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ABSTRACT

This paper investigates assignment of tasks characterized by a
parameter-matrix in a network of functionally similar computers. This is
formulated by a periodic review moael utilizing Boolean variables, based
on optimization of an "utility" function over a constraint set. A computa-
tionally efficient integer-generalized transportation model is applicable
due to existence of relative efficiencies of computers for jobs. Since a
job is to be processed exclusively by one computer, it is shown that an
optimal solution to the problem posed above, is a basic feasible solution
to a generalized transportation problem that is slightly modified. Then
a branch and bound solution procedure is used *to prevent splitting of a

job among computers. An algorithm with computational results is also provided.






1. INTRODUCTION

Many new and interesting network topologies are presently in the
design or implementation phases of development. A number of models have
been used to help with node location and link capacity decisions. (See,
for example, the article about ghc ARPA network by Frank, Kahn, and
Kleinrock) {15]. This paper examines the operational problem of dynamic job
allocation in a network with functionally similar nodes. A computer
network is an interconnected group of independent computer systems which
communicate with each other and share resources such as programs, data,
hardware and software. A survey of current networks, the number and
types of computers existing in these networks, their topology, functions,
management and other details are given in a survey of networks by
Peterson and Veit [22], A detailed biblicgraphy of computer networks are
given at the end of the above paper. Theoretical 1insights of
computer networks are given in '"Computer Networks' edited by Randall
Rustin [23],

Some networks have as a primary goal the linking of functionally
different and specialized computing facilities to avoid duplication of
unique hardware configurations. Global job scheduling in such environments
will not normally be a difficult problem because most programs would be
designed for only one of these specialized systems and the network would be
used to distribute the unique capabilities of each node over a large area,
Of coursc each computer would have to schedule its own local job mix and
allocate its resources while satisfying the network demands.

In a network of fuﬂctionnlly similar nodes the allocation of jobs can

become a major problem. The nodes may be distributed over a wide geographical



area or be localized. An example of this type of design would be a set

of cooperating general purpose computers in which each machine could solve
many of the problems submitted to the network although it would probably
hold a competitive advantage over other computers on a specialized subset
of the jobs. Load sharing betwecen machines would be common in this design.
A program initiated at a node that was temporarily overloaded would be sent
to another node having similar functional capabilities but which was
temporarily underloaded,

Although load sharing implies nodes that have many identical functional
capabilities, it does not imply that the physical equipment need be identical.
Obviously the easiest way of constructing a network designed for a high degree
of load sharing is to use identical operating systems and identical hardware
configurations at each node.. However, equipment families such as the IBM
360 and 370 lines strive to provide functional compatibilities across a wide
range of hardware models. Standardization of higher level languages is another
trend that will improve the prospects of load sharing in the future. For
example, the Carnegie-Mellon University Computation Center uses & mini-computer
as the central communications switch linking a large number of terminals and
remote input devices to an IBM 360/67 and a Univac 1108. A user may write

and debug a FORTRAN precgram on the interactive time-sharing systems residing
on the 360/67 and then execute long production runs on the 1108, Alternatively,
a user may run the same FORTRAN progzram on either machine depending on the
primary memory requirements of his job., 1In addition to load sharing, local or
distributed networks of functionally homogencous systems may increase total

system reliability, provide better communication among users, and provide

peak computing power for short periods to a single task if it wmay be split



into parallel subtasks. (See Bowden [9]).
2. THE MODEL

Consider a network of n computers, to be called hereafter as nodes,
and a set of links that span these nodes. Jobs will be characterized by a
vector of requirements, Bjk’ in which each of m components. is an estimated
requirement of job jk.the j-th job to be processed originating from node k.
for a resource such as CPU time, primary memory, a certain compiler. tape
units, or secondary memory. The amount of processing required by job jk
at node i will be of special interest and will be denoted by pijk' The
user gives an expected processing time Py jk assuming the job jk is
preferred to be processed at node k itself. He also gives a requirement
vector indicating the storage space needgd. other 1I/0 requirements etc. The
network 'supervisor' (a hardware) can convert all these requirement specifica-
tions in terms of those parameters for any other computer i if it is

decided that the job j, 1is scheduled fer processing at node i for any

job category (category decided by the requirement vector given by the user).

In particulér, the processing time pkjk (given) of job jk at node k can be
converted to that at any other node i by multiplying this Pl ik by mijk’ a

factor which gives the speed of computer k relative to computer i, for job
jk(mkik = 1, so that Pijk - mijkpkjk)' The discussion of the case where

this conversion factor mijk is independent of jobs jk and depends only upon

nodes k and i has been dealt by this author and J.W.McCredie, 0.I.Mikhail [1].

However it was seen that this assumption is crucial in the optimization as

the job jk plays a vital-role in a network when multi-processing is quite

common. This paper eseentially deals with the more general case where
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muk where Iy and zk are two distinct jobs submitted at node k.

