)-(47) is guavanteed by the wm+l th row and n+l th

column coastruction.

(iii) Convergence:

b.
k e
We will nowv show that Vj converges to (pj + dj) f

b

f (b, )db.
kel F
Tt Iz
where bj* corresponds to the optimal solution of (11)-(13).
The optimal solution to the initial deterministic problem to Step (0)
. 1 . 1 . 1. 2 1
with b, = b. leads to v.. Then due to (39) -v, yiclds b, < b, =Db, |
3= Jm J 3 ~ 3= jm

since Zy is convex with respect to bj (part a),
. 2 1 . . .
It is scen that b, corresponds to vj < Vv,, since z, is convex with respect
3= ]

to b..
3
s ) . k k . ,
Thus alternating froa v, to b,, and vice-versa, the process continucs
3 s

. , . k i \ . . k+1 k .
till theve is a b, which corresponds to identical v, and Vj' 1hus the
3¢ J .

optimal solution corresponds te the praduction schedule determined by
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solving the determined by solving the deterministic problem with bj* = bj*

now determined for jcJ’.

Several comments are in order at this juncture. First at Step O,ISince we
introduce an additional row and column an optimal solution always exist for the
expanded problem as shown in [ 2]. However if there is at least a basic cell
say xm+1,j > 0, jeJ' in the m+l th row (including the absorbing cell [2 ]) it
shows that there is no feasible solution to the original preoblem. In other
words such products j cannot be produced within the capacities of machine
hours now available, Secondly the dimensions of the problem (the number of
constraints) are not increascd when Qe solve the deterministic equivalent.

This was the major problem which Ferguson and Dantzig encountered in their
aircraft routing problem [16]. Thirdly, this procedure can take care of both
discrete and continuous distributions which was not the case in-Ferguson and
Dantzig [16] or in Charnes, Cooper and Thompson [10]. Fourthly, the computa-
tion of Generalized Moore-Penrose inverscs are avoiced. Fifth and most im-
portantly, unlike Garstka, we don't resolve the problem at each iteration. The
use of operator thcory of parametric programming [3 ,5 ] especially the area
rim operaters if two are morc Sk # 0 or the ccll rim operator if only one

55 # 0 can be made vhich will provide the new optimal solution, change of
costs, duals and the maximum cxfteuts at cach basis chenge [3]. Sixthly,
since we need only the marginal densities of b.'s, jeJ', the question of

J
dependence o1 independence of the random variables b,'s do not arise. [10,16].
1

Seventhly the opparent assuwrpticn of Thecvem 1 is that ¢, > (p, - d.,)/2. This
7 ] J
assunption In general holds in many preoblens, However if there is a Chi where
A : 1k

this is nob tiyue it i possible frem Propositions 1 and 2 of our cavlier

paper [ 21, ve can chonce the costs ij’ since we can add a constant 6K to
the entive k-th column costs . c.. (11') or add censtants &ke . to the entirce
1) vy
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h-th row costs chj (jeJ') so that Lk is always greater than (pk - dk)/2.
The optimal solutions do not change though we need to adjust for the changes
made from the optimal cost. Finally the only computation, besides the

. . . 6] . . . k+1
Generalized Transportation Algorithm [ I is finding a new bj* from the

k , .

known values of v, bjm and the density function. This is done in the
next algorithm which gives a procedure for finding bj-.': if the marginal
density function 1is known

ALGORITHM 2. The algorithm A2, below is based on the following observa-

tions. Ve need to find a blfjl given by the following 'Newsboy' type relation:

b,
jm
k
(39 vi = (p, +d) | E(b)db,
J ] J k+1 ]
b..
Jl\
Here we know vl,i, p., d., b, the median of b, and £(b.) the density of b..
] J jm J J bjm ]
k
\ J €55 = - 7 = .+ d. f(b,)db,
Now, from (57) we can express v I, -1, where T, (pJ J) I_w ( J) 5
bt
d = + d, £(b )db.. DBut I, = (p. + d.,)/2 so that
and 1, (pj (J) ,_r-co ( J) 3 1 j j
(40 -1, = (v]r.(- (p. + d.)/2).
2 j 3 3
Let us say F(bl.;f'l) is the cum-probability, so that
= J::
b?fl
Py < f(b,)db,, then
3% e i3
1
4] o= (p, t a.) F(,. ).
(41) 1y = oy 1 (J) I(JJ,A_ )
“Thus frem (40) and (1), it follows that
bt 1 [¢ : R - K 1 Y11 = E say)
? e (a2 - vl o= (a2 - v/ (p )] Xy y
I(bj* ) (p1+ﬂi) RN ] 30
which is of the "Newshoy'" type relationship.,  Thus, let
bk","l = Fu,l(z“\). Algovitim AZ gives the value that any random variable takes
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given the cumulative proebability up to that value is known. For example

bjn = F;l(l/Z). Since the cumtlative probability is R we get F “(R) given
the parameters and the form of the density function. Balachandran and Gephart
(Chapter V "Process Generators Library'") [ 1]have provided the rationale and the

computer codes for calculating such inverse functions for statistical distri-

butions which are often used. The Fortran IV listings are given in [1].

Algorithm A2, For finding bj* given vj, pj, d. and the density function

(form and parameters) f(bj) for any jeJ'.
(1) ¢ : = { K
ompute R = {1/2 - [vj/(pj + dj)}}. If R< 0, go to (2). Else go
to the proper subroutine given in [1] with the values of the known parameters
and get the "DEVIATE". Let bk-*.1 = DLEVIATE. STOP.

(RN
.y

-

(2) This is impossible., Check the assumptions, and make Cij > (pj-dj)/Z
using propositions 1 and/or 2 of [2]. Go to (1). |

The algorithm Al developed for the stochastic generalized transportation
problem can easily be applied to the stochastic transportation model as given

by Garstka [17]. he only difference will be the opcrator theory of pnrametric

-

programming (Area Rim Operators) as provided by Srinivasan and Thompson {19 ,20]
should be used at Step (3) of Algorithm Al. Thus, in the algorithm of
Carstka [17] for the storhastic transportation problem, the difference,

Bj = bj¢ - bj” definc the areca rim operators with Gi = 0 for all i, =o

that the area rim opevator of Srinivesan and Thompson provides the now
R . A ) A , . . .
duals if > 1, and if{ p° < 1 the iterative procedure stops with an

optimum solution [20].
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INITTALIZATION
SET UP THE G.T.P. Let k =1
= # of Stochastic variables

Set bk =b, ; v%-l = 0-for j = J’

Solve the Deterministic G.T.P. with

k
. =c¢ -d,)/2 &b,, =b,,
1] ij - (Pydy) j* o %
Determine u? for lEI’ & v? for jeJ’

b‘J‘Jrl - (b +b /2 Ino
where 1 1s the index o)
corrg. to the next . Find b, " frem Alg., A2
smallest value to vj b8 3”
—_—
jm
k
V= (p.d) j £(b.)db |
i ] K+ j
- i*

- T 1
k41 - bL+1 - b for

i e Ty

APPLY ARVA R1IM COPERAVORS with

n

and vy = 0 for izI’., Tind the new sclution and the

k
cxtent u, .
A

jeJ’

azriiaumm

———

e e e s ———— o e O e e s

//)“F\\\\\\ Easis Prescrving O;
Pl ~ .
~77TS w0 = 1 = Woky pet the solution.
\\—.\\A/ 'Opt.imal found since
%,YES Ldo vot chango.

e

: (‘I crator, Find vew

T s e
ey, anc

duals
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