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Abstract

A general model of commodity differentiation is developed. It is shown
that a local version of Bertrand's argument holds if preferences are smooth.
If all commodities are "pure substitutes” and sunk costs are small, there is
never too little commodity differentiation. Under the same conditions,
monopolistically competitive equilibria are approximately perfectly

competitive if the optimal collection of commodities is sufficiently rich.






The Efficiency of Monopolistically Competitive Equilibria in
Large Economies: Commodity Differentiation with Pure Substitutes
by
Larry E. Jones

1. Introduction

Casual empirical observation suggests that the price—-taking behavior of
firms assumed in the Walresian version of perfect competition is far from an
economic reality. 1In fact, in the classroom the study of the perfectly
competitive model is usually justified through an informal discussion of
strategically interacting firms. It is argued that if firms are small enough
so that their potential impact on market aggregates is negligible, price-
taking behavior serves as a useful approximation.

Recently, considerable effort has been expended in formalizing this view
of perfect competition. Notable examples of this body of theory include
Novshek [21], Novshek and Sonnenschien [19] and [22], Hart [8] and [9], Mas-
Colell [17] and [18], Roberts [24] and Allen [1]. Of course, the classic
reference is Cournot [5].

This work is diverse, but these papers all contain results concerning the
asymptotic properties of monopolistically competitive equilibria when the
number of consumers is large. A common feature of the models used in these
papers is that they restrict attention to Cournot quantity setting behavior as
a description of the strategic interaction of firms.

The standard objection to the Cournot formulation, first noted in
Bertrand [2], is that quantity setting behavior is not a very realistic
description of the ways in which firms in fact interact. It is argued that
price is the more realistic choice variable (if we must restrict ourselves to
just one).

Strategic competition involving only price has its drawbacks as well,



however. For example, in the constant costs case, price competition gives the
perfectly competitive outcome even if there are only two firms. This is
viewed as implausible by many (e.g., Chamberlin [4]). They argue that this
line of reasoning ignores the fact that firms can differentiate their products
through adjustment of quality or other attributes thereby avoiding direct
price competition @ la Bertrend.

This line of reasoning leads us to consider the questions raised in the
papers cited above within the context of a different model of strategic firm
interaction. The arguments above suggest that price and characteristics
should both be included in our stratetic description. Further, if firms are
to use the adjustment of their products' characteristics as a means for
avoiding direct price competition, they must be given, within the strategic
description itself, the ability to foresee the advent of direct price
competition.

In the model we analyze, competition proceeds in two stages. In the
first stage, firms simultaneously and independently choose their products.
After this stage has been completed, each firm observes the product choices of
his rivals and the firms simultaneously and independently choose prices.

As usual, firms' payoffs are calculated as profits based on sales to a
price taking consumption sector. We restrict attention to the case where
marginal production costs are constant. In addition, firms choosing to enter
at the first stage (one option available to the first stage is to choose no
product) pay a once and for all set-up cost of € independent of their product
choice or price.

Models with similar dynamic structures have been analyzed previously in
the literature. Examples include d'Aspremont, Gabszewicz and Thisse [7],

Shaked and Sutton [26] and Prescott and Visscher [23]. However, these models



are all fairly specific in their treatment of demand (and hence firms'
incentives as well). Within this collection, the strategic form analyzed in
this paper supposes an intermediate view of firms' rationality.

For example, our firms recognize the fact that changes in their location
will have an effect on the prices charged by their rivals and hence are "more
rational” than they would be in a strategic form with prices and qualities
chosen simultaneously. However, our firms ignore the fact that adjustments in
their choice of product might cause rivals to adjust their product choices as
well. A richer strategic form such as that employed in Prescott and Visscher
{23] could be used to make firms more rational in this sense, but this would
greatly complicate the analysis. The approach adopted here seems a reasonable
compromise between realism and tractability.

We study the pure strategy equilibria of this two stage game. It is
shown that equilibria of this game have several intuitively appealing
properties in general. First, it is a property of equilibrium that firms
differentiate their products. Second, the prices of firms choosing products
with similar characteristics must be nearly the same. Third, a local version
of the Bertrand result is shown to hold--firms choosing products with similar
characteristics sell approximately at cost (Theorem 1).

Beyond these results, attention is centered on welfare properties of
equilibrium when set-up costs are small and potential products are pure
substitutes (increases in rivals' prices do not lower a firms' demand). It is
shown (Theorem 3) that in this case the monopolistically competitive
equilibria are closely approximated as the Walrasian equilibrium of a well-
defined limit economy as long as the collection of competitiveiy produced
products is sufficiently rich (i.e., perfect).

Further, it is shown that in any case there is never too little product



differentiation asymptotically (Theorem 2) in the pure substitutes case. It
is shown by example that there may be too much, however.

The remainder of the paper is organized as follows.

In Section 2, we introduce notation, outline our treatment of consumers
and give a formal presentation of the game we will analyze. Section 3
contains the results of the paper and their proofs. Finally, Section 4
concludes the paper with a series of related remarks and directions for future

research.

2. The Model

The basics of the model will follow the development begun with Mas-Colell
[16] and continued in Hart [8] and Jomes [12] and [13] very closely.

The collection of potential differentiated products will be denoted by T
with typical element t. A t in T should be thought of as a complete
description of all of the economically relevant characteristics of the good in
question. Simple examples include location, with T the unit circle in R? (as
in Novshek [20]), and quality with T the unit interval R! (as in Shaked and
Sutton [26]).

We will assume that T is a compact metric space.

In addition to the commodities in T, there will be one additional
commodity denoted by L. L should be thought of as either labor services or
money.

Consumers will be endowed with L (and only L) which they sell to finance
their purchases of the differentiated products. In addition, as will become
clear from the development below, L will serve as the only productive input in
the economy.

Due to its special status, it seems natural to use L as a numeraire as

well.



Then, X = T\j{l& is the collection of commodities in the economy. X has
a natural compact, metrizeable topology as well.

We will denote by E;(X) the collection of closed subsets of X containing
L. We will topologize %;(X) with the topology of closed convergence (see
Hildenbrand [10]). Under this topology, ?%(x) is compact and metrizeable.
This is a fact that we will use implicitly hereafter. All topological notions
on %?(x) will be with respect to the aforementioned topology.

The typical element of i?(x) will be denoted by K.

For each K ¢ ?%(X), define C(K) to be the collection of real-valued non-
negative continuous functions on K which are 1 at L. The generic element of
C(K) will be denoted by p and have the interpretation of prices. (Thus, L is
the numeraire.) If p is any bounded, measurable, non-negative, real-valued
function on X (not necessarily continuous) define p'm = fxp(x)dm(x).