. - . . 3 4
However, if mijk milk for all jobs Jk, zk submitted at node k the problem

M jk

reduces to that given in [1]. The functional capabilities of node i will

be represented as a vector gi in which each of the m elements will be the

capacity of the 1i-th node with respect to one of the m resources. Job i will

be deemed compatible for node i 1if and only if R,

3k < gi. The following

definitions will be used in all of the formulations of the allocation problems.

n: total number of computers in the network

1=1{1,2,3,...,i,...,n}
the set of all terminal nodes, i(sources where the jobs are actually
processed)

K=1{1,2,3,...,k,...,n}
the set of all originating nodes, k (origins)

J= {1,2,...,jk,...,gk}

the set of all jobs j submitted at mode k and still in the n=twork

n
J = {1,2,,_,,g1,g1+ 1,...,g1+ gz,...,kilgk}, the set of all jobs
N = |J], the cardinality of the set J, the total number of jobs in
the entire network
i: a terminal node (a computer in the network }, ie¢ I

k: an originating node (a computer in the network), k ¢ K

(Note: i can be equal to k.)

j-th job submitted at k-th node, ¢ J

Ik k

a vector of m components T, where r, is the estimated w-th
jkw jkw
requirement of job jk

c . a vector of m components Ciw where Ciy 1s the maximum capacity
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of the i-th node with respect to resource w
a constant multiplication factor available at the network center
which gives the relative speed of processing of job jk at
computer 1 to that at computer Kk,

processing time of job

Jk at i-th node (pijkz

"k Pk
utility (a measure defined and known based on cost. time priority.

etc.) of job jk processed at 1i-th node

time to transmit job jk to node i

Note: It will be a very high time if it is impossible to “ransmit
job jk to node i due to either nonexistence of link
(i,k) or due to the capacity of link (i.k). (We assume
tkjk = 0.)
capacity of link (i,k)

expected waiting time of job jk at ~ode i (delay)

cost per unit time of processing at node i (includes I/0 cost)

cost per unit time of transmission through link (i.k). It is

assumed that q&k = 0 ) (This cost includes both onward and return

transmission),.

=1 if job is processed at node i

Iy

0 otherwise.

total amount of processing time currently assigned to node i
(periodic decision time). Generally T, = T for all 1 ¢ 1 where

T 1is the planning horizon - (periodicity)

expected time for onward transmission to node i from all other nodes
whenever node i 1is idle. 1If one assumes that the transmission time

is much smaller than actual processing time, then the computer i never
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waits for a job to be transmitted. In other words, by the time
the i-th computer has processed a job, the next job assigned to
be processed has already been transmitted. This implies that
TRi= 0. This assumption is a reality in every computer network
in USA [ Zb 1.

TT. = T.~- TRi (note if we assume that TRi= 0 as mentioned above then

TT; = Ti).

The following sections of the paper investigate different approaches to
the problem of dynamically allocating jobs to the different nodes. The
general philosophy is one of periodic review. Jobs are submitted to the
network and an allocation decision is made periodically. (A discussion of
this periodicity, T, is given in section 7). At each decision point
all jobs currently in the network are assigned by the algorithm under study
so that some objective function is improved and all constraints are met.

All the computer networks that are existing (and will be installed in future)
{22] can broadly be divided into mainiy three categories as far as network

management and users are concerned.’ [hese are given below:

(i) Governmental Organizations (e.g. ARPA, OCTOPUS. DLS. etc.)
(ii) Quasi Governmental and educational institutions (e.g. MERIT,
TUCC, TSS, etc.)

(iii) Private and Commercial enterprises (e.g. CYBERNET, etc.)

For those wusers under category (i), the network is already ecstablished for
them and hence cost is of less or no concern. Their primary objective is to
get the maximum number of jobs done or get the maximum utility of the network,
which we call '"maximizing thruput" or "maximizing total value.' These users

are also interested in minimum turnaround time. For those in the second



category a total budget might be allotted and they may get an appropriation

of the budget for their use. Thus these users in addition to the above two
questions, give less weight to cosf considerations. But the users and manage-
ment in the third category which operates purely on a commercial basis give
very high importance to costs of computer time and are prepared to wait a
little if it is comparativelv inexpensive. Thus we will have three objective
functions given later as (10). (16), and (18) which éanvbe combined to one
utility fupction as given in (19). Assume that any user (or management)

can come up with relative preference factors (weights) uje Uy, Ug, for these

3
three objectives, such that 0 < uy < 1 and - 1 so that an

i=s1 *
overall objective utility function as given by (19) is derived. Then this
function can be optimized based on a constraint set given later, (7)-(9). In

the rest of the paper these different formulations and solution procedures are

piven,

3. INTEGER PROCRAMMING FORMULATIONS

A primary consideration for the mamagement of the network is to maximize
the total number of jobs processed at various nodes within a given chosen
period when a periodic review system is implemented. 7Two cases aré considered.
For the first, all jobs are treated equally, and for the second, a value for
cach job is given based on the type of customer, importance of job, etc., In these
two rwdels the constraints are mainly compatibility of the job at a node to
be processed and secondly the fixed time period which is available for each

node.  This model will be formulated as a 0-1 irteger program (IP). Instead
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of specifically including the compatibility constraints as constraints
in the IP formulation, the corresponding variable will be defined to be
zero. In other words, if Bjk > gi for node i ¢ I, then Xijk= 0. Due to
this device we are left with only time constraints. Further we do not want
a job to be processed at more than one node. Thus the IP formulation for
cax<imum thruput from the management point of view when all jobs valued equally
will be:

