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ABSTRACT

We address the monopoly problem of designing and pricing a product line
of goods distinguished by different quality and warranty levels. Consumers
vary in their evaluations of these attributes, so that the problem is one of
screening. It is sufficiently complex that the local techniques commonly used
in the screening literature do not work. Instead, we use new techniques for
dealing with incentive constraints between nonadjacent consumer types to

determine the optimal product line.



1. INTRODUCTION

Much of the recent literature on monopoly has been concerned with
strategies for screening heterogeneous consumers. This literature has its
roots in the work of Mirrlees [12] on optimal taxation and includes studies of
bundling and nonuniform pricing ([4), [9]), {11], [15], ([17], [20], (23]) and
optimal auctions ([8], [10], [16]). These papers address the problem of
designing a set of contracts, where a contract specifies the price and various
quantity and/or characteristic attributes. The essence of the problem is the
so—-called incentive or self-selection constraints, which require that a
contract intended for a particular type of consumer be in the set of contracts
most preferred by that consumer. These constraints are necessary either when
anti-discrimination laws are enforced, or when a consumer's type is private
information.

We contribute to this literature a model in which a monopolist constructs
a product line of products with different quality and warranty attributes.

The quality of a product is the probability that it will function properly,
which is a simple way to represent “durability” or “"reliability” in a static
framework. A warranty provides monetary compensation in the case of product
failure. Thus, each contract consists of a price, a quality level, and a
warranty coverage. Consumers are risk averse, want at most one unit of the
product, and vary in their evaluations of it. The model is a natural, and
probably the simplest, extension of Mussa and Rosen [15], as will be
discussed in Section 2.

Nevertheless, despite its simplicity, the model is not amenable to the
method of analysis that has become standard in the screening literature. The

key feature of this method is to replace the original problem by a relaxed



problem in which only the adjacent (or local, if types form a continuum)
incentive constraints are explicitly imposed. That is, given that consumer
types are ordered along a single dimension representing demand intensity, the
only constraints imposed would be the ones requiring that each consumer type
prefer the contract meant for him to the contracts meant for the two adjacent
types. As long as each constraint involves only adjacent types, powerful
optimal control or other recursive techniques can be used to characterize the
solution. The difficulty with this method, however, is that strong
assumptions may have to be made to guarantee that the resulting solution
solves the original screening problem, i.e., that it satisfies the nonadjacent
incentive constraints. If contracts are two~dimensional, then the usual
assumption is that the indifference curves of different consumer types are
related by a "single—crossing” condition. This condition can be shown to
imply that any set of contracts satisfying the adjacent incentive constraints
will satisfy the global ones as well.

When contracts are three-dimensional, as in our model, there is no
generalization of the single-crossing condition that results in local implying
global incentive compatibility. We could, and in Section 5 we shall, impose
another sort of condition under which the local approach works in
multidimensional screening models. This condition will involve the
distribution of consumer types.

A main thrust of the paper, however, is to develop an alternative
approach that does not involve a condition on the distribution of types and
does not use a local method. Instead, in Sections 3 and 4, we replace the
original problem with a relaxed, relatively tractable problem in which only
the “"downward” incentive constraints are imposed. The main result of Section

3 is that this relaxed problem has the same solutions as the original



problem. A crucial assumption for our proof of this is that consumers exhibit
nonincreasing absolute risk aversion. The method is an extension of that
introduced in Moore [13] for the related problem of designing an optimal
auction for a risk averse buyer.

In Section 4 we use this approach to obtain substantive results,
including the following: (i) Relative to the perfectly discriminating
monopoly allocation, consumers receive products of lower quality and
warranties of lower coverage. (ii) Unlike the perfectly discriminating
monopoly allocation, consumers with low evaluations receive warranties that
pay back less than the price. (iii) Consumers with higher evaluations pay
higher prices. However, only with another preference assumption, concave risk
tolerance, can it be shown that (iv) consumers with higher evaluations receive
greater warranty coverage. The only preference assumption we find to imply
that (v) consumers with higher evaluations receive higher quality is constant
absolute risk aversion.

In Section 5 we determine what additional results can be obtained by
making an assumption regarding the distribution of consumer types and using
the local approach. The technique we use is similar to one introduced by
Maskin and Riley [8]. The difference is that their assumption involves an -
endogenous choice variable, whereas our assumption, which is that the hazard

rate is nondecreasing, does not. This assumption will both justify the local

approach and, without having to assume constant absolute risk aversion, imply

that consumers with higher evaluations receive higher quality.

2. The Model
Before we set out the model, we should indicate how it fits into the

literature on quality and warranties. Representing quality as a probability



of functioning is very common in static contexts — see [3, [5], [6], (18],
[21] and [22]. It is also restrictive, since the dichotomy between working
and total breakdown cannot represent a continuum of possible lifetimes or
partial effectivenesses. Considering warranties as monetary compensations is
also common (see [5], [6], [7] and [22]), even though warranties often specify
replacement or repair of defective products rather than compensation

payments. Warranties that specify compensation are best thought of as
providing insurance against an interruption of the product's flow of services;
such insurance will be desirable whenever replacement is not instantaneous.

In our model, consumers can observe the quality of a product at the
purchase date. Warranties therefore will not signal unobservable quality
levels, as they do in [5], [6] and [22]. We also assume that in the event of
product failure, the firm can costlessly and verifiably determine whether
proper care was taken, in which case it will honor the warranty. This rules
out both the possibility that warranties can affect the probability of
breakdown by influencing the level of care taken by consumers (see [19]), and
the possibility of seller-buyer disputes (see [18]). These moral hazard
issues are assumed away in order to clearly focus on the screening issue. We
do assume one moral hazard problem, namely, that third parties cannot
determine whether a product has received proper care. This assumption
prevents third party insurance, thereby allowing the monopoly to freely bundle
warranties with qualities.

Our model is one of monopoly, which we regard primarily as a polar case
of a noncompetitive structure in which screening can take place. The
literature on monopoly provision of quality and warranties is slim. Grossman
[6], who models quality and warranty as we do, considers a monopolized market;

however, he assumes that quality is exogenously determined and unobservable,



and that consumers are identical. Braverman, Guasch and Salop [3] demonstrate
that a monopoly can bundle a warranty with a quality level to achieve in
effect a two—part tariff; however, their warranties specify replacement and
their consumers are also identical.

Our model is most like that of Mussa and Rosen [15]. In fact, it would
be the same if consumers were risk neutral. In this case, consumers would not
care independently about the price and warranty coverage associated with a
product, but would care only about the expected payment. Consumers' utility
functions would be linear in the two components of a contract, quality and
expected payment, and therefore satisfy the single-crossing condition. A
local approach could then be used to solve for the optimal set of contracts;
this is what is done in [15].

Given this background, we now set out the model. Choosing a product
corresponds to choosing a contract x = (p,q,w) where p is the price, q is the
quality, and w is the warranty coverage. The quality q is the probability
that the product will work; the warranty w is the amount of money to be
returned to the consumer if it fails. Because not purchasing a product will
be equivalent to purchasing at a zero price a product with a zero probability
of working, we represent not purchasing as choosing the no-purchase contract
0 = (0,0,0). The set X =R x [0,1] x R of contracts x = (p,q,w) consequently
contains all possible options for a consumer. We shall sometimes regard
z = w-p, the net amount the consumer receives if the product fails, as a
choice variable instead of w.

Consumers vary according to their willingness to pay. A consumer of type
® has an evaluation of 0 dollars for a functioning product, regardless of his
initial income. Consequently, a consumer of type 8 who chooses a contract

(p,q,w) receives, in dollar terms, 6-p if the product works and w-p if it



fails. The consumers' types are assumed, without loss of generality, to be
distributed on the unit interval I = [0,1].

All consumers have the same risk preferences, embodied in a strictly
concave, increasing utility function u: (a,») + R, where = < a <0 and
u(y) » ~» as y » a. The expected utility a consumer of type 8 obtains from

contract X is therefore
U(x,8) = qu(8-p) + (1-q)u(w-p).

It should be noted that the marginal utility resulting from a warranty is
independent of type, which is an important simplification. The connection
with the literature on optimal auctions for risk averse buyers, [8], [12] and
[13], should also be noted at this point: simply interpret q as the
probability of winning, © as the buyer's evaluation of the object at auction,
p as the price to be paid if the buyer wins it, and p-w as the price to be
paid if he loses.

As in Mussa and Rosen {15], the firm can produce any number of products
of quality q at a unit cost C(q). This assumes away reasons for product
variety that are based upon scale or scope economies, allowing us to focus on
demand effects. The function C is assumed to be smooth, increasing, and
convex, with C(0) = 0. We assume C'(0) < 1, so that it will always be optimal
to produce a positive amount. We also assume that C(1) > 1. (Note that
together these assumptions imply that C'(l) > l.) It will be seen later that
because C(1) > 1, even consumers with 8 = 1 will not purchase a unit with
perfect quality q = 1. The expected profit obtained from each consumér who

chooses contract X is

7(x) = p - C(q) - (1-q)w,



and the producer maximizes total expected profits.