We single out some special functions on X which we will use repeatedly.
The indicator function for a set V will be written as Xy=xy(x) =1 1if xe V,
0 otherwise. When V is a singleton, it is convenient to write X{t} as X¢
which we shall do hereafter. Further, we will, although it is a slight abuse
of notation, write p + ax, where p ¢ C(K), for the function on KLj{t} which
is p on Kand ¢ at t, etc.

Following Mas—Colell [16], we will define a notion of convergence on
pairs (K,p) where p € C(K). Write (K%,pR) » (K,p) if:

(i) ¥+ K.

(ii) For all sequences tM e K® with t® + t e K, p(t?) » p(t).

This is the generalization of uniform convergence of functions defined on
restricted and non—nested domainsi

As in Hart [8] and Jones [12] and [13], consumption bundles are modelled

as non—negative distributions on X. Accordingly, we let M be the non-



negative, finite Borel measures on X and will denote the typical element of M
by m. (The interested reader is referred to the discussion in [12] on the
relative benefits of employing this representation of consumption in the
context of economics featuring commodity differentiation.)

It is natural to topologize M with the topology of convergence in
distribution which we shall do. Under this topology, M is metrizeable and all
bounded subsets of M (i.e., m(X) is bounded) are compact. Two measures are
considered close in this topology if and only if they embody similar
quantities of goods with similar characteristics.

Define lul to be the (variation) norm of the measure (not necessarily
non-negative) pw. Note that Iml = m(X) for all me M.

We will single some special members of M which play a special role in
what follows. These are the Dirac measures Gx——GX(U) =1if xe U, O
otherwise.

M has a natural ordering on it that we will use in what follows. Write
m> m if and only if m(V) > m'(V) for every measurable set V.

For me M, define supp m to be the support of m (the smallest closed

subset having full m-measure).

2.2 Consumers

Our consumption sector will consist of H price taking utility maximizing
consumers, Most of the results we will present do not depend on this
representation of consumers per se but can be formalized solely in terms of
demand--see the remarks in Section 4 for details.

Consumers will be indexed by h.

Consumers are characterized by their labor ednowments, L, and their
utility functions UP.

Define MUh(m;x) for me M, x e X by:



MUh(m;x) = 1im %{Uh(m +-a6x) - Uh(m)]
o*0
if this limit exists where it is understood that o converges to 0 through the
positive reals if m(x) = 0. This is the directional of Uh in the direction of
6, at the point m.

We will make the following assumptions concerning consumers'

characteristics:

Assumption A

(i) For all h, 1! > 0.
(ii) For all h, gh is continuous.
(iii) For all h, o is strictly concave-i.e.,
Uh(am1 + (1 - a)mz) > Uh(ml) for all m;, my in M and a in (0,1
with Uh(ml) > Uh(mz) and m + m, .
(iv) For all h, wh is strictly monotone--i.e., m > m' and m # m' implies
Ut(m) > vB(m') if m(L) > O.
(v) MUh(m;x) exists for all m and x and is a continuous function of x

and m for all m such that m(L) > O.

(vi) for all me M with m(L) > O,

L@ + [ pmid - Pm +u)] > 0
Hull
as lul » 0 such that y + me M.
(vii) For all h and all m, m(L) = 0 implies U"(m) = UP(0).
Conditions (i)-(iv) are all standard. Conditions A(v) and (vi) state
that nearby commodities are uniformly good substitutes at the margin. Similar

conditions have been used previously in Hart [8], Machina [15] (on a more



restricted domain for preferences) and Jones [12] and [13].

Roughly speaking these conditions say that uh is continuously Frechéet
differentiable. Moreover, the derivative uh is representable as a continuous
function.

A(vii) says that the numeraire is a necessity and will be crucial to some
of the calculus type arguments we will use below.

Several very important properties of preferences follow from A(v) and

(vi). Of these, two will be especially useful and we will set them aside for

future reference.

Define

This is the marginal rate of substitution between x and L at m.

Let M, = {mlm(x) < Y}-
Property B
(i) There exists ann > 0 such that for all h, all x and all me P&.

MRS (m;x) < n.

(ii) For all p > 1, there is a § > 0 such that for all t,t' with

d(t,t') <§, for all me My, for all h and for all a > 0O,

Uh(m + apd ) > Uh(m + aGt).
t

These properties follow from A(v) and (vi), the compactness of X, the

compactness of MY and strict monotonicity (hence MUh(m;L) is bounded below on



compact subsets of M).

As will become clear from what follows, we will be particularly
interested in P& for vy 2> maxy Ly. Thus, from this point forward, we will fix
n* for which B(i) is satisfied for Y = max Lh'

—
For Ke :%(X) and p € C(K), define ¢h(K,p) by:
¢h(K,p) = {m € M'supp(m)CK, pm < Lh and p-m' < Lh implies Uh(m) > Uh(m' )} .

This is h's demand when the collection of commodities available is K and
trade takes place at prices p.

If p is bounded below by a positive constant, ¢ is a well-defined and
unique (by virtue of A(iii)) measure.

Define ¢ (K,p) = zh ¢h(K,p). This is aggregate demand. Notice that we
can identify ¢ (K,p) = ¢(T,pxg + = XKc). We will discuss the properties of ¢

in Section 3.

2.3 Firms

For each € > 0 and each integer, N, we will define the N, €-game, G(N,e)
below.

There are N players indexed by 1i.

As discussed in the introduction, in the game G(N,e ), firms first choose
products and then, after seeing the product choices of the other firms, set
their prices. They pay € in entry fees at the first stage if they choose to
enter and collect revenues from sales to the consumption sector at the prices
announced at the second stage. These revenues go to finance production with
any residual going to the firms' owners.

Formally, let S = T {J {NP} and let B be the collection of non-—negative

functions from SN! to [O,n*].



_lo_

Of course, S; = NP signifies that firm i has chosen not to produce. 1In
this case his choice of c; € B ig irrelevant in that no firm's payoff depends
on gj.

Then, on translation to normal form, each i must choose a strategy
(si, 03(s_4)) from S x B.

Note that we have assumed that firms can produce at most one good.

If firms select the array of strategies ((Si’oi))§=l = (s,0), firm 1
promises to sell as much of commodity S; as consumers are willing to buy at
price oi(sl,...,si_l,si+1,...sN).

If the selected array of strategies is (s,0) define

(i) Tg,o = {t € Tlsi = t for some i}.