(1) Maximize < ) Sox,.
iel keK jkeJk 13k

subject to

(2) sz ' EJ pijkxijk < ’I‘Ti for each i ¢ I
ek JpeJy
(vhere Py = m oy ijk)

; 1 £ h j J and k ¢ K

(3) i:I xijk < or eac e Jy
R., < C, is implicit)
(R = & :
(It may not be feasible for all jobs to be processed within
the available time.)

(4) and xijk = 0, 1 for ieI, jkCJk
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In this formulation we need only ijk’ the processing time needed for
each job j, at the originating node k. However it is possible to find Pijg
needed in (2) with the use of the conversion factor mijk existing at the
network. Thus the data required to compute the processing times of all nodes
icI can ge generated internally by the network "supervisor'". There can be
times during the planning horizon T. when node i may be dedicated to specific
users of;planned or maintenance. If such times. if anyv. are deducted we have
available time Ti for icI. Sometimes, a node i is idle since the jobs ear-
marked to be processed at i from other nodes have not reached due to trans-
mission. Such times can be accumulated within planning horizon T and this
time is generally called the '"time for onward transmission to node i from
all other nodes whenever node i is to be idle." Based on theoretical deve-
lopments given by Jackson {19], Conway, Maxwell and Miller [10], or Frank [14],
estimates of such expected nonoverlapping transmission times are obtained
based on past data of the queueing process. Generally TR, is comparitively
much smaller to I. Since the intent of the paper is not on the time-dependent
queueing précesses, these are not discussed here and interested readers can

get relevant materials from the references given above. Thus the available

time for the i-th computer is TTi = TL- TRi as given in equation (2).

A slight modification to the maximum thruput formulation is to
maximize the total value of the jobs. Instead of assuming that all jobs

are treated equally, values are assigned for each job at each node based

upon (management's)customer preference. job priority. node preference and
other management considerations. If a job jk is not compatible for node i,
then the variable xijk is set to zero as mentioned earlier. The objective

function for this formulation becomes:
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(5) Maximize

’ A
1eI keK jkeJk

Computer codes for (0,1) programs are available to solve these two
problems. (e.g. Balas [7], CGeoffrion [17]). However the number of variables
which we are considering is so huge that it is computationally infeasible
bv these IP codes. (e.g. In a network of 5 computers and 100 jobs in cach
we have 2500 variables). The procedure given in Section (5) is not only
computationally feasible but also efficient.

4. NETWORK FLOW PROBLEM

It is easy to see that both the previous problems can be formulated as

network-flow problems [1], if constraint (4) is removed from the formulation
for cadljngk and k ¢ K. “Also, it is known that the flow rroblem is
computationally more efficient as compared to a 0-1 integer program. If the
flow problem yields a solution which satisfies constraint (4) for each job,

then the solution is Optimai for the 0-1 problem and fs computationally efficient.
However, the formulation has no guarantee that a job will not be processed
(split) at more than one computer since % jk may be fractional. If it is not
split, then the minimal cost flow problem is equivalent to max thruput.

Thus if we are satisfied with a nesr opitmal solution, we can manipulate the

solution by some heuristic and eliminate the spiits.

5. AN INTEGER GENERALIZED TRANSPORTATION PROBLEM

The main drawback of the network flow problem [13] was the splitting of
a job jk to be processed at more than onc node. If this problem is formulated

as an ordinary transportation problem (OT?) with rows corresponding to

fananhin e SR T e - .y e gr e e ——T O e e L e
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computers ang‘columns corresponding to jobs then due to totally unimodular
nature of the OTP, the solution will be all integer. However, since each

job has to be processed by only-one source, we need exactly one basis element
per column (job) whose value is the column total. This special kind of
transportation problem has been discussed by Srinivasan and Thompson [207],

An implicit enumeration approach was used by DeMaio and Roveda {11] for

solving the same problem, It was shown [ 26] that the former approach is compu-
tationally more efficient than the later; in view of the fact that the

number of rows is much smaller than the number of columns in the OTP Tableau,
However, neither of these approaches are feasible since the relative efficiency
of the computers are job dependent. In other words mijk is not always

equal tom when j # g . Hence the ordinary transportation model is

not applicable in this e¢nvironment. Due to the presence of relative

efficiencies m, we will have a generalized transportation model. (GTP)

ijk’
Consider the set of computers (nodes) I = f1,,..,n} having a fixed

available processing time'TTi= (T .- TRi) as given in Equation (2) and a set
i

n
of jobs J = {1,2,...,g1,g1+1,...,gﬁ+g2,..., by gk} with !J’ = N,
k=1

(| | represents the cardinality) with known demands of processing time
pijk = mijk . pkjk . In the nomenclature of the Generalized Transportation
Problem (GTP) [ 2] 1let us use only two subscripts, i for rows i e I

(computer time constraints) and j for columns for j = J (jobs).