Efficient allocations are easy to describe if consumer types are
observable. Consumers should be fully insured, so that a consumer's warranty
should equal his evaluation: w*(e) = 0., The quality should then be set to
maximize the expected surplus 8q - C(q), which results in

0 if 6 < C'(0)
q*(9) =
max{q [ C'(q) = 8} otherwise.
The price p(8) is a transfer irrelevant to the question of efficiency.

Notice that the optimal allocation (q*(e),w*(e))981 is independent of the
distribution of types. Furthermore, higher type consumers demand both better
qualities and better warranties, so that qualities and warranties are
positively correlated in the market. Finally, consumers who purchase a
product do not care if it works or not, receiving 6 ~ p(8) in either case.

If there are several firms competing in a Bertrand fashion by putting
contracts on the market, the resulting equilibrium will be effecient, with
each market contract yielding zero expected profit. Hence it

F3
0 if 6 < C'(0), and otherwise w(8) = 0, q(8) = q (8),

has xC(G)

* *
C(q (8)) + (1-q (8))8. Notice that all three components of a

]

and pc(e)
competitive contract increase in 6, i.e., consumers with greater evaluations
pay more and obtain a higher quality and a greater warranty coverage. Because
xc(e) maximizes U(%,0) subject to m(x) > 0, the competitive allocation is
incentive compatible, i.e., consumers of type O prefer xc(e) to any other
market contract. Bertrand competition therefore yields the same allocation
regardless of whether firms can observe each consumer's type.

The same is not true of the perfectly discriminatory allocation, xé(e),

which is the efficient one that maximize m(X) subject to the constraint



U(x,68) > U(0,6) = u(0). Interestingly, this allocation has full money-back
warranties, since all the surplus is extracted from type 6 by setting

pd(e) =6 = wd(e). Again, wd, qd, and pd each increase in 8. The
discriminatory allocation is not incentive compatible, since most consumer
types would prefer the contract meant for some lower type. This follows
from U(xd(e),e) = u(0), whereas U(xd(é),e) > U(xd(é),é) = u(0) for any

é < 6 satisfying q(é) > 0. Thus the discriminatory allocation is infeasible
for the monopoly problem in which all consumer types must be offered the same

set of contracts from which to choose.

3. The Monopoly Problem

We set up the monopoly problem in this section for a finite number of
consumer types. The section concludes with a technical theorem that is the
key to the economic results derived in Section 4.

The consumer types are 6 = 6, < 92 < oee K en = 1, and the fraction of

1
consumers who are type 8, is f; > 0. When offered a choice of contracts, a
consumer will choose one that he prefers the most. We make the usual
additional assumption that when a consumer is indifferent among several
contracts, he will choose one in accordance with the preferences of the
monopoly. Given this assumption, the monopoly can offer a set {xl,...,xn}

of contracts and be assured that consumers of type ei will choose X; provided

the following incentive constraints hold:

(1Ic) U(x,,6,) < U(x,,8,) for all j#i.
i ] - J ]

Another constraint is implied by the fact that consumers can always
choose not to purchase. Thus, every type of consumer must receive an expected

utility no less that u(0). Since U(x,06) is nondecreasing in 6, IC implies



that this voluntary participation constraint need only be imposed for

consumers of the lowest type:

(VP) U(x;,68,) 2 uw0).

The monopoly problem is then

n
%) Maximize Y n(xi)fi subject to IC and VP, 1

X seee,X i=1
1° >

Conventional intuition suggests that only the "downward” incentive
contraints in problem (M) should be important. That is, a monopoly trying to
extract as much as possible from its customers should only be concerned about
high type consumers pretending to have low evaluations. It is this
possibility that prevents the firm from charging high types very high
prices. Following this insight, we consider the following relaxed problem:

obtained by imposing only the downward incentive constraints:

n
M) Maximize X n(x.)fi subject to VP and
X seeesX i=1 1

U ,0.) < U(x,,6,) for all j > i.
(D1C) (xi J) < (’j J) o h|

We shall show that, given a further assumption on preferences, problems
(M) and (M') have the same solutions. That is, as intuition suggests, the
upward incentive constraints do not limit the profits that can be attained.
This result will be useful because it implies that solutions to (M) must
satisfy the relatively tractable first order conditions of (M').

The additional preference assumption we need is that consumers exhibit
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non—increasing absolute risk aversion:

(NIARA) R(y) = =u''(y)/u'(y) is nonincreasing.

This assumption will be maintained henceforth, as will the more technical
assumption that u is four times differentiable, with u' > 0 and u'' < O.

Perhaps the most important use of NIARA is in the following lemma. To
motivate it, consider two fixed contracts x and x°. Suppose 8 and 6° are
two consumer types such that 8" < 90, and that type 8 prefers X to x° and
type 0% instead prefers x° to X . This implies that the graphs of U(x°,96)
and U(x ,0) must cross somewhere between 9 and 60, as shown in Figure 1.
Now, if contracts were two—dimensional, we could make the usual single-
crossing assumption that an indifference curve of one type can cross any
indifference curve of another type at most once. This would imply that the
graphs of U(x°,8) and U(x ,6) could only cross once, so that all types greater
than 6° would prefer %° to x_, and all types lower than 8~ would prefer X to
%2°. The immediate implication would be that local incentive compatibility
implies global incentive compatibility, and problem (M) could be replaced by
one which included only the adjacent incentive constraints.

Our assumptions, however, are not strong enough to imply that the graphs
of U(x°,0) and U(x ,9) cross only once. Nevertheless, given NIARA, the
behavior of the graphs of U(x®,9) and U(x ,®) cannot be too arbitrary: Lemma
1 below establishes that they can cross at most twice. TFurthermore, when they
do cross twice, the contract corresponding to the more “curved” one has the
larger price and the smaller quality level. These properties will be used to

show that the upward incentive constraints can be discarded.
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- 0
Lemma 1: Let (x ,Xx ) be a pair of distinct contracts, and suppose that
- o + - + -
B <8 <6 are three types such that types 6 and 8 prefer x at least as
much as xp, whereas type 6° prefers x° at least as much as X . Then, if at

least one of these preferences is strict, po > p_ and qo < q—. Furthermore,
- + o + -
(i)  if Wx ,87) > 0(x,8"), then U(x ,8) > U(x ,8) for all 6 > 8'; and
- - o - - o -
(ii) if U(x ,0 ) > U(x,8 ), then U(x ,8) > U(x ,0) for all B <96 .

0 - .
Proof: Let A(8) = U(x ,8) - U(x ,8). The trivial case of ¢° = 0 is left to

the reader. Differentiation therefore yields

o]
o _ fu'(e-p) q
(D) A'(8) = qu'(6-p )| — - —
u'(6-p ) q {.

- o +
By hypothesis, A(8 ) < 0, A(8) > 0, and A(® ) < 0. Hence there exists a

* - + *
local maximum at some 6 € (0 ,6 ) satisfying A'(8 ) = 0. Thus (1) implies

u'(e*-po) q
(2) —s = 3

=
u'(é -p ) q .

* - *
Now, as one preference is strict, A(8 ) > A(6 ) or A(B ) > A(6+). Hence 6**

*% % %%
exists such that (8 -6 )A'(8 ) < 0. Expressions (1) and (2) then imply

x u'(e**—po) u'(e*—po)
0> (e -0 ) *k - % -
u'(6 -p ) u'(6 -p )
** |yt (6-p )
= (8™ -0") J —|[rR(6-p™) - R(8-p°)]de.

*
9 Ju'(o-p )
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Thus, because R' < O, po > p . This and (2) imply now that qO <q .

To prove (i), assume U(xf,6+) > U(xo,6+), but that U(x ,8) < U(xo,e) for
some 6 > 67. Then, applying the first part of the lemma to
(xo,x—) and (GO,6+,9) yields ; > p, a contradiction. This proves (i), and

(ii) is proved similarly. Q.E.D.

Our overall strategy is to show that all solutions of (M') satisfy the
deleted upward incentive constraints in (M). This will establish directly
that every solution to (M') solves (#M). Since both problems will then have
the same maximum value of profits, and since solutions to (M) are feasible for
(M'), it will also show that every solution to (M) solves (M'). We begin by
deriving properties of solutions to (M'), starting with the following useful,

but not surprising, proposition.

Proposition 1: Every contract X; in a solution to (M') satisfies (i) ﬂ(xi) > 0;

(ii) 9 <1l; and (iii) if q = 0 then z; = 0 and a; = 0 for all j < i.

Proof: To prove (i), assume it false. Then let i > 1 be the smallest i such
that n(xi) < 0. Then, since £ > 0, replacing x; by the contract that type ei
prefers the most in {0} U {xl""’xi—l} increases profit without violating DIC
or VP. This contradiction proves (i). To prove (ii), note that C(1) > 1
implies that if q; = 1, then ﬂ(xi) =p; - C(1) can be nonnegative only if

P; > 1. But then U(xi,ei) = u(ei-pi) < u(0), contrary to VP. To prove (iii),
assume q; = 0. Then VP implies zi 2 0. Hence, since n(xi) Z 0 implies

z, <0, z; =0 and U(xi,ei) = u(0). If 9 > 0 for some j < i, then U(Xj,ei) >
U(xj,ej). But then DIC and VP imply U(xi,ei) > U(xj,ej) > u(0), contrary to

U(xi,ei) = u(0). Q.E.D.
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Because of part (iii) of Proposition 1, we can make the convention that
x; = 0 if and only if q; = 0. That is, we set p; = W; = 0 if q; = 0, which
can be done without loss of generality.