(ii) TFor te T, let Is,o(t) = {ilsi = t}
(iii) For t e Ts,o’ define ps’o(t) = miniEIS o(t) oi(s_i).
bl
(1v) For te Ty o, let Ny 5(t) = #Hie I (£)]o(s_3) = pg 4(E)}.
We can now define payoffs for the game G(N,e). Let

r
Wy (T 7P ) Ol o(6) = 1] =€ 4F e T (&) and 04(s5) = By 5 (0)

vi(s,o) = }—e if i e Is,c(t) and 0;(s_;) > ps,o(t)
{

Several things should be noted about this formulation of the payoffs.

(1) As can be readily seen, the technology for firms is constant returns
to scale plus a lump sum fixed cost of €. The fixed costs are what is
commonly referred to as sunk since a firm's payoof is - if it chooses the
same product as some other firm and charges a higher prices.

(2) Note that we have adopted the standard, if somewhat artificial,



assumption that in the case of ties, the market is split evenly among the
tying firms. One of the first results will be that no two firms ever choose
the same product in equilibrium. This would hold under any exogenous rule
specifying market share in the case of ties as long as any firm wins the whole
market if it charges the lowest price for its selected product.

0f course, any such sharing rule would, by its nature, be ad hoc.

Really, what is indicated by this is that another strategic variable is needed
to determine market share in the case of ties. 1In reality, firms compete by
quantity (capacities, etc.) as well.

(3) We have implicitly adopted the assumption that firms try to maximize
the residual quantity of the numeraire good. This will be true if firms are
owned by individuals (not modelled here) who consume only L and are exogenous
to the market considered. This is a harsh assumption, but simplifies matters
greatly.

(4) Note that we have assumed that all goods have the_gégg_marginal
production costs of one unit of L for each unit of output. This may seem
severe at first sight since one of the interpretations of the model that we
would like to make is that t is an indicator of quality. It seems unnatural
that production costs of high quality outputs are the same as those of low
quality. This assumption really just amounts to a choice of normalization
(i.e., what units are the good t measured in), however. All the results we
will report are true as long as unit production costs depend continuously on
t. In particular, all the properties of demand that we will use are invariant

with respect to changes in units that are continuous with respect to t.

3. Results
In this section we present our results concerning the model presented in

Section 2. We begin with some background properties of demand and some useful
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mathematical facts. Section 3.2 presents general results on the model and 3.3
concerns the asymptotic efficiency properties of G(N,e) when N is large and ¢

is small.

3.1 Properties of Demand and Background Facts

Lemma 1: ILet (K%,p") » (K,p) where the K are finite. Suppose m" is a

uniformly bounded sequence in M with supp m® C K?. Then, supp m € K and

pnomn > pam.

Proof: This is a lengthy but straightforward €,§ argument.

We will need the following definition.

The sequence (KB,p?) is said to be equicontinuous if for all € > 0, there

is a § > 0 such that if d(t,t') <& and t,t € K®, [p®(t) - p™(t )|< 6.

We have:

Lemma 2: If the sequence (K%,p™) is equicontinuous and the p" are uniformly
.’/7
bounded, there is a subsequence ny and a pair (K,p) with Ke “J(X) and p €

C(KX) such that

T T
(X %.p 5> (&,p).

Proof: This follows from a diagonalization argument.

Lemma 3: If K® + K and me M with supp mC K, there is a sequence m" with

supp m™ € K and m™ + m.
Proof: Standard.

We now have the following properties of aggregate demand, ¢:
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Proposition 1:

(i) For all Ke %g(x) and pe C(K), if p is bounded below, ¢ (K,p) is
non—empty and single-valued.
(ii) If (K%,p?) + (K,p) and p is bounded below, ¢ (K2,p®) + ¢(K,p).
(iii) For allp > 1, there is a § > 0 such that for all t, T with

d(t,t) < 8§, for all Ke f}(x) with t,T € K and all pe C(X) with

p(t) > pp(7), $(K,p)(t) = 0.
(iv) TFor all t, all Ke<¥ (X) with t € K and all pe C(K) with p(t) > n¥,

§(K,p)(t) = 0.

We can do better than Proposition 1 in some ways. In fact, ¢ is defined
for some discontinuous price functions as well.
Recall that the real-valued function f, defined on X, is lower semi-

continuous at the point x if for all sequences x%

converging to x,

f(x) <.EEE.f(Xn)' f is lower semicontinuous if it is lower semicontinuous at
each x in X, Lower semicontinuous functions will play an important role in
what follows since they arise naturally as limiting prices when undercutting

strategies are adopted by firms.

First we have:

Lemma 4: Let u™ be a bounded sequence of non-negative measures on a compact
metric space Y converging to pu. Suppose the sequence of closed subsets, G&,

converges to G. Then,
p(6) > Tim p"(c™.

m, n
Proof: If the lemma is false, choose a subsequence, oy, with p k(G k) >

n, n
B(G) + 2r where r > 0. Without loss of generality, assume u k(G k) >u(G) +r
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for all k.

A straightforward argument gives the existence of an open set V such

that:

(1) 6TV

(i1) wu(V) € u(G) + r/2

(iii) u@®VvV) =0

(In fact, we can choose V = {y'd(y,y') <8 for some y' € G} for an
appropriate choice of §.)

By virtue of (iii), it follows that 1lim p™(V) = u(V) (Hildenbrand
1.D(26)). Further, since G! + G and G V, for large n, G@ V. Thus, for n

sufficiently large,

p™(6™) < u(V) € p(v) + r/2 € u(G) + r.

This contradiction completes the proof.

We can now generalize Proposition l.

Proposition 2:

(i) Let K= 4;(X) and let p be a real-valued lower semi-continuous
function on K with p(L) = 1. If p is bounded above and below by positive
contants. ¢ (K,p) is well-defined and unique.

(ii) Let K® be a sequence of finite subsets of X, p® e C(K"), t? e K
with (K%,p) + (K,p), t" > t, pe C(K). If the p" are uniformly bounded above

and below by positive constants and p > 1,

PP% + 5P N ) > 6K + 5 pCEN)-

Proof: We restrict attention to a particular consumer, h.
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Sil_ Clearly the budget set is bounded and convex. Thus, due to A(ii)
and A(iii), it is sufficient to show that the budget set is closed.

To this end, let m" € M with m” + m.

Let Z = {(x,y) € x R fx€ Kand 0< y < p(x)}. Since p is lower
semicontinuous, Z is open in X x RR,.

Now,

p(x)
pen=[p(an () = [ilf 1 a]d) =f 140 x a)(xy) = O x @) (@)
0 YA
where A is Lebesgue measure on R,. (We have used Fubini's Theorem; see
Royden [25]).