Thus with this two subscripted notatio = j : i K
P n pijk pij where job Ig is replaced

by job j.. It .is to be noticed that we also know the originating node k
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since the valug of j (j=1,...,N) can identify the node k. Thus the model II,
viz, maximize thruput by maximizing total value given by the objective

function (5) and constraints (2)-(4) will be

(6) Minirize ZV = z

Ci .xi .
iel jey Y

~

where ¢, . = -v.. (In, rodel I, v,. - 1 for all i,j)
ij ij ij -

Subject to the constraints

< T ie I
(7) 'Z pijxij < Tifor ie
jed

where TT, = T, - TR,
i i i

(8) by Xi' < 1 for je gJ

iel

(9 xij = 0or 1l for iz I, je J.

Following the GTP tableau terminology given in GTP literature [2,8,12]
create a slack column N + 1 without a constraint codresponding to this column
and a fictitious (slack) row (computer” n + 1 with abundant available time
TTn+1' Thise fictitious computer, thus can process any job that can not be
A
processed by any existing source i ¢ I. To convert problem (6)-(8) to the stan-
dard GTP format [2,12] as presented by problem (10)-(13), the following are

defined.

Sets: I' =1 U {(n+l)} and J' = J U {(N+1)}

pij =1 for i =n+l and j ¢ J'

cij = M(a large positive constant) for i = n+l and j = J
= . = -\ 3 1 i =

pij 1. cij M; for i ¢ I' and j = N+l

TTn+1 = M' (a large positive constant)
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With these additional data defined above, we get an equivalent problem (10)-(14)

given below in the standard GTP format, which ensures always a feasible solution.

(For details see [2,12]).

(10) Minimize Zv = 5 R

i c.,.X..
o7t s 7t 1] 1]
iel’ jeJ

subject to the constraints

11 z ..X.. =TT, for ieI'
(11) jeJ'le ij i €
(12) = x,. =1 for jeJ

ieIl 1J

(Note that we are not putting j =z J' above)

(13) xij >0 forieI' and j e J' and

(14) =0, or 1 for i 1', je J

=
I

(Note that Xi,N+1 can be fractional)

The problem (10)-(13) is a standard CTP, and hence can be solved by the
"generalized stepping stone method" as shown in [8, 12]. We assume the reader
is familiar with the usual terminology of GCTP [2.8,12], that a cell 1is an

index pair (i,j) with row (computer) i ¢ I' and column (job) j ¢ K', a

basis B to the problem (10)-(13) is a collection of (™ + N + 1) cells G

defined as a one-forest (see definition (11 )in [2]) consisting of mutually
disconnected one-trees where each one-tree, a tree with one extra edge, contains
exactly one cycle or one loop [2,8,12]. (We follow the terminology used in

[2], though similar terminologies are used in [8,121. A solution X = {xij]

is basic if Xi5 © 0 for (i,j) ¢ B. A basic solution is feasible if the [x. .}
feasible 4 5

satisfy the constraints (11)-(13). It is well known [8,12] that the generalized
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stepping stone algorithm yields a basic optimal solution to the problem

(10)-(13).

DEFINITION 1. We define P to be the standard GTP (10)-(13)and IP to

be the Integer Generalized Transportation Problem (IFTP) (10)-(14). (note

that x. need not be integers). We define a basis to (10)-(l3) to be
i, NN+1

unique-sourced., if corresponding to every column (job) j = J, there is a

unique source (row) ij such that (i,j) ¢ B if and only if i = ij.

It is shown in [2, 8, 12] that B has n+N+l cells. Since a unique-sourced
basis has exactly one cell for each column j ¢ J, it follows that the slack
column (N+1) mumst have the remaining n+l cells; i.e. (i,N+l1) ¢ B for every
i ¢ I'. Thus the unique-sourced basis consists of N+l mutually disconnected
one-trees where each one-tree contains a unique loop (a cell in the slack
column) [2]. It is known that the solution of a GTP need not be all-integer

since the total-unimodularity property is not valid due to the presence of

coefficients pij in (11). However since each column total is exactly unity

and we are requiring a unique-sourced basis, each Xij for every j ¢ J is

exactly either O or 1. Thus, for ea¢h j ¢ J there will bebonly one xij which
gets a value of 1, say i = r, so that every other Xij’ i #r will be identically
equal to zero. Thus the solution X = {Xij} will be all-integer and hence we

call it as integer generalized transportation problem (IGTP). It is to be seen

from [2, 8, 11], that the two-tree (see equation 10 in [2]), created, while
pivoting, consists of two loops (generally) which show the computational efficiency
since only cells of the two-tree change while the rest of the basic cells are
not affected (S-e algorithm 4 of [2]). (We don't have cycles (definition (2)
in {2]) at the optimum.)