We now need the first order conditions for (M'). To this end, note that

if {xl,...,xn} solves (M'), then x; solves the subproblem

(M) Maximize m(x) subject to
L x
(p1c;) U(x,ej) < Vj for all j > i, and
(LB;) U(x,8,) >V,

where Vj = U(xa,ej) for all j. Let py be the multiplier on the lower bound

constraint LB;, and Kij be the multiplier on the jth

constraint in DIC; .
Regarding the choice variables as z, p, and q, the first order conditions for

this subproblem are

(3) -1+ (ui— ) ki.)u'(zi) =0,
i>i
(4) q {1 = pyutCe-p) + jgixiju'(ej—pi)} = 0,

5 w, - C'(qi) + ui[u(ei—pi) - u(zi)]

- I

& [u(ej-pi) - u(z,)] <0,

ij
with strict inequality in (5) only if q; = 0. (Account has been taken in (3)
and (5) of the fact that q; < 1 for all i.) If q; > 0, then p; can be

eliminated from (3) - (5) to yield the following two equations:

u'(z,) - u'(6,-p,)
6) i L Y A {u'(8,-p,) - u'(6.-p.)1,
u'(Zi) j>i ] Pt I
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(7) w, - C'(qi) = jzilij[u'(ei—pi) - u'(ej-pi)][h(ei-pi,ej-pi) -~ h(ei—pi,zi)],

where the function h: R? > R is defined by

u(t) - u(s)

h(s,t) =
u'(s) = u'(t)

if s # t, and by h(s,s) = 1/R(s) otherwise.

As an aside, note that the function h is a discrete approximation to the
risk tolerance function p = 1/R. It is nonnegative, continuous and, because
of NIARA, nondecreasing in both arguments. These properties are shown in
Lemma Al in Appendix A.

We now use (6) and (7) to establish another property of solutions to

(M'). Discussion of this property is postponed to the next section.

Lemma 2: If x; # 0 is a contract contained in a set of contracts solving
(M'"), then W, > C'(qi). If u exhibits constant absolute risk aversion (CARA),

then Wi = C'(qi)‘

Proof: Since X; # 0 means that qy > 0, equations (6) and (7) hold. Thus

wy = C'(qq) = j;ikij[u'(ei—pi) - u'(ej-pi)][h(ei-pi,ej—pi) - 1(,~p,,2,)]
> 7 Xij[u'(ei-pi) - U'(Gj—pi)][h(ei-pi,Gi—pi) - h(Gi—pi,zi)]

i>i

u'(zi) - u'(ei—pi)

[h(ei—pi,ei-pi) - h(Gi-pi,zi)]
u'(zi)
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where both inequalities follow from u'' < 0 and h2 > 0. If u exhibits CARA,

then Lemma Al implies that neither inequality is strict. Q.E.D.

Lemmas 1 and 2 together yield the last preliminary result, Lemma 3
below. It will imply that the adjacent downward constraints bind, just as
they do in virtually all previously studied incentive problems. The
difference here, of course, is that nonadjacent downward constraints may also

bind.

Lemma 3: Suppose {xl,...xn} is a solution to the relaxed problem (M') such

that for some 1 € k { n, the following neglected constraints are satisfied:
(UICk) U(xi,ej) < U(xj,ej) for all i,j such that j < i < k.

Then the adjacent downward incentive constraints are binding for i < kt+l,

i.e., U(xl,el) = u(0) and U(xi_l,ei) = U(xi,ei) for all 1 < i < ktl.

Proof: Increasing any P; increases profit without making x; more attractive
to any type. Therefore a lower bound constraint on the utility of each type
is binding in any solution to (M'). Hence U(x 6 ) = u(0).

Assume that U(xi_l,ei) < U(xi,ei) for some i < ktl. Then

U(x 6 ) > U(x, ) > u(0), since U(x,0) is nondecreasing in 6.

1-1’

Therefore, since some lower bound constraint on U(xi,ei) must bind, there

94 ).

exists j < i~1 such that U(xﬁ,ei) = U(xi,ei). Hence U(x e ) > U(x _1°

Since IC is satisfied for j and i-1, U(x 6 ) > U(x, .,6.) and

i- 1’ 3j

U(xj,e ) < U(x, ). The hypothesis of Lemma 1(i) is therefore

i- l’ i-1

satisfied at (x ,x ) (xJ X, ) and (8 6 e ) = (ej,ei_l,ei). Hence

d4-1 < a5 and U(xj,e) > U(xi_l,e) for every 6 > ei. The latter implies, by
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DIC, that for all k > i, U(x,8,) > U(x;_;,0 ).

-1’7k
We have shown that none of the incentive constraints in (Mi—l) can be

binding. This implies that X1 is full information optimal: P q*(ei_l)

%
and w, ;= 0;_;. Since C'(q (8)) > 6 and 9.9 < s>

0 < ¢'(

]
i-1 qi—l) < ¢ (qj).

Lemma 2 therefore implies 6.1 < Wy Equation (6) and u'' < 0 imply that

Zj < Gj-pj, since each multiplier is nonnegative. Therefore Wj < ej. Hence

we conclude that 6, ; < ej, a contradiction. Q.E.D.
The usefulness of Lemma 3 follows from the fact that if adjacent downward

incentive constraints bind, then more profit is made on contracts sold to

higher type consumers than on ones sold to lower types. For, if type 0, is

indifferent between X4 and Xis but X; were more profitable than x; then

. i+l?
replacing X; 4 by X, would increase total profits without violating any
incentive constraints. So profitability increases in type if the adjacent
downward incentive constraints bind, which is exactly what we need to confirm
the intuition that the upward constraints are unimportant.

To see this, suppose that some solution to (M') satisfies UICy. Lemma 3
and the above argument then imply that contract X..; is at least as profitable
as X; for any i { k. Therefore, replacing x; with L will not decrease
profits. Letting any type i € k simply have his choice of X; or X, will
then result in a solution to (M') that satisfies UIC, ;. (Notice that it is a
solution of (M') because the switches do not upset DIC.) Continuing in this
fashion (starting from k = 1, where UI1C; holds trivially), one arrives at a

solution to (M') that satisfies all the upward incentive constraints and hence

solves (M). This shows that some solution to (M') solves (M), which proves
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that every solution to (M) solves (M').

The proof we give for Theorem 1 is somewhat different than that just
described, and certainly longer. 1Its extra length is required not just to
prove the converse that every solution to (M') is a solution to (M), but also
to prove that the upward incentive constraints hold as strict inequalities.

This latter result will be useful in subsequent sections.

Theorem l: The monopoly problem (M) and the relaxed problem (M') have the
same set of solutions. Furthermore, any solution has u(0) = U(xl,el),

U(xi,ei+l) = U( ei+l) for all i < n, and U(xi,ej) < U(x&,ej) for all j < i

Xit1°

for which x. # x,.
b i

Proof: Since (M') is obtained from (M) by removing the upward incentive
constraints, we must show that any solution A = {xl,...,xh} to (M') satisfies
those deleted constraints. Trivially, A satisfies UIC;. Hence, we assume
that A satisfies UICk for some k < n and prove that A satisfies UICk+1.
First, suppose n(xi) > n(xi+1) for some i { k. Then, since Lemma 3

implies U(xi,9i+1) = U(x ei+1), X;,) can be replaced by X, to increase

i+1°’

profits without violating DIC. This contradiction shows that ﬂ(xi) < n(xi+

l)
for all i < k.

Assuming UICp4 does not hold, there exists j < k such that

U(xk+1,6j) > U(xj,ej). 1f ﬂ(Xj) < ﬂ(xk+1), then the set of contracts

~

A= {xl""’;n} defined by

X, 1f 1 <kand U(x ,,,6,) 2 U(x,,6,)

xi otherwise

yields greater profits than A without violating DIC. This contradiction
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implies that ﬂ(xi) = “(xk+l) for all j £ i £ k.

If qpqq = 0, then q = 0 and S 0, contrary to
U(Xk+l,9j) > U(xj,ej). Hence q ., > 0. Therefore q = .qu + .59 > 0.
Now define p = (.qupj + .5qk+1pk+l)/q and z implicitly by U(x,ej) z U(xj,ej),

* * *
where x = (p,q,z). Let A = {xl,...,xn} be defined by

if 1 <k and U(x,0,) > U(x;,0,)

b

xi otherwise.

% *
We now show that A satisfies DIC. Since A satisfies DIC, A will also
if U(x,ei) < U(xi,ei) for all i > k. Since NIARA implies u''' > 0, Jensen's

inequality gives

Ue(x,e) = qu'(6~p)

, -1, ~1go

[PaN

1 - 1 -
-Sun (e Pj) + -5C1k+lu (e pk+l)
= 5Ug(x;,0) + SUG(x,, ,0).