Since m" >+ m, A x m® > A x m. Hence, since Z in open,

pem=( x m)(Z) € 1im (A x mn)(Z) = lim p - m”. That is, m is affordable

as we set out to show.

(ii) Let pn = pn +-%pn(tn)x P P=P +-§-p(t)xt. It follows from part
~ t
(a) that ¢h(K,p) is well-defined. For notational convenience let m" =
¢ (K%,p™), m = $™(K,p).

~

It is sufficient to show that if m™ » m*, m* is affordable at prices p
and that there is a sequence u® such that u™ is affordable at prices ;n (and
is concentrated on K") and u™ + m.

For the first of these, let Z 6 = {(x,y)ex x [0,n*]|x e K% and

~ * *
pn(x) € y<n }, Z = {(x,y)'x e K, p(x) € y<n }. Z_ and Z are closed in X

n

X [O,n*]. It follows easily that Z, > Z.

~ %
Now, as above Lh = pn e o = "X - o x A(Zn). Thus,

— * — %
L, > Tim ™ (X)n" - m" x A(z )] = Tim [m(Xn - ot x A(z™)]
* * ~ %
>m(Xn -m x A(Z) =pe* m by Lemma 4. Thus m* is affordable as

desired. (Of course, supp n* C K by Lemma 1.)
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The proof that there is a sequence p® with supp p® CK?, p® + m and

p" ¢+ u" < 1, is straightforward.

3.1 General Properties of the Model

In this section, we collect a few general results concerning the model

based solely on assumption A.

Proposition 3: Suppose (s,0) is an equilibrium array of strategies of

. = NP) is no

G(N,e). Then, the number of firms having s; € T (i.e., not s

1

larger than L*/e.

Proof: Clearly ﬂi(s,c) > 0. Thus, if s; € T, ci(s_i) > 1. Since each active

firm must net at least € form its sales and the total quantity of the

* *
numeraire is L, the total number of firms can be no larger than L /e.

Proposition 4. Suppose (s,0) is an equilibrium array of strategies for

G(N,e). If Si, 8i1 € T with i # i' then S; ¥ Sjr1.

1

Proof: This follows from the usual Bertrand argument. Note that this relies
solely on the continuity of ¢.

Let X be the price function which is constant and equal to 1 everywhere
on T. Define u* = ¢(T,xp) and let T = supp u*. (u*,xT) is the competitive
equilibrium of the limit economy where € = 0.

We will now consider a sequence of games G = G(Nn,en) withe®+ 0. 1In
light of Proposition 2, for our purposes it is sensible to restrict attention
to games with N, > L*/en + 1, an assumption we will make hereafter. To
simplify the exposition of what follows we will introduce some further
notation.

From this point forward, we restrict consideration to a particular

sequence of equilibria of G@, say (s™,06™). As above, let T% = {t € T‘ i with
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s = t} and note that #{ils? =t} =0 or 1 for all t in T. Further, define
p(t) = on(sﬂi) if Te T" and s; = t.

Since L will always be available for trade and it is inconvenient to

continually mention this, we will from this point forward identify % and
"i' U{L} , etc.

We will be interested in conditions under which

o = ¢ (T,p") » u* as n + ™.

To approach this question, it will be of use to know that ¢® has some

limit points. To this end, we have:

Proposition 5: Suppose t%,t% e T2 with 1lim t® = 1lim t®. Then

1im BCED
pr (™
Proof: This follows immediately from Property B(ii).
This proposition has a nice interpretation in and of itself. It says
that firms producing similar products must charge similar prices in
equilibrium.

Now we have:

Proposition 6: Let (s®,6®), n =1,... be a sequence of equilibria of the

™ n A A
games G%. Then, there is a subsequence, my, with (T k,p k) + (T,p) and

iat - A A
o X+ ¢ =¢(T,p).

Proof: This follows directly from Proposition 5, Lemma 2 and Property B(ii).
At this point, we can obtain a stronger version of Proposition 4. This

is a local version of the classic Bertrand result.
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Theorem 1: Suppose (T2,pR) » (%,;), o (T, p1) » ¢(%,;) = $- 1f
t0, 1% e T with t" # T® and lim t® = 1im t® = t, then either
(i) E ¢ supp $, or

(ii) lim p?(t") = 1lim p™(t™) =1

Proof: 1If (i) is true, we are finished. So, without loss of generality we
can assume that t € supp ¢ and ;(E) > 1.

The strategy of the proof is straightforward: take the firm producing

T, Without loss of generality, assume sales of T™ are smaller than those of

t®. Have the firm producing T™ lower his price to undercut his neighbors'

prices slightly and show that asymptotically the firm increases its sales by a
factor of at least 2. This contradicts the assumption of equilibrium.

In fact, if % is an isolated point in }, this is exactly the course we
will follow. If % is not isolated, we must modify this argument slightly due
to some potential discontinuities.

We divide the argument into two cases from this point on.

Case 1: t is an accumulation point of T.
In this case, we will construct a sequence t" e TU with ¢7(t") + 0. To
do this, note first that since t is an accumulation point of T there is a

sequence ke T with 1€+ t and ¢(Tk) + 0. Since

Tk e T =124 Tn, for each k there is a sequence tE with ti e T and tE > Tk.

A A

Clearly, ¢(Tk) 2 1lim ¢n(t§), so that for all sufficiently large n,

n, k ~ "k 1 “k “k 1
¢ (tn) < ¢(t7) + - and d(t £ ) < &
For each k, pick an Nk such that these inequalities hold for all n larger

than N and N4y > M. For n < N;, define t? arbitrarily (say equal to L).

A e A A

For N; < n < Nj4y, let th = t;. Then, t? > t, t? e T and ¢n(tn) + 0 as

desired.
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~

Without this loss of generality, assume firm 1 is producing " - s? =t

n

for all n. It is clear that m,(s™,0™) > 0. Consider the strategy by player

.~ . - N -
1, (srll,orll) which sets s” = t® = s? and 0" = 51-0

n
1 1 1 1

where p > 1 is chosen so

that 1 < %—p(t). Let

Then, 1's payoff if he adopts the strategy (s?,o?) is
m,(s",0™) = ¢ (T pMHEM G (™) - D).

We will show that ¢n(Tn,pn)(tn) converges to a positive constant.

To see this, note that by Proposition 2, ¢(Tn,pn) + ¢(T,p) where

-~

p(t) t# t

o

p(t) =

S

.‘ 1 A _ A
,‘a-p(t) t =t

Y

for t € T.

We will show that since E € supp ;, ¢(%,§)(E) > 0.

