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Introduction

In his seminal article on testing non-nested hypotheses, D. R. Cox (1961)
proposes three approaches to the problem of choice between alternative
families of data densities: (1) the Bayesian approach which Cox regards as
self-evident, (2) a generalized likelihood ratio testing approach, and (3) an
exponential weighting method of nesting alternative distributions. Over the
last decade, many workers in econometrics have been quick to take up Cox's
second and third suggestions and apply these methods to a wide variety of

testing problems (see, for example, the special issue of the Annals of Applied

Econometrics [1983] edited by Halbert White on non-nested models). Few

econometricians, however, have utilized Cox's first suggestion, the Bayesian
approach.

In recent years, econometricians have proposed a number of flexible
functional forms for use in the analysis of subsitution in production. The
Translog form, which has enjoyed the most frequent application, is a local
quadratic approximation to the underlying cost or production function. A
recent arrival, the Fourier Flexible Form proposed by Gallant (1982), employs
a uniform global approximation method. As shown in Gallant (1982) and
reviewed below, there are strong theoretical reasons for favoring the FFF
over the Translog. However, the increased flexibility of the FFF is achieved
through a significant increase in the number of parameters and it is not clear
in the small samples encountered in most production work that the FFF will
dominate. In this paper, we restrict discussion to a comparison of the
Translog and FFF. Other flexible functional forms such as the Laurent form
proposed by Barnett (1983) could easily be compared to the Translog and FFF
using the procedures developed here. Bayesian hypothesis-testing methods are

developed for the choice between alternative functional forms. These Bayesian



procedures do not appeal to large sample results and contain an explicit
trade-off between the number of parameters and the goodness of fit.

We will focus on the specification of cost functions and systems of cost
share equations. Once a particular functional form has been postulated for
the cost function, the associated system of cost share equations can be
derived by applying Shephard's lLemma (see, for example, Varian [1978] for
details). In the case of the Translog and Fourier flexible forms, the
associated system of cost shares is linear in the parameters. Choice between
the Translog and Fourier flexible forms is thus reduced to the choice between

. . . 1
two non-nested multivariate regressions.

The Translog Cost Share Systen

A number of authors have used a Translog cost function to analyze the
properties of the aggregate U.S. production technology. In most studies (sece
Rossi [1984] for discussion and references), a three input, non-homothetic
cost function is postulated for U. S. aggregate manufacturing data. We use
U, S. aggregate manufacturing data for the period 1947-1971 first collected
and used by Berndt and Wood (1975). Since we are interested only in the
flexibility of alternative functional forms, homogeneity will not be imposed

on the cost function and the associated system of cost shares.
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where PL = price of labor, PK = price of capital, Py = price of materials,
and y = output. Differentiating (1) and applying Shephard's lemma, a system

of Translog cost share equations is obtained.
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where 5; = cost share of labor = PLL/C, SK = cost share of capital
PKK/C, Sy = cost share of materials = pM/C.

In order to complete the stochastic specification of the system of cost

shares, a multivariate normal disturbance is added to (2a-c). Since cost
shares are bounded between zero and one, the multivariate normal distribution
can only serve as an approximation to the true distribution of cost shares.
In Rossi (1984), an alternative Logistic-normal stochastic specification for
share equation systems is developed. 1In this study, we employ the additive
normal specification. By definition, Sy + SK + SM = 1, This implies that
the trivariate normal distribution of (SL,SK,SM) is singular. For estimation
purposes, one of the equations is dropped--Sy is arbitrarily chosen--to obtain
a two—equation system.

Without imposing symmetry conditions,2 (2a) and (2b) can be rewritten as

a system of regression equations.
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Here we have used the standard notation for multivariate regression in order
to facilitate reference to the statistical literature. y1 and y2 are vectors

of observations on the labor and capital shares, respectively. The X matrix

contains observations on log factor prices. Writing (3a,b) in matrix form,

(4) Y=XB+1U

U=1ley sepls B =By 5Byl Y= [y ¢ gyl
The likelihood function for the multivariate regression model given in (4) can

be written as
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(5) 2(3,2_1|Y,x) = (2n) exp{-1/2 tr(Y - XB)'(Y - XB)E

}

or, in stacked form

-1,T/2
=]

(6) 2@.,2|y,2) = (2n)_T exp{-1/2(y - zg)'(z—l(& I)(y - 78)}

with y = vec(Y), 8 = vec(B), Z = [12<8 X].