Theorem 1, below, establishes the relationship between problems P (GTP)

and IP (IGTP).

L Y T T A WP e r— R L o A
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THEOREM 1, There is a one-to-one mapping betwcen feasible solutions
to IP and unique-sourced basic feasible solutions to P,

PROOF: Consider any feasible solution {xij) toIP . By (12)-(14),
and since the column total for cach jgJ is =1, it follows that
corresponding to every job je¢ J there is a unique computer ij such that

X > 0, if and only if i = ij. Corresponding to this solution let B be

defined to be the set of (n + N+ 1) cells {[(ij,j) for je J] o [ (i, ™1
for ie Tl1}. Thus, the solution {xij7 is basic since 25T 0 for

(i,j) # B. It is a feasible solution for D since {xij} is feasible for IP,
This correspondence is unique, since B is defined uniquely,

To prove the converse, let us assume that a unique-sourced basic
feasible solution {xij} to P exists. By (12) and (13) and due to
unique-sourcedness, it follows that corresponding to every column ja J
there is an unique row ij such that xij =1 1if i = ij and zero elsewhere.
Thus (14) is satisfied and from (11)-(13) it follows that {xij} is asible
to IP as well, Further this correspordence is unique due to (11)-(14),

By Theorem 1 and from the fact that the problem P and IP share the

same objective function (10) it is easy to see the following:

COROLLARY 1. There is a one-to-one correspondence between optimal solutions

to IP and those optima among the unique-sourced basic feasible solutions to

We will now provide a solution procedure to IP 1in parallel to ;he
subtour-elimination algorithms for the travelling-salesman problem [23].
This alogirthm is basically a branch and bound method which begins by
partitioning the set of unique-sourced basic feasible solutions and
then calculating the lower bounds on the costs of all solutions in a subset

and {mproving the lower bound until we get the optimal solution. The

P.
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initial bound i§;found by solving the ordinary GTP given by (10)-(13)
[2, 8, 12]. 1If the basic optimal solution is unique-sourced, then we have
an optimal solution to IP (Corr. i). Assume it is not. Let t be one of
the columms j ¢ J which has more than one cell € B and let (s,t) be one
such cell. (Though any such cell (s,t) can be chosen, a heuristic for a good
choice of (s.t) for computational efficiency is given later). This choice of
(s,t) leads to two branches (sub-problems):

(a) the subset in which (s,t) is a cell in the optimum to 1IP

given by a unique-sourced basic feasible solution of P.

(b) the subset in which (s,t) is not a cell in the optimum to 1IP.

The two new GTP corresponding to (a) and (b) are solved to determine
the lower bounds for all unique-sourced basic optimal solutions in their
respective subsets. 1If the optimal solution courresponding to any one
subset is unique-sourced and the cost of this solution is less than or
equal to the lower bounds on all other subsets then such a solution is
optimal. If not, then one seleéts that subset having the smallest lower
bound and branches again into two subproblems. Eventually this algorithm
assures of finding an optimum unique-sourced basic optimal solution to IP due
to Corollary 1.

Certain discussions of the above procedure are now relevant. First,
it is clear that the procedure for branching on a non unique-sourced basis
excludes that basis from the two subsets but does not exclude any unique-souw ced
basis. The algorithm converges infinite number of steps since the total
number of bases is finite and excludes at least one basis at each it=ration.
Secondly, the branching procedure results in a partition of the unique-

sourced basic feasible solutions in that subset and hence the algorithm
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can be expected to be computationally efficient, since the size of the

problem of each subset keeps decreasing as shown in the following sentences.
Third and most importantly, for the subproblem with (s,t) required to be in
the optimal solution, by unique-sourcedness (s,t) is the only cell in colum t.
Hence we can eliminate column t from further consideration and thus modifv TTS
by TTS- P and solve a reduced GTP. This reduction in TTS,may further
simplify the problem since the cells (s,t) for which the value ps). is greater

than the new value of IT cannot possibly be in the optimum solution (such

cells can be eliminated by defining ¢ = ®)
sj )

subproblems of branches can be obtained by applying the cost operator [3]

Fourth, the optimal solutions to

a part of o i : . X

(ap perator theory [3,5] which obtains optimal solutions due to simul-
taneous variation of several parameters of a given problem when the optimal
solution of the same problem is known), so that the new optimal solution of

that problem.from which the new branches are obtained. Furthermore, the

backtracking steps of the branch and hound procedure may also be done in this

way. Fifth, a non-unique-sourced basis can have at most n_ columns (the

number of computers in the network) which contain more than one basic cell,
since the total number of basic cells inn + N + 1 and there are N + 1 columns
which need at least one basic cell per column [2]. Note that the "absorbing
cell (n + 1, N + 1) is always in the basis [2]. (For example, if the net-

work contains 5 computers and we are analysing 1000 jobs in all, we will have
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non-unique-sourcedness in at most 5 columns initially.) Consequently, the

fraction of maxi&um number of columns which violate unique-sourcedness
(fraction jobs that may be split) is (n+l)/(NW+1) Thus in any network en-
vironment where the number of computers are much less than the total number
of jobs, the algorithm is found to be highly efficient computationally.
(See Section 7)

Let us now discuss the choice of (s,t) upon which the branching may

take place. Let J* represent those columns of J that have two or more
A

basic cells. Note that J* is a very small subset of J. Given a column
of j ¢ J*, it is found computationally efficient (similar to LP pivoting
rules) to branch on that basic cell (i,j) for which cij is the smallest.