Consequently, for i > k,

U(x,8,) ~ U(x,0,) < .S[U(xj,ei) - U(xj,ej)] + .5[U(xk+l,ei) - U(xk+l,6j)]

.S[U(xj,ei) + U(xk+l,ei)] - .5[U(xj,6j) + U(xk+l,6j)]

IN

U(xi,ei) - U(xj,ej)

U(xi,ei) - U(x,ej),

where the second inequality follows from DIC (i.e., U(xg,ei) < U(xi,ei) and
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U(xk+l,ei) < U(xi,ei)) and U(xk+l,6j) > U(xj,ej). Hence U(x,Bi) < U(xi,ei),

*
and A satisfies DIC.

* *

Now we show that A yields greater profit than A. Note that 33 = X. Also,

note that n(xj) > n(xi) for all i £ k, since we have shown ﬂ(xﬁ) = n(xk+l).
*

Hence A yields greater profit than A provided n(xj) <m1(x). To show this,

observe that because U( ,0.) > U(x,,8.) = U(x,98.),
au X 1 J) ( . J) ( J)
.5U(xj,6j) + .5U(xk+l,6j)
- 1o _ “leg _ -
> U(x,ej) = QU[-5qjq (ej pj) + 59,9 (ej pk+l)] + (1-q)u(z)

> .quu(ej—pj) + .5qk+lu(6j-pk+l) + (1-qQ)u(z),

where the last inequality follows from u'' < O and Jenmsen's inequality.

Consequently,

-1 -1
u(z) < .50 qj)(l-q) u(zj) + .5(l—qk+l)(l~q) u(zk+1)
< ul 501~ 2, + W5 (-0 Yz, ]
2 j j K+l k+1d7
again by Jensen's inequality. Therefore,
(1-q)z < .5(1-qj)zj + 'S(I_qk+l)zk+l.

This, and Jensen's inequality applied to the convex function C, imply

n(xj) .5w(xj) + .SF(Xk+1)

= gqp - [.SC(qj) + .5C(qk+1)] - [.5(1—qj)zj + .5(l-qk+1)zk+l]

< gp - C(.5qj + .5qk+l) - (1-q)z

= 71(x).
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We have now shown that A* satisfies DIC and yields greater profit than A,
a contradiction that implies A satisfies UICk+1 after all. Hence A solves
(M). Therefore (M) and (M') have the same solutions. Lemma 2 immediately
implies that the adjacent downward constraints bind.

It remains only to prove that the upward incentive constraints hold
strictly. Assume not. Then j £ k exist such that X, # %, and
U(xk+l’ej) = U(xﬁ,ej), since UIC,,, holds. Now, comstruct x and N as
above. By the same proof, A* satisfies DIC. The former proof that
w(xj) < w(x) now only serves to show that ﬂ(xﬁ) < w(x). However, there were
two steps in which Jensen's inequality was applied to the strictly concave
function u. Upon reexamining those steps, it can be seen that the strict
inequality reappears unless we assume both (i) z; = z.,, and (ii) Pj = P4y OF

J

q; = 0 (we have already shown A1 > 0). Suppose 4 = 0. Then

U(xk+1,6j) = U(Xj,ej) = u(zj) = U(xj,e ),

j+l
which is equal to U(xﬁ+l’ej+l) by Lemma 2. Since q ., > 0,
U(#yy1504) < U(xk+l’ej+l)' In sum, U("‘k+1’93+1) > U(xj+l’ej+l)’

contrary to UIC .. Therefore q; > 0. Now, X4l # x.j and (i) and (ii) above

imply Ut 1 # qj. But then U(xk+l’ej) # U(xj,ej), contradiction. Q.E.D.

4. Properties of the Monopoly Solution

In this section we obtain normative results about how each monopoly
contract is distorted from full information optimality, as well as positive
results about the nature of the monopoly set of contracts. The following
propositions refer to a monopoly set of contracts, i.e., a solution
{xl,...,xn} to problem (M). From Theorem 1 we know that it satisfies the

necessary conditions for the relaxed problem (M').
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The first proposition concerns the welfare properties of the contract
between the monopoly and the highest type of consumer. Since there is no type
higher than 6 , there is no incentive constraint in problem (M;). Therefore
(M;) is the standard Pareto problem involving the monopoly and type 6, SO

that the following familiar result is immediate.

Proposition 2: The highest type of consumer receives a full information

imal i has q_ = q"(6.) and w_ = ©
Pareto optimal contract, i.e., x has q =4 (en and w_ = 6 .

We next establish that both qualities and warranties will be

underprovided.

Proposition 3: Every contract X5 # 0 contains a quality and a warranty level

that are each no greater than their full information levels, i.e.,

*
q. < q (8,) and w, < 6, for all i.
1 - 1 1 - 1

Proof: Since each Aij > 0 and u'' < 0, expression (6) implies that

z, < ei—pi, i.e., that WPy < ei—pi. Hence W, < Gi. Now, using Lemma 2,

C'(qy) < w, < 8, = C'(q¥(6,)),

which, from C'' > 0 and the definition of q*, implies 9 < q*(ei). Q.E.D.

Proposition 3 is illustrated in Figure 2. Holding the price p; fixed,
the figure shows the indifference curves of the consumer of type ei and of the
monopoly over pairs (q,w). The full information optimal pair is
A* = (q*(ei),ei), whereas the monopoly pair is A = (qi,wi) < A*. Shifting A
into the crosshatched region would make the consumer better off and, if other

(higher) types could be prevented from switching to X.» would also make the
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monopoly better off. In particular, if the incentive constraints could be
ignored, the monopoly could increase profits by giving the consumer a higher
quality and a higher warranty, without charging a higher price. The reason
for this is that increasing q; not only increases the expected utility of type
ei, but also increases the expected profit ﬂ(xi). This follows from the fact

that, since C'(qi) < Wy instead of C'(qi) = Wy, d; is less than the quality

i’
level that minimizes expected cost holding the warranty fixed at wj-

Although we cannot draw rigorous conclusions regarding moral hazard with
this model, we remark that Proposition 3 does imply that one type of moral
hazard problem is alleviated. This is because w-p  6-p implies that the
consumer wants the product to work rather than to fail.

The propositions above are not refutable if consumer types are
unobservable. Refutable propositions then refer only to the set of contracts,
without referring to the consumer type receiving each contract. The results
that follow, when taken together, are of this ilk.

The next proposition, while not refutable as it stands if types are
unobservable, does imply that some contract should have warranty coverage less
than price, whereas some other contract should have warranty coverage greater
than price. This contrasts with the results of Section 2, where it was shown

that in every competitive or perfectly discriminatory contract, the warranty

is greater than or equal to the price.2

Proposition 4: Suppose Si < en is the lowest type to purchase a product.

Then Wy < P and v > P,
Proof: Since Xy < 0, from Theorem 1 we have that

U(Xi,ei) = qiu(ei—pi) + (l-qi)u(wi-pi) = U(xi_l,ei) = u(0).
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This implies, since w, < 6, and 0 < q, < 1, that w, < p,.
i-"i i i-"i

.~p. = 0. Hence, (6) implies that the

Assume w; = p;- Then ei—pi = WiTPy

1

e a . o _ . . . -
multipliers in (Mi) are kij 0 for all j > i. 1In particular, Ki,i+l 0.

If j < i, then X5 = 0 and U(xj,ei+l) = u(0). Therefore, for j < i,

U( l) > U(xi,ei+l) > U(xi,ei) = u(0) = (x.,6.,,),

41954 32V 141
where the strict inequality is due to g4 > 0. Hence kj j#1 = 0 for all
>
j < i+l. Now, by writing out the Lagrangian for (M'), it can be seen that the
multiplier Bivy in (M£+1) is related to the multipliers of the other

subproblems by

= 7 el 3

Hivl shey 31175, 54 L

Hence p;u, = 0, contrary to the first order condition for (M£+l)’

S
) goie1 THLed

Thus w; < 6.
By Proposition 3, w, = 6, . Hence, since g, > 0, DIC implies that

u(wn-pn) = U(xh,en) 2 U(xi,en) > U(xi,ei) = u(0).

Therefore w, > P,+ Q.E.D.

The remaining propositions establish monotonicity relationships in the

contract set. The first one was demonstrated in the proof of Theorem 1.
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Proposition 5: More profit is made on higher types than on lower types,

i.e., ﬂ(xi) < n(xi+l) for all i=l,...,n-1.

If costs are observable, Proposition 5 can be used in conjunction with
other results to yield refutable conclusions. For example, Propositions 4 and
5 together imply that the most profitable contracts have warranty greater than
price, but the least profitable contracts have warranty less than price.
Proposition 5 can also be used in conjunction with Theorem 2 below to predict
under what conditions price, warranty, and quality vary positively with

profitability.

Theorem 2: If i < n and x; # 0, then

(1) Pi & Pyl
(ii) P; < Piyq 2nd w, Lwy if p'' £ 0; and

(iii) p. £ Pit1s Y S Viep» and 9 < 9441 if p' = 0.

This theorem, which shall be proved shortly, establishes preference
assumptions under which p, q and w are nondecreasing in 8. It is to be
contrasted with the monotonicity result in the next section, which depends
upon an additional assumption about the distribution of types.

Part (i) states that higher type consumers purchase more expensive
quality-warranty bundles. A monopolist would obviously like to charge those
consumers more who are willing to pay more. What (i) shows is that this
intuition is not overturned by having to include incentive constraints.