Fourier Flexible Form Share Equation System

The Fourier Flexible form cost function was first introduced by Gallant

(1982). Gallant proves that the Fourier Flexible form approximation method



can uniformly approximate the true cost function in the sense of Sobolov

norm. By increasing the length of the Fourier series expansions and the
number of directions in which the expansions are taken, the FFF can be made as
close as possible to the true cost function as measured by Sobolov norm. The
Sobolov norm includes measures of how close the derivatives are approximated
as well as the function itself. This is especially important for the cost
function since the factor demands are derivatives of the cost function. The
local series expansion methods which are used to derive the Translog and other
quasi-quadratic forms do not have these uniform approximation properties.
However, the FFF cost function is parameterized by a large number of
parameters even for low dimensional systems. The sine-cosine representation

of the FFF° is
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%, 1s a scaled vector consisting of both the log input price vector and output

at time t. X, is scaled so that each element lies between 0 ani 2r,
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X, = [(gnBt -8) /A, (ny - 50)/x] . The matrix of the quadratic form, C,

can be written



The FFF can be viewed as a Translog with an appended set of univariate Fourier
expansions along the directions, k,. The matrix of the quadratic form is
parameterized by A parameters instead of the usual M(M+1)/2 parameters.

The {ka; a= 1,2,...,A} are the set of multi-indices which determine the
directions along which the Fourier expansions are taken. Table 1 presents the
set of multi-indices used in this paper. Homogeneity restrictions are not

imposed on the FFF cost function by ruling out multi-indices with
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Differentiation of g in (7) yields the system of FFF cost share
equations
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= 24 tuple (M is the number of inputs in the system).
Appending an additive multivariate normal error term to (8), a system of

regression equations is obtained. Again, the standard statistical notation is

employed where Zt is the vector of cost shares for each factor at time t

and X, 1is the matrix of transformed factor prices at time t.



TABLE 1

MULTI-INDICES FOR THE FOURIER FLEXIBLE

COST FUNCTION

L 1 0 0 0 1 1 0
K 0 1 0 0 -1 0 1
M 0 0 1 0 0 -1 -1
y 0 0 0 1 0 0 0
a= 1 2 3 4 5 6 7




(9) y = th + Et Et ~ MVN(O0,Z).

Rearranging (9) and imposing the adding up constraint, a system of seemingly
unrelated regression equations is obtained. In our three input case, the
labor and capital cost share equations form a two equation seemingly unrelated

regression model.
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Note that the coefficient vector is constrained to be the same in both share

equations., It is more convenient to write the system (l10a,b) in the stacked

form
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The likelihood function for (1l1) is

T/2
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Posterior Odds Ratios

Two hypotheses are entertained in this section:
Hl: The cost share system is Translog;

Hy: The cost share system is FFF.



In the Bayesian approach to hypothesis evaluation, the posterior
probabilities of the hypotheses are compared. The posterior probabilities
represent the weight of prior belief and sample evidence for a particular
hypothesis. The posterior probabilities of hypotheses can be conveniently
summarized in the posterior odds ratio.

p(H [D) p(D|R)  p(H)

KIZ = = . [D stands for the data.]
p(H,[D)  p(D|H,) p(H,)

It should be noted that it is not necessary for the set of hypotheses to
exhaust the possibilities. We do not require that p(Hl) + p(Hy) = 1. The
posterior odds ratio is designed to evaluate the relative merits of two models
without assuming that these models are necessarily the only appropriate
models. The quantity p(H;)/p(H,) 1is called the prior odds ratio and is
taken to be 1:1 in this study. The posterior odds ratio can be applied to
non-nestad hypotheses without modification, unlike the likelihood testing
ratio procedure. 1In addition, the posterior odds ratio is completely
symmetric and the decision outcomes are not dependent on which hypothesis is
considered the "maintained hypothesis.”

In a parametric setting:

i [p (D0, )dg,

ISP

= o« T1
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i [p,(Dlo )P (0 )8,
[p,(D|o,)p,(0,)d0,

Mo

pl(Dlgl) is the data density under H; and pZ(DlQZ) is the data density under
HZ.

In the case of choice between share equation systems, the two parametric
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models for the Translog (4) and FFF (12) can be compared using the following

posterior odds ratio:

-1 -
jpl(B,z ,Y,X)dg liB

12 ©

(13) X — —
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-1 -1, -1
2B,z 7|, X)p (B,2 ")dZ 4B

flz(Q.Z_lIz,Z)pZ(Q,Z—l)dz—ldQ

pl(B,Z—l), pz(Q,Z~l) are the prior distributions under each of the
hypotheses. In order to evaluate (13), prior distributions for each set of

parameters must first be specified.