Then along the branch in which (i, j) is excluded from the optimal solution “obel

cost can be expected to increase approximately by A, = (¢ .- ¢, .)x.. where
P PP y by j aj 157 %15

- is the next smallest cost of a basic cell in column j and xij is the
amount alloted via the smallest cost basic cell (i,j). Consequently for

.

branching, we can choose the column t ¢ J for which At is largest and branch
on (s,t) where (s,t) has the lowest cost among all basic cells in column t.
Algorithm 1 given below summarizes the above rasult for the IGTP.

(Definition 1)

Al: Algorithm for finding an optimal solution to the unique-sourced
generalized transportation problem IGTP, (6)-(9).
(1) Set up the problem P as defined by (10)-(13). Let P1 denote

problem P, and (2, = ¢ denote the set of cells required to be included in the

1

optimum solution. Let wl = @ denote the set of cells excluded from the optimum

solution. Let X1 be the optimum solution to P1 with basis B1 and cost 21.
(This can be obtained by any algorithm available in the literature [2, 8, 12]).

Let § = {1} denote the set of problems under consideration and let m =1

denote the total number of problems generated so far.
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(2) Choose the problem Py for which 2k is the smallest for k ¢ S.

1f Bk is unique-sourced go to (8). Else go to (3).

(3) Find the set of columns J* where the basis Bk has more than one

basic cell in each column of J%, Find the two basic cells (i,j) and
(a,j) for which the unit costs are the smallest and second smallest

respectively, Let A, = (c_.- c¢..)x.. and choose the t ¢ J* for which
a) 1" 1]

Aj is largest, Select the basic cell (s, t) with least cost in
colurn t for branching.

(4) Define P as the problem obtained from P, by including (s, t)

o1 k

to be an additional basic cell i.e., Qm+1 = 0 U {(s,t)} and let

Yy The problem P can be o?tained from P

¢m+1 ol K by dropping column t
and defining TTg; to be TT; - pgy - For columns j such that])sj > (new)

TTs ; set cgj = M (a large positive quantity),

(5) Define P_ ., as the problem obtained from Py by excluding (s. t)

2

. . . .= e 7 . =
from the optimal basis. Set ¢m+2 ¥ie U (s, t)1 (i.e. Cs,t M)
and let Qm+2 = Qk.

(6) Denote the basic optimal solutions to Pm+1, Pm+2 to be

Xm+1 and Xm+2 with bases Bm+1 and Bm+2. Define Zm+1 = optimal cost to

T V/ = i to P + Z e, .
Pm+1 + RN cij and k2 optimal cost to o2 (.1 o i

(i,ji)e Dol T V2

(7) Drop k from the set S and include (m+l) and (m+2) to S. Let (m+2)

replace the old m and go to (2).

E g v s e RS e T Y L PP T YT P PR, R o T N

R ....v,.,.A—v—.'-v-m‘.qu
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(8) The optimal solution to the IGTP given by (6)-(9) is given

by Xk and f)k with the associated cost = optimum cost to

P+ r c¢... Stop.
koG, a0, M
M
From a computitional point of view, it is not nccessary to store the
problems Pk for every ke S, It is enough if the sets [ k and ¢k are
stored far ke S. To construct problem Pk from the original problem P,

we first set C'j = M for (i,]j)e § - Next for every (i,j)e f)k, we drop
i

column j and modify TTi by TTi— pij' Finally we eliminate those cells
(i,j) with je J for which Pij > TTi by defining Cij = M, Finally, on a
pragmatic note, it is to be emphasized that at most n columns will have more
than one cell in the basis. In other words at most n jobs will be split.
Since we are concerned with a sequential assignment problem, we can just
ignore these jobs that are split, do not proceed for any branch and bound
procedure and just process only those jobs which are not split. 1In other
words we can leave those jobs that are split for the next 'batch' of processing
probably with a very high 'utility' (vijk = M) this t?me, so that they are
certainly processed in the next 'batch", (i.e. Xijkzl)" Another heuristic is to
look at a very small,generalized transportation problem with columns (< n) cor-
responding to split jobs and the rows correspond to those which had basic