Part (ii) of the theorem states that if the risk tolerance function of

consumers is concave, then higher types receive greater warranty coverage.
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The intuition for this result is relatively obscure. Roughly, it seems that
if risk tolerance is increasing at a diminishing rate, then higher types are
not so tolerant of risk that they can be compensated for paying a higher price
merely by giving them increased quality; their reward for telling the truth
must take the form of greater warranty coverage, even if it also takes the
form of higher quality (see the next paragraph). Most commonly used utility
functions have concave risk tolerance.4 Also, concave risk tolerance implies
nondecreasing relative risk aversion, a property commonly thought to

hold.>>®

We do not regard the assumption of concave risk tolerance to be
inordinately restrictive.

Part (iii) of Theorem 2 states that if consumers exhibit constant risk
tolerance (CARA), then higher types will receive higher quality as well as
higher warranties and prices. It is surprising that relative to other
assumptions on preferences, an assumption as strong as CARA is required to
show that consumers who value quality more will receive higher quality -— an
intuitively natural result. The following example, which is discussed further

in the next section, indicates that quality may not increase in type even if

preferences are completely standard.

Example: The utility function is u(y) = log(.25+y). The types are 0, = .6,
92 = ,8 and 93 = l. The distribution is given by f1 = .26, f2 = .14 and

fq = .6. The cost function for quality is C(q) = 0. The monopoly allocation,
calculated numerically, is (pl,ql,wl) = (444, 707, .271), (p2’q2’w2) =

(.484, .671, .345), and (p3,q3,w3) = (.844, 1.00, —). Note that q > q, and

q, < q3.7

To prove Theorem 2, we need the following lemma. Define H: Ré + R by
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u'(z)-u'(6-p) +
ptz- (h(6-p,8 —-p) - h(6-p,z)].
u'(z)

(8) H(6",6,p,2)

i

Lemma 4: If i < n and x, # 0, then

)
(9 C'(qy) < H(B,, ,6,,P.»2.),
with equality holding if q; < Q4

Proof: Equations (6) and (7) hold because of Theorem 1 and 94 > 0. Since h

is nondecreasing, replacing ej in h(ei—pi,ej—pi) by ei+l in (7) yields

W C'(qi) 2 jgi Xij[u'(ei—pi) - u'(ej-pi)]lh(ei-pi,ei+l—pi) - h(Gi—pi,zi)]

7 u'(zi) - u'(ei—pi)

) [b(6;-p;56;,,7P;) ~ h(®;~p;,z )],
u (Zi)

where the second expression follows from (6). Equation (9) now follows by

substituting P; + zg for LA and rearranging.

Now suppose q; < q;,;+ Assume (9) holds strictly. Then, from the
previous paragraph, there exists k > i+l such that Xik > 0. Therefore, using

. . [ =
DIC and complimentary slackness in (Mi)’ U(x Gk) < U(xk,ek) U(xi,ek).

i+1?

Gi) and U(xi,ei+l) = U(x 2] ).

By Theorem 1, U(xi,ei) > U(xi i+1°%441

+1°
Consequently, by applying Lemma 1 to (xX,x) = (xi+l’xi) and

- o .+
(6 ,6°,0) = (ei’ei+l’ek)’ we conclude that q; > 444, Contradiction. Q.E.D.

Proof of Theorem 2: We prove (iii) first, using (i) and (ii). Assume

a4 > q541 for some i. Since q; > 0, Proposition 1(iii) implies 4541 > 0.

Therefore, Lemma 2 and p' = 0 give w; = C'(q;) and w;,; = C'(q;,,). Then, by

the convexity of C and q; > qu, W, 2 W, IC is now

i i+1° Since P, <p

i+l
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violated:

= - + - -
141001410 T Qa8 TRyy) T (Umay uley e )

- + - -
$ 934198 47py) + gy, Julwympy)

N

- + - - =
g u®,, =p,) + (=g du(w,-p,) = U(x,,0,, ),

where the strict inequality follows from q; > Q4] and ei+1 > ei 2 W .

Thus a, < dy41° The rest of (iii) follows from (i) and (ii).

1

We now show (i). Assume the contrary, that p; ” pj4 for some i. From

Theorem 1, U(xi,ei) > U(x Gi) and U(xi ei+l) = U(xi,ei+1). Adding and

i+l’ +1°

simplifying these yields

q; w6, -p;) —u(®,-p )] < gy Tu(®,  -p. ) - w6 ,-p, O

This implies, since u'' < 0 and p; > Pj41° that 43 < 9541 ° Therefore, since

has a lower price and a higher quality than x;, the fact that, by UIC, 6,

X
i+l 1

does not prefer X;,; to X; implies that z; > Zit1®

By Lemma 4, since q; < q 9> C'(qi) = H(ei+l’ei’pi’zi)’ Hence, applying

Lemma 4 to i+l yields

\i -— \i -
(10 C'ag ) = C'ag) < H(O, 5,0, 5Py 0254) ~ B8 ,1,08,,p,52,).

Therefore, as q; < q4,; and C'" > 0,

6 6
i+2 + + i+l
+
(11) 0 < fei+l H,(6,68,,p,,2,)d8 [o7 Hy(8,,7:8,p;,2,)d0
pi 25
B fp. Hy(8;49:04yPo2y)dp - fz. B (854098541 Pyqp-2)d2e
i+l i+l
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Lemma A2 in Appendix A directly implies, since z; < ei-pi, that the first two
integrals are nonpositive. If pe[pi+1,pi], then 2, < ei-pi implies that

z, <6

; $854P: Hence, by Lemma A2(iii), the third integral is positive.

Finally zelz, ,zi] implies z £ @ so that the fourth integral is

i+1 i+1 Pi+1?

positive by Lemma A2(iv). Hence the right hand side of (11) is negative.

This contradiction proves that P; < Pivl®

We now show (ii). In particular, we show that p'' < 0 implies

w, < w, .. Assume LA > W41+ Then z; > Zi4) by (i). Thus, recalling

34790041 7Pyy) + U=y Julz, )

934190341 7Py) * (g Julzy)e

Therefore DIC implies

0 < U(x X0 1+1) - U(xi’ei+1) < (qi+l—qi)[u(ei+l—pi) - u(Zi)],

and hence q; < q;4] because z; < 0;417p;+ From Lemma 4,

C'(qi) = H(ei+1,ei,pi,zi), so that again (10) holds. Thus, since a < 4541

and C'" > 0,

W,

0
i+l i
a2 0 < [y 0, By (8541505p5,2; )40 fwi+lH&(ei+l’ei+l’pi’whpi)dw

0.
dp + fel+2 Hl(6+ 6
i+1

)de .

i+1° P12 %t

P,
i+l
* fpi By, 00,150 5,15P5W,,,7P)

Since z, <6 7Py and z <0

i+1 S the first and last integrals are

i+1 Pi+1>
nonpositive by Lemma A2(i) and (ii). Lemma A3 implies that the third integral

is nonpositive. Finally, since WP, < ei+l—pi follows from
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w < Wy < Oi, Lemma A2(iv) implies that the second integral im (12) is
positive. Therefore the right hand side of (12) is negative. This

contradiction proves that LA < w,

410 QeE.D.

5. The Local Approach

In this section we show that if we add an assumption regarding the
distribution of types, then the local approach will work and quality, as well
as price, will be nondecreasing in type. But we first note that a further
assumption is definitely needed in order to neglect nonadjacent constraints.
For if the distribution in the example in the previous section is altered a
small amount to (fl,fz,f3) = (.27, 14, .59), and the problem of maximizing
expected profit subject to the voluntary participation constraint and the two
adjacent downward incentive constraints is solved, one obtains a solution in
which type 64 prefers X to 23-8 This shows that the nonadjacent constraints
in (M') cannot be discarded.

Only the adjacent incentive constraints are binding in the unaltered
example.9 Thus, it is not true that some nonadjacent constraints bind
whenever the optimal quality allocation is not momnotonic in type. However,
the converse is true. Nonadjacent constraints do not bind when the optimal

quality allocation is monotonic, as the following proposition indicates.

Proposition 6: Suppose quality in a monopoly allocation is nondecreasing in

type. Then type 0, strictly prefers x; to Xj and type ej strictly prefers x.j

to % if Xj # X, for some j < k < 1.
Proof: Let A(8) = U(xk,e) - U(Xj,e). Then

AT(B) = qku'(e—pk) - qju'(e—pj).
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Since q 2 q and, by Theorem 2(i), p 2 P., A' > 0. If A'(8) = 0 for some 6,

J
then q = qj and, if 9 > 0, P = pj. Then IC implies that x

X

contrary
to the hypothesis ¥ # X, . Therefore A' > 0. So A(ei) > 0, since DIC implies
that A(ek) > 0. But DIC also implies that U(xi,ei) - U(xj,ei) 2 A(Gi). Hence
U(xi,ei) > U(xj,ei). Also, since this implies that x; # X5 Theorem 1 implies

that U(xj,ej) > U(xl.,ej). Q.E.D.