Prior on (B,Z_l)

We write
-1 -1 -1
p (B2 = p(B[z p )

and employ a diffuse prior on Z_l coupled with a conditional normal prior on
B. I 1is the variance—covariance matrix of the cost shares. The flexible
functional forms are introduced to give different specifications for the mean
of cost shares. We assume that the variance-covariance matrix of cost shares
has the same prior distribution under both cost share equation specifica-
tions. Since little prior information is available on g, the same diffuse
prior is use in both the numerator and denominator of the odds ratios. Our
odds ratio calculations are immune to the scaling problems sometimes
encountered with the use of improper priors because any changes in the prior
density of I wunder Translog must also be made to the prior density of T

under the FFF specification.
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(14) p(Z—l) - IZ_I‘—(2+1)/Z - |Z-1|—3/2

k/ZIAll/?.

(15 plz ™ = o7 exp{-1/2 tr(B - B) A(B - B)L )

where B is a k x 2 matrix, 57l isa 2x 2 matrix.
The conditional normal prior on B given in (15) can also be expressed

in stacked form as
p(glz_1> = (2n)_klz'l® A|1/2 exp{-1/2 (8 @'(z‘l ® A)(+)}
B = vec(B) and é = vec(B).

The conditional prior mean of g and the elements of the A matrix must be

specified.

B = (aps &p» Yy Yoo Y %2 O

K YrLe Yrr® Yur)*
We take the prior means of aj, ay to be the mean labor share and mean
capital share, respectively. The prior mean of all other parameters are taken

to be zero.

This choice of prior mean centers the prior specification of the cost
technology over the Cobb-Douglas specification with constant returns to scale.

The prior covariance of § is
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I®A =

The g~prior notion of Zellner (1980) can be generalized to the multivariate
T

case by taking the A matrix to be of the form gX X. We choose g small

enough so that the prior standard deviation of 8 conditional on £ =1 is

2.0. This results in a relatively non-informative or "locally-uniform" prior.

Prior on (8, 2—1)

For the FFF cost share system, it is specified that (8, Z_l) are a

priori independent. A diffuse prior on Z-l is coupled with a normal prior

on Q.
-1 -1,-3/2
(16) p(z ) = |z 7|
A p©) = 20 2|c) M ? expf-1/2 @ - &) ceo - 8))

where & is the length of the theta vector.

As in the Translog prior specification, the prior mean of share equation
intercepts is taken to be the mean cost shares and the prior mean of all other
elements of § is zero. The prior precision matrix is specified in the g-prior

form

f is chosen to keep all prior standard deviations at least 2.0. Again, a
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locally—uniform prior is specified.

Calculation of the Numerator of Posterior 0dds Ratio

The numerator of the posterior odds ratio in (13) can be written as

-1 “1,,.-1
2B |1, 0p (B, )Mz dB

/2 1|T/2 exp{-1/2 tr (Y - XB)'(Y - XB)Z_I}

= [(2n) b

1

)‘k|z'1|<k'3)/2 xp{-1/2 tr (B - B) 'A(B - E)z_l}dz_ 4B.

1/2
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Combining common terms and completing the square in the exponent,

—(T%k)lz—1|(14k—3)/2 1/2

= [(2n) |A|

- exp{-1/2 tef S, + (B - B)X X+ A) (e )]Z_l}dz_ldB

where
5, = (Y - B (Y- ) + (B -F) AG - )

~ 1] _1 t ~ —_ ~ ' _1 \]
and B = (XX+A) (XXB+AB), B=(XX) XY.

Properties of the Wishart distribution are needed to integrate out Z—l.

-1 -1,,.-1
f2,(8,2 [1,%)p (B,z” )4z 4B

'E)l—(T-H()/ZdB

= C, Jls; + (B - B) (X X + A)Y(B -

Using properties of the matrix-t distribution to integrate out over B,



-T/2 -m/2

(18) Numerator = Cé'Sll IX'X + A|

t
where Cy 1is the appropriate constant of integration.

Tt(m(m-l)/4 - mT/2) 1/2

; T(T+i+1/2) |A|
i=1

Calculation of the Denominator of Posterior 0Odds Ratio

The denominator of the posterior odds ratio can be written as
-1 -1 -1
[2,(0,27 |y,2)p(@)p(x )z dg

= Jeo T Y epl-1/2 ¢ - ) ¢ e 1y - @)

1
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e
Completing the square and collecting terms,
~ o -1 ~ -1
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The integral with respect to 2"l above does not have an analytical
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solution. The integral can be approximated by conditioning on £ * =3 ".
Another alternative, which will be explored below, would be to integrate first

over © and then compute the integral over the three unique elements of I

using numerical integration techniques.