'

cells in the M + 1 column with the slack time as the new TTi' Once again the

column totals are unity, while the row total for ith row, (if present) will be
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This problem may yield some more columms with just one cell in the basis
which correspond to additional jobs that can also be processed. However
these are only sub-optimal solutions but reduce total computational

effort, ° S

6. OTHER OBJECTIVE FUNCTIOXNS

In Section 2 when we definced the problem we considered threce categorics
of networké‘users/management. So far, the objective function was maximizing
thruput with values assigned for jobs as given by equation (6) defined
by Z . However, fov networks of the type CYBERNET [22],cost is of
prime concern, Let us define the constraint set as given by equations(7),
(8), and (9) by C and the consfraint set as given by (11)-(14) by C'. Thus
for the two other objective functions which are given below, the constraint
sets C and C' are identical to that for the objective function given in
(v) or (10) respectively. Let q; represent the cost per unit time of
processing at nodei ¢ T (this time includes CI'U and 10), tijk the time to
transmit job jk to node 1 (as given =sarlier), and qik represent the cost
per unit time of transmission through link (i,k) then the cost of processing

jobjk at node 1 is (qip ). Thus the objective function

+ L]
ik 9iktijk
similar to (6) will be (in the double subscripted form)

i = I X gl L) X
(15) Min z_ ' Zoa;py taigtig) Xy
iel jeJg

subject to the constraint set C. It is to be notcd that in equation (15) above

the same device of two subscripts 1is used to rcduce the three subscripts.,

] ; ) . L dia s o1 C 1 5 this model
as given in Section 5. Following the discussion ol Section o thi

(15) over the constraint set C can be converted to the IGTP given by (10)

over C'. Thus the new 6bjcctive function equivalent to (15) will be:

I o g, e

AT, e e i e 4 7 ARG«
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(16) Min Z = z £ (q,p.. t ql.t..) x_.
c ieI' e 3 ivij ij 137 i3

over the constraint set C'. Let the cocfficients of'xij in Zc be rij'

This could be solved as an IGTP followlng the discussion of Section 5,

A third objective that is relevant to manv network manigers
(especially to those of cateogry (i) and (ii)) will be to minimize the
“rurnaround" time. Cost of processing is generally of 'little concern' to
managers in these categorics. An equivalent to the above problem can
be obtained by minimizing the overall expected delay. Based on past records
and history of the queueing mechanism, utilizing information relative to the
arrival process, queue discipline and service process [10, 19], expected
waiting time for each job category at each node can be estimated. Following
the nomenclature of Section 2, let dkij be this expected delay. Then the new
objective function to replace (6) of Section 5 will be:

.

(17) Minimize zg =

o [

. Xl
ie 1 je g 3

subject to the same constraint set C. Again the IGTP objective similar

to that of (10) for (17) will be

(18) Minimize Z, = z -
d jer1' jegr M1

~over the constraint set C', This IGTP given by (18) and C' can also

be solved.

It is now casy to see that either a bi-cfiterion or a multiple
criterion fuaction could be made utilizing the objective functions (10),
(16), and (18) over the constraint sct C'. The theorctical discussion
of guch a nulticriterion function over a common constraint set is

given by Jeffrion [16], Roy [24] for a continuous variable.



23

Extension of this concept to Boolean variables is given by H. Pasternak and

U. Passy [21]. However the computational time for implementing such a

multiple objective criteria is considerably high and economically unprofitable.
Consequently,if a network manage' can come up with utilities (weights) uy - Yoo s

ugs Usg, associated with these objective functions such that 0 < u; < 1 and

ui = 1, then the following weighted objective function mav be a good

I MW

i
representation: viz | ‘ R Ci£¥>CLUdiJ*§
T A T )
(19) Minimize z, = {Ulzv + uyZ + u3zd}
over the constraint set C', where z,r 2.5 and zd are given by (10). (16),
and (18) respectively. This problem (19) over C' is an IGTP and can be
solved by the method given in Section 5. Parametric analysis for future
decisions, if necessary, can be made utilizing the theory given by Balachandran
and Thompson [3, 4, 5]. Further, the sensitivity of the planning horizon
T, of the @odel can be analyzed by the "Operator Theory' utilizing "Rut F?{l\;

Operators" as given in [3,5]). These are left for a future paper.



ALGORITHM FOR INTEGER GENERALIZED TRANSPORTATION PROBLEM

INITIALIZATION

Find xI, B, and Z,

set of cells to be INCLUDED in X

Solve GTP. Let P, = P; m - 1:

1

e | Set n, = ¢: the
© Set ¥, = é: the set of cells to be EXCLUDED in X
i
i Set S =11} the set of problems under consideration