This proposition suggests that it is the possibility of quality
decreasing in type that forces us to consider the non-adjacent constraints.
Under what circumstances might we expect quality to decrease in type? It
turns out that this happens when there are few intermediate types relative to
both the number of high types and the number of low types. The intuition is
as follows. Because there are many low types, the tendency to extract profit
from them by selling them high quality is strong compared with the opposing
need to make their contract unattractive to higher types. Next, consider the
intermediate and high types as a subset. For incentive reasons, it is best to
sell the (few) intermediate types low quality, incurring only a small
sacrifice of profit from them, so as to extract high profit from the (many)
high types. It seems, then, that quality can decrease in type when the
probability function decreases rapidly in an intermediate region. This is
corroborated in the example, where f2 is smaller than both f1 and f3. Our
assumption, that the hazard rate function is nondecreasing, does not allow the
probability function to decrease too rapidly in intermediate regions.

It is convenient to assume a continuous distribution of types. This
allows us to use a derivative condition for the adjacent (now "local™)
constraints, and to set the problem in a control theory framework. To this

end, we assume a density function f for types that is positive on [0,1] and
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continuously differentiable, and we denote the cumulative distribution

function by F. Henceforth, an allocation of contracts shall be a function

x: [0,1] » X that is piecewise continuous. ©
Given any allocation of contracts X, define the indirect utility function

by V(6) = U(x(6),0). Then IC is equivalent to

i

® £ argmin V(é) - U(x(e),é)
)

for all & and 8. The first order condition is
(13) V'(8) = q(B)u'(6-p(0))

wherever V'(0) exists. But if x satisfies IC, then V is easily shown to be
nondecreasing, so that V'(8) exists almost everywhere.

These local consequences of IC, together with the VP constraint, imply
constraint (14) in the following problem:

(cP) Maximize [{q(0)p(8) - (1-q(8))2(6) - C(q(8))}£(0)do
9,P,2

subject to
0
(14) V() > u(®) + [ q(y)u'(y-p(y))dy
0
(15) q(0)u(e~p(8)) + (1-q(8))u(z(8)) = V(o)

(16) 0 < q(8) < 1.

Note that (CP) is derived from the full monopoly problem by substituting (14)
for IC and VP. We shall show that a nondecreasing hazard rate implies that
solutions to (CP) satisfy IC, so that the monopoly problem and (CP) have the
same solutions. (VP is immediate from (l4) and (15).)

We first note that V satisfies (14) as an equality in any solution to
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(CP), implying that V is absolutely continuous. (We cannot yet assume V is
even continuous; IC alone does not imply X is bounded, and hence cannot imply
V is continuous.) For, if (14) held strictly on some interval, then V can be
lowered on that interval without violating (14). If q < 1 on the interval, a
lower V implies that z can be lowered on the interval to restore (15) and
raise profits. If q = 1 on the interval, then profits can be increased on the
interval by setting z = 0 and lowering q to restore (15) without violating
(l4). (At q =1 and z = 0, the derivative of profit with respect to g is
p—- C'(l1). Since p(8) <8 <1 by VP, and C'(1) > 1, lowering q raises
profits.) Thus, in either case, we have a contradiction.

Now that we can assume V is a continuous state variable satisfying (14)
as an equality, standard Hamiltonian methods can be used to characterize a
solution to (CP). In this way we shall, in the proof of Theorem 3 below,
establish that optimal q and p functions are nondecreasing if the hazard rate
is nondecreasing. By the following lemma, this will immediately imply that a

solution satisfies IC and hence solves the full monopoly problem.

Lemma 5: Suppose V: [0,1] + R and x: [0,1] » X satisfy (15) and, with
equality, (l4). Then, if q is nondecreasing and p is nondecreasing where q is

positive, x satisfies IC.

Proof: The hypothesis and u'' < O together imply that q(8)u'(y-p(8)) is

nondecreasing in 6. Therefore, since (14) holds as an equality,

V(8) - U(x(8),8) = [V(8) ~ V(8)] ~ [U(x(8),8) = V(8)]

= 1% {a(mu' (r-p(3)) - q(@)u'(y-p(8))}dy
5]

>0

for every 6 # 6. Thus x satisfies IC. Q.E.D.



33

We now establish necessary conditions for (CP). Its Hamiltonian is
H(e,V,q,P,ZJ\) = {qp - (l-q)z - C(q) + Aqu'(e-p)}f(e)a

where A(8)f(6) is the costate variable. By the Maximum Principle, a necessary
condition for a solution is that (q(6),p(8),z(8)) maximize the Hamiltonian

subject to (19) and (20). Letting p(6)£f(8) be the multiplier for (19), the

Lagrangian is

L(8,V,q,p,2,A,u) = H(6,V,q,p,z,A) + uf(8)[qu(8-p) + (I-q)u(z) - V].

The necessary conditions are

(17) (1-q(8)){1 - u(®)u'(z(8))} = 0,
(18) q(8){1 = A(8)u'"(8-p(8)) - u(8)u'(6-p(8))} = 0,
(19) p(0) + z(8) — C'(q(B)) + A(B)u'(6-p(8))

0 if q(8) =0
+ u(8)[u(6-p(8)) - u(z(6))] 0 if 0 < q(8) < 1

0 if q(8) = L.

The necessary condition for the costate variable is

d{A(8)£(8)]
(20) —————— = u(6)f(8), A(l) = 0, and XA continuous.
de
Before proving the theorem, we show that if 8 < 1 and 0 < q(6) < 1 in a
solution to (CP), then z(8) < & - p(B). Note that (17) and q(8) < 1 imply
u(8) > 0. Since f is also positive, (20) then implies that A(0)f(8) < 0
if 8 < 1. Hence A(0) < 0 if 8 < 1, and z(®) < 6-p(0) follows from equations

(17) and (18).
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Theorem 3: Suppose the hazard function f(8)/[1-F(8)] is nondecreasing. Then
an allocation x: [0,1] > X solves (CP) if and only if it solves the monopoly

problem. Furthermore, q(+) and z(+) are continuous; there exists 8¢ such that
q(8) = 0 if and only if & < 60; and q(+) and p(*) are continuous and strictly

increasing on 8%,11].

Proof: Because (CP) is obtained from the full monopoly problem by deleting
the non-local incentive constraints, we need only prove that any solution to
(CP) satisfies IC. So let x(8) = (q(6),p(6),z(6)) be a solution to (CP).

We first prove that w(x(8)) > 0 for all 6. Define
K(®) = L(9,v(8),q(6),p(8),2(8),A(8),u(8))/£(8). Then the first order

conditions imply the envelope condition (Kf)' = 3L/38, so that
K'f + KE' = Kf' + [Aqu''(8-p) + uqu'(6-p)]f.

Hence K' > 0, since £ > 0, A < U, and u > 0. We know from standard control
theory that K is continuous. Therefore K is nondecreasing.

Now note that K(8) = ﬁ(e)/f(e), where ﬁ(e) is the maximized
Hamiltonian. Because V(0) = u(0), the contract x = 0 satisfies the
constraints (15) and (16) if 6 = 0. Hence ﬁ(O) > H(0,u(0),0,0,0,x(0)) = 0.
Therefore K(0) > 0. The monotonicity of K now implies that
K(8) > 0 for all 6. Since K(8) = w(x(6)) + A(8)q(8)u’'(6-p(8)), and A £ O,
this shows that w(x(8)) > 0 for all 6.

Because m(x(8)) > 0, C(1) > 1 implies that q(8) < 1 for all 8. (see
Proposition 1(ii)). Furthermore, in line with Proposition 1(iii),
if q(8) > 0 on some interval, then q(9+) > 0 for every 6" above that
interval. This follows because (14) would imply V(6+) > u(0), which together

+ +
with q(® ) = 0 would imply the contradiction w(x(® )) < 0. 1In sum, there
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exists 6° such that q(8) = 0 if 6 < 8° and 0 < q(8) < 1 if & > 8°.

Now, in view of Lemma 5, x(0) satisfies IC if the functions q and p are
nondecreasing on (e°,1]. In fact, we will show they are strictly increasing
on this interval. Results in Appendix B imply that q and z are continuous on
[0,1], and that p is continuous on (8°,1]. Given this, we need only prove
that at any point in (60,1) where the derivatives p' and q' exist, they are
both positive. (The implicit function theorem can be used to show that these
derivatives exist almost everywhere,)

We now choose an arbitrary 0 ¢ (60,1] at which the derivatives q', p' and

z' all exist. An expression relating these derivatives is obtained by

substituting for u from (17) into (18) and then differentiating:
(21) (1+A)p' + Bz' = A+ 1 + A'u'(9-p),
where

Au'(6-p)R'(6-p)

A = 2 0, since A < 0 and R' <_0, and
R(6~p)
u'(8-p)R(z)
B = —mmm—— > 0.,
u'(z)R(6-p)

Similarly, we substitute for u from (17) into (19) and differentiate:
(22) C''(q)q" = Dz' = 1 + A'u'(8-p),
where

u''(z)[u(z) - u(e-p)]
D = 5 > 0, since z < 8-p.
u'(z)
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Now, (17) and (20) imply

1 Af?

A' = - —_—

u'(z) f

Substituting this into (21) and (22), respectively, yields

(23) (1+A)p' + Bz' = A + E(8)

(24) C''(q)q' - Dz' = E(8),

where the function E is defined by

u'(t=-p(t)) A(t)u' (e—p(t)) £ (L)
1+ —— - .
u'(z(t)) f(t)

E(t)

Finally, a third expression relating the derivatives is the first order
condition for IC, which can be derived by differentiating (15) and

substituting from (13):
(25) [u(o-p) = u(2)lq' = qu'(8-p)p' - (I-qQlu'(z)z'.