To see this, choose an h with te supp ¢h(%,;).

Assume ¢h(%,;)(2) = 0. It follows that ¢h(%,;) is affordable at prices }
hence, by strict convexity, ¢h(%,;) = ¢h(%,;).

Take a sequence of finite subsets of %, kY with K& > T and t § Kt We
can find a sequence m"™ such that

(i) supp m* Cx?

(ii) fa-mn<Lh

(111) o > ¢P(T,p) = ¢™(T,p)

Take an open neighborhood, Vi, of E such that t € Vl'implies
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p(t) > %-(1 +p) p(t). Choose a§ > 0 as in B(ii), so that d(t,t') <38
implies Uh(m + a-%(l + p)Gt) > Uh(m +as ).

~ t ~
Let V = Ng(t)/} V; where Ng(t) is the §-neighborhood of t. Let

B g” I a™(os, + 201 +0)8.n (V).

teV ) > t

Applying B(ii) repeatedly shows that Uh(;n) > Uh(mp) for all n.

By taking subsequences if necessary, we can asume that ;n > m*. Since
te supp ¢h(%,;) and n® + ¢h(%,5) it follows that m™(V) is bounded below by a
positive constant. Thus m*(E) > 0.

Clearly n* is affordable at prices ; and since Uh(mn) > Uh(mn), it

.. h, * h, h,2 °
follows from A(ii) that U (m ) 2 U (¢ (T,p))

* ~ ~ A o~
By strict convexity, it follows that m = ¢h(T,p) =¢(T,p), but this

contradicts our assumption that ¢h(T,p)(t) = 0,

Further, using B(ii) again, it follows that ¢(Tn,pn)(tn) + ¢(T,p)(t).
. 1.2 "n "n Y n_n
Since 5-p(t) > 1, nl(s ,0 ) > o(T,p)(t)(p(t) = 1) > 0. Thus (sl,cl) could not

. R n . s
have firm 1's optimal response to (5-1’021)’ a contradiction.

Case 2: % is not an accumulation point of %.
Recall that t™ and t® converge to t and T # t®. Without loss of
generality, we can assume that ¢7(t™) < ¢2(t™) for all n. Note
that ¢(%,;)(E) > 0 in the case we are considering and that ¢(%,; + ;XA)(E) is
a continuous function of ;. ;
Further, by the choice of Tn, ¢(},;)(E) > 2 TEE'¢H(TH). We will show
that by undercutting his price slightly, the producer of T can caputure all
of the local demand asymptotically and guarantee himself greater profits in

the limit.

We can assume that firm 1 is producing t™ (i.e., s? =1 for all n).
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Suppose 1 charges é-;(g) instead of p™(t®), where p > 1, and leaves his
product choice the same. Call the resulting array of strategies
(;n(p),;n(p)). Note that since 1's product choice has not changed, the
payoff relevant prices of the other producers have not changed.
Let nl(;n,;n). denote i,'s profit when he charges é-;(g) at the n-th

stage. We wish to show that for large n,

n

).

“n "n n
nl(s ,0) > nl(s ,0

As a first step, note that lim sup nl(sn,cn) =
linm sup[pP™ (PR(r™) - 1)1 < 1/2 ¢(T,p) (£) (p(t) - 1).

We claim that nl(sn,cn) + ¢(T,p +-§-p(t)xh)(t)(§-p(t) - 1) for any choice

~ ~ ~ ~ t ~
of p > 1. Note that since ¢(T,p + px~)(t) is a continuous function of p,
A A A A ~ A A t
¢(T,p *‘%-P(t)xa)(t)(é-p(t) — 1) can be made arbitrarily close to

~ ~ ~ - ~ t
¢ (T,p)(t)(p(t) -1) by choosing p sufficiently close to (but still greater

than) 1. Certainly, p can be chosen so that
7 ¢(T,p)(t)(p(t) - 1) <¢(T,p *'g-p(t)xh)(t)(g-p(t) -1
t

Select and fix any such p.
. “n n 1 -, - - 1°.° X .
Define p = p +-5-p(t)x 0 and p = p +-5-p(t)xh. Using B(ii), choose a §
T t
+ 1
2

> 0 so that R{E) 5 P
p(t )

0. let V = NS/Z(E) N - {E})c. V is an open set containing t since t is an

and d(t,t') < § with t,t' € K, implies ¢ (K,p)(t) =

isolated point of T. Then, there is an N such for all n > N,

¢(Tn,pn)(tn) =0 if t%e Vand t"# 2,
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To see this, proceed by contradiction. If not, by taking subsequences, there

are tt € V with ¢n(Tn’;n)(tn) > 0. However, for sufficiently large n, tte V

ph(™) o +1

and hence d(t",t™) < §, so it must be true that T~ < 5 for all n
— p(t)
N

sufficiently large. Note, however, that since t is an isolated point of T, it

must be true that t® + t. This implies that p™(t") + p(t), a contradiction.

Thus, for n sufficiently large, ¢(Tn,;n)(Tn) = ¢(Tn,;n)(V).

Now, ¢(Tn,pn)(8V) = 0. Thus,

A~

6 (T, o™ (1) = ¢ (T, p™)(V) » ¢ (T,p) (V) = 6(T,p) (L),

as we set out to show.
This clearly contradicts the assumption that 1 was maximizing profits by
setting o?(s_l) = p™(t™), however.

This contradiction completes the proof of the Theorem.

We should point out where we used the assumption E € supp $ in the proof
of the Theorem. 1In both cases, this assumption was necessary to guarantee
that by undercutting, firms can asymptotically guarantee themselves much
higher demand (the ratio is infinite in Case 1 and at least 2 in Case 2) with
only a small reduction in price. If ¢(%,;)(V) = 0 for some open V containing
E, this will not necessarily be the case. It will be true in one important
case, however, as will be seen below.

Note that the proof of Theorem 1 relies heavily on B(ii). See the
example in Section 4 when this assumption (or something like it) does not

hold.
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Given Theorem 1, one path to a result on the approximate optimality of
equilibrium is clear. Let u* = ¢(T,x;), and define T = supp u*. T is the
optimal collection of goods in the limit economy (¢ = 0).

Let (%,B) and $ be a limit point of the (T%,p?) and ¢ *(T%,p™)

respectively. We wish to show that T*(:'& and B 1 on T*. 1In light of

Theorem 1, it is enough to show that T*C:'supp $ and for any t e T*, there are
two distinct sequences t™ and T® with lim t? = lim T2 = ¢t.

There are two things that could go wrong.