3 - . . . by .
(2) Choose Pk Zk I‘«.hn Z. : Find Bk and Xk
3 jes
YES Optimal to IGIP
S _ﬂ[yx = \k Uuo
2% = 2% + c.. (8)
k ij
j ii)en
DETERMINE (s, £y TO BRANCH !
Find J° = { j] jeJ with 2 or more cells]
(3) FindA,=(c,-c,,) Xx,, where ¢, < ¢ , < ¢ for Pe¢c 1
i _.aj ij i L ij— Taj— ;
Choose ¢t :At = Max Z3. and s~ Cop Min ¢ c :
jesg™ . ! 1¢1
o N
INCLUDE g ‘A EXCLUDE
Pm+1 = Pk with (s,t) € X iPm+2 = Pk with (s,t) 4 X
|
4 = J- § = - i .e. =
(4) lg=J-t& TTS TT Poe (5) : i.e. set c_, M
If Pgj > TT > CSj =M iLet\y 42 —‘qu{s,t}
_— ‘ f—
Let Qm+1 = Qk Ufs,t} and 1 and Qm+2 Qk
and ¥y =¥y |
! Solve Pm+1 and Pm+2 as GTP to get
(6) 3 xm+1’ Bm+1 » X m+2 and Bm+2
Let Z = 2Z + =
A | Pmtl ..~ i & o Zppe2 T L €4;
(13)e0y 4 (13)€Qn4
N Let S = (S - k) U {m+l, m+2}
g letm = m + 2 and go to step (2)
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TABLE II

FOUR NODE COMPUTER NETWORK

NO. OF JOBS
426
532
546
548
680
738
746

789

TIORIZON

45

45

45

45

90

90

90

90

minutes

minutes

minutes

minutes

minutes

minutes

minutes

minutes

TABLE 111

(REAL DATA)

.

OF BRANCHES

2

CPU TIME | . "%y

.932
.024
.136
.128
.218
.516
.221

.518

COMPUTATIONAL EXPERIENCE FCR 3.5...10 NODE COMPUTER NETWORKS

WITH RANDOMLY GENERATED DATA OF p, .. AND m, .,
ijk ij

NO.OF COMPUTERS

3

MEAN STD.DEV.
6.52 0.63
.73 0.76
10.16 0.78
12.26 0.92
14.48 0.87
17.31 0.86
20.28 0.54

NO. OF BRANCHES

o A A s

CPU TIME * &

MEAN

2,726
3.893
4.549
5.168
6.713
7.927

9.549

WITH 60 MINUTES

PLANNING HORIZON AND 500 JOBS FOR EACH CASE AND THIRTY RUNS.

1 4

secs
secs
secs
secs
secs
secs
secs

secs

S e
STD.DEV
.016

.023

.018

.043

.028

.025

.017

o A v e ST
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7. COMPUTATIONAL RESULTS

The algorithm stated in this paper has been tested for computational
experience. The code that is used to solve at the first step as a zeneralized
transportation problem was developed and coded in Fortran IV by this author
and Professor G. L. Thompson of Carnegie-Mellon University and is operable
at the UNIVAC 1108 computer locatéd at Carnegie-Mellon Universitv and also
at the CDC 6400 computer of the Northwestern University. The only real data
that was ysed were from the computer network of two computers (Univac 1108.
and IBM 360-65) of Carnegie-Mellon and the data of the computer network from
Wright-Patterson Airforce Base, Ohio, consisting of four computers (CDC 6600,
two IBM 7090 and one IBM 360 with computer graphics). However several randomly
generated data for fictitious networks consisting of up to ten computers and a
maximum of thousand jobs were run at Northwestern University's Vogelback
Computer center for computational experience. The current code has a dimen-
sional restriction of 1000 jobs and 10 computer, though this can be revised
depending upon the computer's core. It is clear that the efficiency of the
algorithm depends upon the efficiency of the primary code éf the Generalized
Transportation Prcblem. This author and Professor G. L. Thompson are revising
this code currently by changing different starting rules and identifying the
pivoting cell and using the four index method, similar to the "augmented pre-
decision list- structure and index method" of Glover Karney, Klingman and
Napier [18]. The results of these findings will be reported soon [6 ].

The peak-period planning horizon for batch processing jobs for the
Carnegie Network was 60 minutes and in the non-peak period it was 120 minutes.
The jobs that were submitted rangéd from 248 to 822 for the 60 minute period

and 187 to 1012 for the two hour period. Two computers are in the network

N L s, ki - .
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and the CDC 6400 computational time, number of branches and jobs involved are
given in Table 1. Note that we create an extra fictitious computer before
solving. Similarly in the four computer network of Wright-Patterson Air
Forcé Base the planning horizon were forty-five minutes for peak period and
ninety minutes inAthe night time. Table 2 provides relevant results. In
Table 3 results obtained for fictitious networks of 3. 5, ... 10 computers
with randomly generated data with a planning horizon of sixtv minutes are
presented with an assumption of 500 jobs for each case. Tﬁe mean and the
standard deviation of computational time based on 30 runs for each case are
also given. The number of Boolean variables required here varies from

744 to 5500 variables. Though Geoffrion's code [17] may be used, it is clear
that certain problems of larger size that were considered cannot be solved at
all. Further the smallest problem of 744 variables when solved as a zero one
problem was aborted without reaching an optimal solution after sixty minutes
of computer time were used up. (The planning horizon was SiXtyY minutes for
that network.) It is not clear yhether tnis problem can be solved at

all in any reasonable CPU time as a zero-one problem , whereas Tables I, II,
IIT shows the computational efficiency of this specially structured zero-one

problems, when solved utilizing the algorithm presented in this paper.
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