We now show that if E(8) > 0, then p' > O and q' > 0. If p' £ 0, then
z' > 0 is implied by E(8) > O and (23). So (24) implies q' > 0. But then,
since z < 8-p, equation (25) cannot hold if p' < 0, z' > 0 and q' > 0. Hence
p' > 0. Next, if q' < 0, (25) implies z' > 0. But equation (24) cannot hold
if q' < 0, z' > 0 and E(8) > O. Hence E(8) > 0 implies that p' > O
and q' > O.

We complete the proof by showing that E(t) > 0 for all t € (e°,1]. For

o
this purpose, define a function a: (6 ,1] » R by

a(t) = 1 = F(t) + 2(0)f()u'(t-p(t)).
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Suppose a(t) > 0 at some t € (60,1), so that -Au'(t-p) < (1-F(t))/f(t).
Then, if £'(t) < 0,
u'(t-p(t)) [1 - F(e)]f'(t)

E(t) > 1+ —— + 7 .
u'(z(t)) £(t)

Thus E(t) > 0 if £'(t) < 0, since a nondecreasing hazard rate implies that
2

[1-F(t)]£'(t) > -£(t)". On the other hand, if £'(t) > 0, then A(t) < O

immediately implies E(t) > 0. Therefore E(t) > O in either case, which

implies p'(t) > 0. Now, differentiating a and using (18) and (20) yields
a'(t) = =2a()f(e)p'(t)u'"(t-p(t)).

Hence a'(t) < 0, since A(t) < 0 and p'(t) > O.

We can summarize the last paragraph in two results:
o
Result 1: For t e (8 ,1), a(t) > O implies E(t) > O;
o
Result 2: For t € (8 ,1), E(t) > O implies a'(t) < O.

Recall the definition of E(t). We know that on (60,1], the functions p
and z are continuous. Also, by assumption, on this interval f and f' are
continuous and £ > 0. Therefore, since A is continuous with A(l) = 0, we see
from the definition of E(t) that there exists 6+ £ (60,1) such that E(t) > O
for t ¢ [6+,1]. By Result 2, then, o'(t) < O for t e [9+,l).

Since a is continuous, a(l) = 0, and a'(t) < 0 for t ¢ [6+,l), it follows
from Results 1 and 2 that a(t) > O for all t € (60,1]. Finally, then, Result

1 implies E(t) > O for all t e (8°,1). Q.E.D.

Remark 1: The assumption of a nondecreasing hazard rate can be stated in

derivative terms as
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[1-F(8)]£'(8)
1+ 5 > 0.
L£(8)]

However, the proof requires only that,

[1-F(8)]£'(8) u'(6-p(8))
1+ 5 > -
[£(8)] u'(z(8))

This weaker condition has the drawback of depending on choice variables.
Nevertheless, it can still be checked before finding the solution to (CP) if
the right hand side can be bounded above by a negative comstant. For example,

under risk neutrality the right hand side is equal to -1, in which case this

1-F(8)
£(8)

nondecreasing, an assumption which is discussed in [9]), [15] and [16].

condition reduces to the purely distributional assumption that 8 - be

Remark 2: Maskin and Riley [8] use a different regularity condition, which in

the present model amounts to
£'(8) 1 u'(z(06))

2 + 71 /e £(y)dy > 0.
£(6) u'(z(y))

Again, this has the drawback of involving an optimal choice variable, z(6).

Notice that under risk neutrality this condition also reduces to the condition

1-F(6)

that 6 - £00)

be nondecreasing.
6. Conclusion

We have studied a monopoly that strategically bundles two attributes,
quality and warranty coverage, in order to practice partial price
discrimination by screening heterogeneous consumers. The fact that we
considered two attributes, rather than one, meant that even though the

consumer types were nicely ordered by willingness to pay, we could not assume
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that higher type consumers would receive more of both attributes. A
consequence of this was that we could not neglect nonadjacent incentive
constraints. Nevertheless, we were able to characterize the solution, to
determine that the profitability and the price of an attribute bundle
increased in type, and to find various preference and distributional
assumptions under which the two attributes would also be monotone in type.

The assumptions we have made are strong but, for the problem at hand,
reasonable. Probability of breakdown is a natural quality attribute, and
NIARA is a natural preference assumption. A less natural, but not
implausible, preference assumption has been that a consumer's marginal utility
for warranties is independent of his type. Also, problems of moral hazard
have been assumed away; whether or not this is appropriate will depend upon
the context.

We believe that many of the techniques in this paper can be used to
analyze other monopoly bundling problems. However, assumptions analogous to
ours will not always be appropriate. When studying, for example, a
multiproduct monopoly operating under certainty, it is probably not sensible
to assume that preferences exhibit a property akin to NIARA. Nevertheless, it
is almost certainly the case that clean results will only be obtained in
multidimensional screening problems, or more general adverse selection
problems, when preference and/or distributional assumptions are found which

determine the direction in which the incentive constraints will bind.
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APPENDIX_A

Lemma Al: The function defined by

u(t) - uls)

h(s,t) =
u'(s) = u'(t)

if s # t, and by h(s,s) = 1/R(s), is continuous. Moreover, for s # t,

u''(s)[h(s,s)~h(s,t)]
(A1) h (s,t) = h,(t,s) = > 0.
u'(s) - u'(t)

If R' = 0, then h is the constant function 1/R.

Proof: By L'Hopital's rule,

u'(t) 1
lim h(s,t) = lim j————| = .
t > s t » s|l-u'""(t) R(s)

Hence h is continuous. The symmetry of h implies hy(s,t) = h,(t,s).
Straightforward differentiation of h yields the formula in (Al).

Differentiation of

[ u'(y)ay
h(s,t) = " (for s # t)
IS R(u'(y)dy

with respect to t yields the alternative expression

(42)  hy(s,0)u' ()" (0]% = w'(e) [ER(Gy) - R(OIu'()dy,

which is nonnegative because u' > 0 and R is nonincreasing. This equation
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also shows that h is constant if R' = 0. Q.E.D.

+ +
Lemma A2: At a point (8 ,0,p,z) satisfying 6 < 6 and z { 6-p, the

derivatives of the function H defined in (8) have the following signs:

(1) H1(9+,6,p,z) < 0;
(ii) H2(6+,6,p,2) < 0; .
(iii) H3(6+,6,p,z) > 0; and
(iv) H4(9+,9,p,z) > 0.
Proof: (i) Differentiating H yields
+ u'(z) - u'(e-p) "
H,(8,0,p,2) = - h, (8-p,8 ~p).

u'(z)

+
Therefore, since z £ 9-p and h2 > 0, Hl(e ,G,p,zi) < 0.

(ii) Differentiating H yields

. u''(8~p) +
H2(6 »0,p,2) = {—————|[h(6-p, 8 -p) - h(6~-p,z)]
u'(z)

—;'(z) - u'(G-p;W
+ hl(e-p,z)

N CO R

_ﬁ'(e-p) - u'(2) ] +
+ h,(6-p,6 -p).
B u'(z)

The third term is nonpositive because h; 2 0 and z £ 6-p. The sum of

the
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first two terms is, using (Al),

u"(e-p) +
——————{[h(6-p,® ~p) - h(&-p,z)]
u'(z)

uvv(e_p)

u’(z)

This expression is nonpositive because h2

(iii) Differentiating H yields

+
H3(6 ’e’p’z)
Hence (iii) follows from (i) and (ii).
(iv)

Differentiating H yields

A
u'(z) - u'(8-p)

RCH

4 ae:P’Z)

u'(z)

—u'"(z)u’ (6-p)|
+

u'(2)*

[h(6-p,0-p) - h(&-p,z)].

>0 and 6 < 6", Hence (ii) holds.

+ +
1 - Hl(e »8,p,2) — Hz(e »0,p,2).

hz(e—p,z)

[h(8-p,8 -p) - h(6-p,z)] + 1.

+
Because h, 20 and z £ 6-p £ 0 -p, the first two terms are nonnegative. Hence

(iv) holds. Q.E.D.

Lemma A3:

H3(e,e,PaW'P) ﬁ H4(9ae,PsW’P)-

If the risk tolerance functiom p = 1/R is concave, then
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Proof: Let z = w-p. Note that p(y) = h(y,y) and p'(y) = 2h1(y,y).

Hence, by differentiating H and using (Al), we obtain after some manipulation,

u'(z) - u'(6-p) h(6-p,z) - p(6-p)
(H3‘H4)(e,e,P,z) = P'(G‘P) -
u'(z) p(z)

p(z) - p(6-p)
+

p(z)

1
= —————— {[u'(2) - u'(8-p)1p(z)p'(8-p)
u'(z)p(z)

~ [u(8-p) - u(z)] - u'(8-p)p(6-p) + u'(z)p(2)}.

The term in curly brackets is equal to

fg_p[- u'"(y)e(z)p'(8-p) ~ u'(y) - u''(y)e(y) - u'(y)e'(y)ldy,
which in turn is equal to
3)  J)Ple2)0"(8-p) = p(y)e’ (1) 1[-u""(y)1dy.