Denominator = IKO exp{—l/Z[;1 + (8 - a)'(Z‘(i—l<® I)Z + C)(+)]}de

~

s, =@-B cleny-B) +@-8c@ -8

6 = (z'(i_1 ® I)Z + c)_l(z'(i_1 ® 1029 + C§)

R ' t oA _
(19) Denominator = KO|Z (= 1 ® I)Z + Cll/2

1/2
e

where K, = (2ﬂ)—T,£—1, ,C' xp{ ~1/2 ;1} .

Posterior Odds Ratio

By combining the formula for numerator (18) and the approximate result
for the denominator in (19), odds ratios to compare the Translog énd FFF for
aggregate U.S. manufacturing can be computed. These approximate expressions
for the numerator and denominator contain two important terms—— the
determinant of the prior precision matrices and the determinant of the
residual sum of squares matrices for each of the cost share specifications.
The posterior odds ratio depends chiefly on three characteristics about each
model: 1. the complexity of the model as measured by the number of parameters,
2. the goodness of fit as measured by the generalized variance of residuals,
and 3. the amount of prior information available for each model.

In order to evaluate the adequacy of the approximate integral results for

the denominator, numerical techniques are used to compute the three



dimensional integral over L. The integrand involved cannot be approximated
well by an elliptically symmetric surface. Standard Monte Carlo integration
techniques use an "importance” function to sample points in the region of
integration. Usually, the importance function is taken to be an elliptically
symmetric density based on the asymptotic form of the integrand. For example,
Zellner and Rossi (1984) use a multivariate student t importance function. To
compute the integral over the elements of I non-standard Monte Carlo
integration techniuques due to Friedman and Wright (1980) are employed. The
Friedman-Wright procedure breaks up the region of integration into hyper-
rectangles within which the variation in the integrand is minimized. Points
are sampled uniformly within each of the regions and then averaged (see
Zellner and Rossi (1984) for details). It should be emphasized that this
problem has been made tractable by the use of analytical integration wherever
possible. The dimension of the integral which must be computed numerically is
vaery small relative to the dimension of the model parameter space.

Table 2 shows the odds ratios for H;: Translog vs. Hy: FFF as
calculated for aggregate U.S. manufacturing data. The odds ratio calculations
in parentheses are the result of using the approximate results in the text.
The approximate and exact results agree quite closely. The FFF system is

t
considered with a "Translog-like" quadratic term, (gtc x_) , in the cost

t
function and without the quadratic form. The FFF share system was found to be
favored by slightly better than 3:2 odds with quadratic terms and by roughly
1:1 odds without quadratic terms. The conclusion is that the periodic terms

resulting from the Fourier series expansion are important in providing a good

approximation to the underlying cost structure.
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TABLE 2
POSTERIOR ODDS RATOS:
TRANSLOG VS. FOURIER FLEXIBLE FORM™
Hy: Translog

Hy: Fourier Flexible Form

Hy vs. Hy With Hy Without
Quadratic Terms Quadratic Terms
Klz t69 -98
(.61) (1.05)

*
Estimated using U.S. aggregate manufacturing cost data, 1947-1971.
Numbers in parentheses are odds ratios calculated using approximate integrals.



Summary

In this paper, a Bayesian approach to choosing between two non-nested
multivariate regression systems was developed. The Bayesian approach involves
the calculation of the posterior probabilities of alternative hypotheses and
formation of a posterior odds ratio. Specific results are obtained for the
comparison of a multivariate regression and seemingly unrelated regression
model. These odds ratio results are applied to the choice between Translog
and Fourier flexible form cost share equation systems. When calculated for
aggregate U.S. manufacturing cost data, the odds ratios favor the Fourier
flexible form over the Translog form. Even in small samples, the Fourier

series expansion appears to be an effective approximation technique.



Backnotes

IThe cost function will not be appended to the system of cost share
equations. This would involve numerous cross-—equation restrictions which
would make the evaluation of the integrals difficult.

2This paper is concerned with the relative flexibility of the Translog
and FFF. Symmetry is not imposed on either form.

3

J =1 1is the analysis. J is the length of the Fourier expansion in

direction k .
-
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