First, if there are strong complementarities, it is possible that some
good in T* is not produced due to the fact that other goods in T* are not
produced, or they are priced atificially high relative to their costs.

Second, even if T"C T, it may be that there is some t € T which is not
the limit of two sequences in ™ (if T* }, each t ¢ T*‘ig_the limit of omne

sequence from the T%, however).

3.3 Pure Substitutability

In the results that follow, we will present one solution to these two

potential problems. Our solution, although not ideal, does represent a

reasonable first step.
To begin, we state one further assumption concerning the nature of demand

by the households we consider.

Assumption C: Pure Substitutability.

Let K€ %;(X), pe C(K), te K., If p' is any other price function in
C(K) with p > p and p (t) = p(t) then, ¢ (K,p )(t) > ¢ (K,p)(t).

That is, if all other firms raise their prices, demand for t does not
fall. Thus, in this case the goods are substitutes in the classical sense.

We have:
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Theorem 2: Suppose Assumption B is satisfied and that (T%,p") » (},;). Then

™ C T.

Proof. Assume that T* - T# ¢.

* - *
Choose an h such that supp ¢h(T X &) - T# 0. (Mote, ¢h(T X ) * ¢h(T,xT).)
~ h PN & h * T T
Let ¢, = ¢ (T,xa), ¢, =¢ (T ,x ,)-
h h *
T x T oa Ak
We will show that for some t & T* - T, MRS® (¢,,t") > I.

* A
To see this, note that Uh(¢h) > Uh(¢h). Thus, by strict convexity, it
follows that for all a £ (0,1].

* ~ ~
Uh(a,¢h + (1 - a)¢h) > Uh(¢h). Letting a + 0, it follows from A(vii)

that
h A . * h ~ . ~
(1) [ QRS (b, 5x)dp, > [ MRS® (4, 5%)df, .
It follows from A(iv), A(v) and A(vi) that MRSh ($h;x) =1 for te }.
Whence,

h ~ ~ h A ~
[ MRS (b, 3x)dp, = f% MRS® (9, 3x)dby = L, .
Now, suppose MRrsh ($;t) <1forte T - %, then

[ oms® o) = [, Mrs® sy < [ 1 dr = L

T T h

which contradicts (1).

A

S
Therefore, MRSD (¢h;t ) > 1 for some t e T - T,

It follows that for some § > O, ¢h(1?L){t*}, xa + (1 +6) *)(t*) > 0.
T t
Fix any such S,

We can, without loss of generality, assume that s? = NP for all n.
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Consider the alternative strategy by firm 1 which sets

;n
1

~ - L % - -

(sn,cn). Let T" = Tn\J {t } and define pn € C(Tn) by

% -~
=t , c?(sgl) 1 +8. Denote the resulting array of strategies by
"n, %, _ “n _.n, % n n . n n _
p(t)=1+6, p(t) = ci(t 389508y Y if t € T" and sy = t.

. a n. . %
Now, by Assumption C, Hl(sn,cn) = ¢(Tn,pn)(t Yo - >

~

* A & %

STV x  + (L +8)x ()8 e > o(TU{tT . + (1 +6x ()8 > 0.
T t T t

This contradicts the assumption that 1 maximizes his profits by setting

s? = NP for all n and completes the proof.

Theorem 2 allows us to draw some simple conclusions about the equilibrium
level of product diversity when sunk costs are small and Assumption C is
satisfied. The result shows that there is never too little diversity relative
to the optimum: Té'Cf%. It does not allow us to conclude that exactly the
right products (T*) are produced, however. It is quite possible that
asymptotically there is too much diversity in the sense that supp $ - T* is
non—empty.

If ;(t) > 1 for some t € T*, it is quite possible that a producer can
enter, produce a good outside of T*, and earn a positive profit. The
interested reader is referred to Jones [l4] for an example of just this
phenomenon. Of course, if ;(t) =1 for all t ¢ T*, $(& - T*) = 0 and so
exactly the right collection of goods is produced.

We turn now to the final result in which we give conditions under which
the equilibrium is approximately competitive when € is small.

Recall that a subset, G, of a metric space is perfect if it is closed and

if for every point ge G, g ¢ G—{g}.

Theorem 3: Suppose (s™,0™) is a sequence of subgame perfect equilibria for

the games G". If Assumption C is satisfied and T is perfect,
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then ¢(Tn,Pn) > ¢(T9XT)'

Proof: It is sufficient to show that (T%,p?) » (%,;) where T*C:'% and p is 1

on T*.

Suppose the theorem is false, then by taking subsequences we can assume
that (T%,p") + (T,p) and ¢ (T%,p%) > $(T,p) # ¢ (T,xp) -

By Theorem 2, T*C: % so that we need only show that ; = 1lonT. Since

T is perfect and ™ T, it follows that for any t* e T*, there are two

*
sequences t%,t% ¢ T with lim t® = lim t? = t” and tM # 7.
Define ¢ = ¢(T,p).

1 on T*f\ supp q;

By Theorem 1, we can conclude that ;

The only possibility left to consider is that for some T* e T - supp ¢,
p(t*) > 1.

Suppose that this is so. Chose tP e TP with t% » t*. As in Theorem 2,

it follows that, for some h,
urs™ (o™, p™)5t™) = p(™.

By taking subsequences, we can assume that h is the same for all n. For this

h, it follows from A(v) that
MRS™ (¢ (T,p)st ) = p(t ) > 1.

Without loss of generality, assume s? = t% for all n. Since t* g supp $,
it follows that ¢ (T%,p™)(t™) > 0 and hence n?(sn,cn) + 0,

If firm 1 charges %-pn(tn) instead of p™(t™) where 1 < p < %(t*) an
argument similar to that in Theorem 1 shows that firm 1 can achieve positive

profits asymptotically.
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This contradiction completes the proof.

4. Related Remarks and Directions for Improvement

In this section we present a few remarks concerning possible extensions
of the results presented in Section 3 and the role of the assumptions we have
made.

(1) At first glance, Assumption C is reminiscent of the remarks made by
Hart in [9]. Since firms are assumed to choose only one product, it is clear
that strict complementarity cannot be allowed.

For example, if T = {tl,tz} and

U(m) = uw(m(L)) + V(min(m(tl),m(tz))

with u and v strictly concave, it is clear that all firms choosing NP is an
equilibrium. However, for appropriate choice of u and v, this will not be
optimal in the limiting economy.

This is just the type of preferences ruled out by Hart in [9]. (Note
that u does not satisfy several of our assumptions beyond Assumption C; it is

* .
not strictly monotone and there is non such that the marginal rate of

. %
substituion between 6t and GL is always less thann”).