Because p' > 0 and p'' < 0, the integrand in (A3) is nonpositive. Q.E.D.
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APPENDIX B

Suppose x: [0,1] » X is a solution to (CP) in the class of piecewise
continuous functions. Then, by the definition of piecewise continuity (see
footnote 10), x(+) is continuous from the right at 8 = 0 and from the left at
8 = 1. We show here that at any 6 £ (0,1), q(+) is continuous, p(e) is
continuous if q(8) > 0, and z(e) is continuous if q(8) < 1.

Fix 6 € (0,1). By the maximum principle, the point (q(8),p(8),z(8))
maximizes the Hamiltonian H(8,V(8),q,p,z,A(8)) subject to the constraints (15)
and (16). Since V() and A(e) are continuous, there must exist another
solution to this problem if x(e¢) is discontinuous at 0. We must therefore
show that all points (q,p,z) that maximize the Hamiltonian subject to (15) and
(16) have the same value, q(8), for q, the same value for p if q(8) > 0, and
the same value for z if q(8) < 1.

Let V = V(6) and A = A(B). Maximizing the Hamiltonian subject to (15)

and (16) can be performed in two steps:

(BP1) ¢(q) = max qp - (l-gq)z + Aqu'(6-p)
Ps2
subject to qu(8-p) + (I-qlu(z) = V;
(BP2) Max ¢(q) - C(q).
0<qg1

We shall show that (i) problem (BP1) has a solution for every q € [0,1], and
all solutions have the same value for p if q > O and the same value for z if q
< 1. We then show that (ii) ¢ is continuous and strictly concave. Since C is
convex, (ii) implies that (BP2) has a unique solution. Hence every solution
to the Hamiltonian problem has the same value, q(8), for q. Then (i) implies

that every solution has the same value for p if q(8) > 1, and the same
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value for z if q(8) < l. We now prove (i) and (ii).

(i) We know that (q(8),p(8),2z(6)) satisfies the constraint in (BP1).
Therefore, since u' > 0, a unique z* exists such that u(z*) = V. Let
p* = 8~z*, Then (p*,z*), the full insurance outcome, is always feasible in
(BP1). If q = 0 then (p,z) solves (BP1) if and only if z = z*, and if q = 1
then (p,z) solves (BPl) if and only if p = p*. It therefore remains only to
show that (BPl) has a unique solution if q £ (0,1).

We now assume q £ (0,1), and let g(p,q) be defined by
qu(é-p) + (1-q)ulg(p,q)) = V.

Then g(p*,q) = z*. Recalling that u is defined on (a,~) and that u(x) » - =
as x > a, there must exist b e (p*,»] such that g(p,q) is well-defined if and
only if pe (=,b). The function g is twice differentiable on (-=,b) x (0,1),

with

qu'(6-p)
(B1) gl(P,q) = > 0, and
(1-q)u'(g(p,q))

qu' " (8-p) u' ' (g(p, g, (py )
gll(p,q) = - - > 0.
(1-q)u'(g(p,q)) u'(g(p,q))

Problem (BPl) can now be rewritten as

(BP1') ¢(q) = Max qp - (1-¢)glp,q) + Aqu'(é-p).
pe (—,b)

The second derivative with respect to p of the maximand, -(1-q)g;;{(p,q) +
Aqu'''(8-p), is negative, since 0 < q < 1, g;;(p,q) > 0, A < 0, and (by NIARA)

-~

u'''(6~-p) > 0. Hence, any solution p to (BP1') is unique, in which case
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(p,z) = (p,g(p,q)) is the unique solution to (BPl).
It remains to show that (BP1') has a solution. Differentiating its
maximand with respect to p, and using (Bl), yields
u'(6-p)
alp,q) = q |l ~ ——————— - a'""(0-p)| .
u'(g(p,q))
Since 6 - p* = g(p*,q) and g > 0, if p > p* then u'(6-p) > u'(g(p,q)). Hence
a(p,q) < 0 if p > p*. If p < p*, then g(p,q) < z*, so that
u'(6-p)
a(p,q) > qll = ————— - Au'"'(6-p)|.
u'(z*)
There exists p**% < p* such that the right hand side of this inequality is
positive if p < p**, since u'(8-p) strictly decreases as p + — * and
u''(6-p) + 0 as p+ — », (Note that lim u''(t) = O follows from u''' > 0 and
tao
u' > 0.) Hence a(p,q) > 0 if p < p**, so that (BPl') has a solution in

[p**,p*]. This proves (i).

(ii) Since the solution to (BPl') for every q is in the compact interval
[p**,p*], and since this interval does not vary with q, the maximum theorem
implies that ¢ is continuous on [0,1].

Now, fix q € (0,1). We return to (BPl) to show that ¢'' (q) < 0. Since
the (p,z)-gradient of the constraint in (BPl) cannot be zero, constraint
qualification holds. Hence, a multiplier ;(q) exists such that the

A A

solution (p(q),z(q)) satisfies the first order conditions
(B2) -1 + pu'(z) = 0

(B3) I - Au'’(6-p) - wu'(6-p) = O
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(84)  qu(8-p) + (1-q)u(z) -V = O.

Totally differentiating with respect to q yields

— . - A VTR T B ]
wa''(z) 0 u'(z) z'(q) 0
0 AN (Bp) + wa''(8-p)  —u'(8-p)| [p'() | = 0
|(1-g)u'(2) ~qu' (8-p) o | @] e - aep).

Solving for z'(q) gives

a'(z)[u(8-p) = u(z)1[Au'""(8-p) + mu''(8-p)]

(B5) ;’(q) = — = 7 =3 = = =

—uqu''(z)u'(8-p)” - (A~q)u'(z) " [Au'''(0-p) + wu''(8-p)].
By (B2), ; = 1/u'(;) > 0. Note that 8 < 1 implies A < 0. Therefore, since
u''' > 0 (by NIARA) and u'' < 0, the term [XU"'(G‘;) + ;U"(e';)] is
negative. Hence the denominator in (B5) is positive. Because A < 0,
equations (B2) and (B3) imply that 6 - ; > ;. Therefore, the numerator in
(B5) is negative. We conclude that ;'(q) < 0,

Now, by the envelope theorem and (B2),

. . u(e-p) - u(z)
$'(q) = p+z+Au'(0-p) +

u'(;) .

Differentiating again, and using (B3) in conjunction with (B2), we obtain

~a" ' (2)[u(8-p) - w(z)]z'(q)

u'(;)2 .

¢v|(q) =

Thus, ¢''(q) < 0, since z'(q) < 0 and 6-p > z. This proves (ii).



FOOTNOTES

1 More generally, p; and wy could be random variables. But a random w; could
be replaced by its certainty equivalent to increase profit without violating
IC. A more intricate argument, based on one in [13] and requiring NIARA,

shows that p; is also not random in an optimal allocation.

Z 1t (a) the warranty is greater than the price, (b) the firm cannot restrict
the quantity a consumer purchases, and (c¢) a consumer can (circumspectly)
break a product without invalidating the warranty, then a consumer would buy
and break an unlimited number of units. This moral hazard problem would
force w < p even in the competitive case. In the monopoly case this problem
could be handled by imposing w  p as a constraint, which would probably not

change many results.

3 Let X = 0 and f, =1, and let the multipliers in (M') be written

as fixij for 0 < i < j { n. Then the Lagrangian for (M') is

e
n

n n
izlfin(xi) + iZo jgifixij[U(xﬁ’ej) - U(xi,ej)]

]
he~13

-1
fi{n(xi) + U(xi,ei)‘z.fjfi Mi T z_xiju(xi,ej)}

i=1 j<i j>i

n
- 'z XOiu(O).
i=1

The expression in curly brackets is essentially the Lagrangian for (Mi),

. _ -1
with p, = Z f.fi in.

i<i 3



4 Most commonly used utility functions are in the HARA class, which is

characterized by linear risk tolerance.
> See Arrow [2] for why relative risk aversion is generally thought to be

nondecreasing.

6 Relative risk aversion is r(y) = y/p(y). Hence r' > 0 if and only
if yo' <{p. But p concave implies that yp'(y) <p(y) - p(0). Hence

yo'(y) <p(y), since p(0) > 0. Therefore r' > 0 if p is concave.

The cost function in this example violates our assumption that C(1l) > 1.
This is why qq is at its maximum possible value, Q3 = l. We chose C = 0
deliberately so that the example would also illustrate an optimal auction for
one risk averse bidder in which the probability of winning actually decreases
in the bidder's evaluation of the object being sold. See [8], [10] and [13].
8 The solution is (Pl’ql’wl) = (4456, .737, .275), (pZ’qZ’WZ) =
(.482, .678, .345), and (p3,q3,w3) = (.835, 1.000, ~-). Then
U(x5,03) = -.880 and U(x,64) = -.870.

9 In the unaltered example, U(x3,63) = -,901 and U(xl,e,) = -.902.

10 Define g: [0,1] + R to be piecewise continuous if and only if g is

continuous from either the left or the right at every 8 € [0,1], and the
points of discontinuity are finite in number and contained in the open

interval (0,1). Optimal control methods require piecewise continuity.
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