Assumption C rules out much more than just this type of problem, however.

(2) Contained within the proof of Theorem 2 is the derivation of a truly

remarkable property of strictly convex and continuously differentiable

A

preferences. This is that if % is any closed subset of T with T - T# o,
R * * s h h,. *
there is some h and some t~ € T - T with MRS™ (¢ (T,x.);t ) > 1. The reason
T

that this is so remarkable is that one's intuition suggests the following

sample:
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Suppose T* - % = {tl’tz}'

(Thus, when all prices are 1, both ty and t, are purchased.)

One would think that if t; and t, are complements, adding just one of
them to % would not be worthwhile. That is, one could get stuck in an
equilibrium with t; not being produced because t, is not produced and vice
versa.

The argument in Theorem 2 shows that this cannot happen if preferences
are strictly convex and differentiable and (this is an important and, see
below) prices are identically one on %.

Although I would like to lay claim to this observation as original, the
credit really belongs with Hart (see [8] and [9]).

This does not say that it is impossible to get too little product variety
(T* - % # ) asymptotically, however, since this property of preferences
depends crucially on prices being 1 on all of %.

Of course, a priori, there is no reason to suspect that this is true.
This is in fact the role that Assumption C plays in our results. That is,
when all of the goods in T are pure substitutes, the worst threat that the
already producing firms can make from a potential entrant's point of view is
to lower their prices to cost. Thus, in the proof of Theorem 2, it is
sufficient to show that even if all firms simultaneously lower thier prices to
cost, profitable entry is still possible. (This depends on the constant costs
assumption.)

If the goods are not substitutes in the sense of Assumption C, this
argument will not work. 1In this case, we would have to examine the potential
for profitable entry when prices are some other price function, ;, on %.

(Even worse, the threatened prices, ;, depend on the commodity that the

entrant chooses.)
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It is easy to see that the argument in Theorem 2 breaks down in this
case: we cannot conclude that

A~

MRS® (6"(T,p)st ) > 1
for some h and some t* e T* - %.

In essence, differentiablity allows us to linearly decompose the
benefits, at the margin, from increased consumption of a combination of goods
into benefits arising from increased consumption of each of the goods
separately. Thus, for small changes, the goods are all independent in this
sense.

This argument gives us some insight into Hart's result in [8] as well.

In that paper, Hart considers a Cournot quantity setting game with bounded
(zero asymptotically) per capital production possibilities for each firm, free
entry and positive fixed costs.

In its simplest form consider a simultaneous move game in commodities and
quantites in which firms are allowed to select only one good. Suppose

production costs of all goods and for all firms are given by:

-

' Q + ¢ Q< a
c(Q) = 3

e

L Q>a

g

(Note: Hart's production assumptions are much weaker than this.)
Choose a sequence of games of this form withe®+ 0, a® > 0 and Nh > ®
*
where N » the number of players, is chosen so that Nn >'éL-+ 1 as before.
Assume that a™ > €™ (hence a competitive firm could break even).

Model consumers as before and define (Tn,pn) as in Section 3 relative to

an equilibrium of the n-th game. (p" is chosen so as to clear markets given
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the quantity choices of the firms).

Suppose (T%,p™) » (%,B). Then, it must be true that ; = 1. To see this,
assume that ;(E) > 1 and choose t% ¢ T! with t » E. It follows that
pP(t?) » p(t) as well.

Take any firm not producing and have him enter and produce t® in quantity
a™, Note that due to the choice of strategic form, no other firm changes its
product or quantity choice in response to this deviation from equilibrium. If
inverse demand is continuous (and exists in a neighborhood of ¢o), eventually,
this firm will earn positive profits.

Thus, ; =1 on %.

The argument outlined above can now be used as the basis for an argument
showing that ™ C I’i‘

Note that the fact that T*<: % in the Cournot game depends on two
factors. First, inverse demand is continuous (this is where Hart uses the
property that uh is strictly concave and continuously differentiable (see Mas-
Colell [17))). Second, whatever the limiting collection of goods is, they
must be priced competitively.

It is only because of the second of these facts that we are able to use
the first through the argument above to conclude that T* C:%. Since B = 1on
%, it follows from this that the only limit is the perfectly competitive
equlibrium.

For models of strategic interaction other than Cournot quantity setting,
we cannot guarantee a priori that prices are competitive on the collection of
asymptotically produced goods (%). Thus, this argument is no longer
effective.

Before proceeding we should make one further comment. Note that in [8],

Hart allows situations in which there is a good which is isolated and can be
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produced by only one firm. Of course, we would not expect the price of this
good to fall to the competitive level. This does not matter for the argument
presented above since if only one (or any finite number of) firm(s) can
produce the good, it follows that this good is not in supp ¢(%,;) in any
case. The argument can then proceed based on supp ¢(%,5) and the restriction
of B to supp ¢(%,B). (Note also that ¢(%,;) = ¢(T1,p) where

Ty = supp ¢(T,p) and p; = P'le-)

(3) It is of interest to see the role that the assumptions we have made
concerning consumer preferences play in our result. After all, other models
with infinitely many commodities have appeared in the economics literature
previously which do not satisfy assumptions A(ii), A(v) and A(vi). Most
notably, the additively separable preferences commonly seen in models with
continuous time or uncertainty do not satisfy these assumptions (see the
realted remarks in [12] as well). In this regard, consider the following one-

S
consumer economy, denoted by é:

(i) The goods are labor, denoted by L, and a continuous gradation of
qualities represented by T = [0,1].

(ii) The consumer has preferences over combinations of L and bounded
functions on [0,1]--R; X ﬁ:[O,I]——as in Bewley [3]. (This is
isomorphic to ﬂi(,é ) where A= TU{L}, n =2 + §1,, A is Lebesgue
measure.) Denote by c(t) those elements of L ..

We will assume that the consumers' preferences are given by the
utility function:
1

U(L,c(*)) = v(L) + [ u(e(t))dt
0
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where u and v are strictly increasing, strictly concave and continuous.
(iii) The production set Y is given by
1
Y = {(L,0)|c"> 0 and [ e(t)dt + L < 0O},
0
(Note we follow the usual convention, inputs (L) are negative, outputs
(c) are positive.

This economy corresponds to the limit economy (¢ = 0) discussed in the
earlier sections.

As can be easily seen, we immediately run into a problem with this
framework. As argued in Proposition 3, when € > 0, only finitely many firms
can produce. This leads directly to a consumption bundle for our consumer for
which his utility function is not defined (a purely atomic distribution).

This is not a serious problem, however, as we can indeed construct a sequence
of economies which converge to this one in a natural way.

Define the sequence of economies g:n as follows:

(i) There are n+l goods. Consumption of these goods is denoted by
(xl,...,xn) and L.
(ii) There is one consumer with utility function defined by

n
U (%, e e sk L) = (L) + 12=1 ?ll-u(xi)

where u and v are as defined above.
. . . * .
(iii) The consumer is endowed with L" units of L.

(iv) The production set is

n
Y° = {(Xl,...,xn;L)lxi 2> 0 and 2 X, + L < 0}.
i=1
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A simple way of interpreting E m js that we have broken the interval
[0,1] into n segﬁents of equal length. Instead of choosing a point, firms are
allowed to choose one (and only one) of the intervals to produce. They must
produce all goods in the interval in the same quantity and charge the same

price for all of them; x; is then interpreted as total sales.

i
If firms select one of the intervals, they pay a set-up cost of €T,
There are N, firms whose payoffs are calculated as in Section 2.
To make the experiment reasonable we will consider only the case where
Nn > n. (Free entry is not interesting if this is not the case.) Further, we
will assume that €@ is such that all of the goods are produced in gi? (this
will become clear below).
Thus, it would seem that, since % = [0,1], the argument of Theorem 1
should apply and we should get the perfectly competitive solution as n + =,
This is not so, however. To see this, suppose
that u(x) =vx, v(L) =/T.
Then, a simple computation shows that there is a unique symmetric Nash
equilibrium to this game. In this equilibrium, the price of good i is given

by (the price of L is fixed at 1):

i

* 2
LI +/p*(n2+1) + (@ -1)
“p n 4+ (n-1)

This will be a free entry equilibrium as long as

*
e < 1 P -1

p (alp + (0 - 1))

an assumption that we will make.
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As n > ©, both sales and profits go to zero for each firm, but p* > 2.
Thus, we see that the equilibrium need not converge to the perfectly
competitive equilibrium of the limit economy (which has p = 1) even though T

([0,1] here) is perfect and T = ™.

It is easy to see what goes wrong in this example. Even though T is
"getting filled in" as n *+ ®, under the specified preferences, nearby goods
are not good substitutes and hence Bertrand's argument cannot be used (as in
Theorem 1) to conclude that prices are driven to cost.

With the given preferences, T is merely an index set, nearby t's are no
more better substitutes than ones which are far apart. (This is also obvious

from the symmetry in the approximating preferences.)

(4) Some assumption is needed to guarantee that firms can choose products
in such a way as to provide good substitutes without engaging in direct price
competition a la Bertrand.

The assumption that T* is perfect allows us to draw exactly this
conclusion. Without some assumptions along these lines, the conclusion of
Theorem 3 is false.

The easiest way to see this is by considering the case where T is a
singleton. Due to Proposition 3, we will never get beyond monopoly in this
case.

The best one might hope for is a result along the lines of Theorem 3

under the assumption that T (not T*) is perfect.

(5) Note that we have used subgame perfection only in a very minor
way. This was to guarantee that a potential entrant would not threaten to
charge a price less than cost. Of course, the circumstances would be rare

when lowering prices to cost is in fact a rational move on the part of extant
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producers.

One would hope that by using the subgame perfect restriction to a larger
extent, one could improve the results along the lines of Remark (4) above.

In fact, if we change the description of G(N,e) slightly by restricting B
to functions from SN! to [l,n*] (rather than [O;H*]), all of our results hold
for all Nash equilibria (not just subgame perfect equilibria) of this new
sequence of games.

It is easy to see that the perfectness of T is necessary for the
conclusion of Theorem 3 to hold for all Nash equilibria of this new game,
however. To see this, consider the following example. Again, T = [0,1].

(i) There is one consumer with utility function given by

1
U(m) = vVm(L) - (f V1 + m[0,t] dt).
0]

(ii) The consumers' endowment of L is 4. 1In this case,

1y -1/2
MU(m;t) = vVm(Ly « [ 5(1 + m[0,y]) dy.
t

It is easy to see that, for fixed m, MU is a decreasing function t.
Thus, we can think of t as indexing quality with lower indices signifying
better qualities.

One Nash equilibrium for €™ sufficiently small is for firm one to set
s? = 0, GI(NP,...,NP) = p* where p* is the monopolist's price at O

*
(p = 1.42) and to threaten 61(821) =1 if sE # (NP,...,NP). Since MU is

1
decreasing in t, demand for every good other than 0 is O when p(0) = 1. Thus,

this threat by firm 1 keeps all other firms from entering.

(6) Strict convexity of consumer preferences was used to define payoffs
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to firms. If preferences are not strictly convex, consumer demand is not
uniquely defined and the assignment of payoffs in a sensible way would be much
more difficult. It seemed best to avoid this problem fully by assuming

strictly convex preferences.

(7) Note that the implicit assumption of finitely many consuming
households was not used in any crucial way. All of the results are really
based only on properties of demand functions in a differented framework.

Thus, many of the results should hold, with similar proofs, in models with a
continuum of consumers.

In particular, the techniques employed should work equally well with many
versions of Hotelling's location model ([11}] and Novshek [20], etec.).

In fact, the location model with convex transportation costs is one case
where Assumption C is satisfied and T* is perfect. 1If transportation costs
are linear, there is difficulty in defining payoffs even when firsm choose

different locations (cf. Remark (6)).

(8) Several directions for further exploration are suggested by the
results presented here.

The major ones are of course those mentioned in (4) above. Other
possibilities include relaxation of the restrictions on production
opportunities for firms,

For example, in reality firms produce more than one type of product. In
fact, there is currently much discussion of "product portfolios” and the like.

In addition to these areas, the problem of existence of equilibrium is of
primary importance.

There are several directions in which one could proceed in this regard.

In terms of existence of exact equilibria in pure strategies, based on
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the work of Novshek and Sonnenschein [19], etc., the best that one can

probably hope for is a sequence €™ converging to zero with equilibria existing

for each €™, This problem

is much more difficult in our formulation,

however. That is, in Novshek and Sonnenschein the arguments rely quite

heavily on symmetry arguments. Of course, this cannot hold in our formulation

since, ex post, firms produce different products and hence cannot be treated

symmetrically.

There is reason to be
for approximate equilibria
reason, it is desirable to
equilibria.

In addition, there is
Dasgupta and Maskin [6] on

with discontinuous payoffs

optimistic as to the potential success of a search
in pure strategies (cf. Hart [9]). TFor this

extend the results presented here to approximate

some possibility of the extension of results of
the existence of mixed strategy equilibria in games

to this framework.

These are all topics for future work.
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