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1. INTRODUCTION

The objects of study in this paper are the multi-person cooperative

games, in which utility is not (necessarily) transferable. Such a game is

described by a set of players, together with a set of feasible outcomes for
each subgroup (coalition). In general, the players may not be able to make
side payments to each other in such a way that the total utility gains equal

the total utility losses; these games are thus called non-transferable utility

games, or NIU-games for short. They frequently arise in many economic models

(where there is no freely transferable commodity such that every agent's
utility for it is linear); coalitional bargaining problems, where subgroups of
the participants (more than singletons) have strategic influence (through,
e.g., coordinated threats), are another example of such games.

Two subclasses of the NTU-games have been extensively studied, and
appropriate solutions suggested. The first is the class of two-person pure
bargaining problems with the Nash [1950] solution; the second is the class of
n-person TU (Transferable Utility) games, with the Shapley [1953] value.

Harsanyi [1959] proposed a solution for general NTU-games that extends
both the Nash and the Shapley approaches mentioned above; it was then further
simplified--see Harsanyi [1963, 1977]. We will always refer to the latter

version as the Harsanyi solution. It should be pointed out that Harsanyi

deals with games in strategic form; we assume that the games are already given
in characteristic function form. Also, we do not consider the "second round
of bargaining” suggested by Harsanyi in order to define a unique stable
solution (which may not be one of the original solutions).

Another extension of the two solutions has been proposed by Shapley

[1969]. It is known as the A-transfer NTU-value, or NTU-value for short; we

will refer to it in this paper as the Shapley (NTU)-solution.




In what concerns applications, the Shapley solution has been studied in a
variety of models (see Aumann [1983a] for references); the Harsanyi solution,
being less tractable, has received much less attention (one paper is Imai
[1983]). 1In the last few years, some examples have suggested that there are
certain difficulties with the NTU-solutions (see Roth [1980] and Shafer
[1980], and Aumann's [1983a] reply). Almost all the discussion has been
focused on the Shapley solution; as we show in a forthcoming paper (Hart
[1983]), the Harsanyi solution actually behaves rather nicely in these
examples.

Both the Nash bargaining solution and the Shapley TU-value were defined
axiomatically. Recently, Aumann [1983b] provided a set of axioms which fully
characterizes the Shapley NTU-solution. Our paper grew from an attempt to
understand the differences between the Shapley and the Harsanyi solutions in
terms of these axioms. A complete axiomatic characterization of the Harsanyi
solution was obtained; it is described in Section 3 (see also Section 3).

An outstanding observation is that the two solutions satisfy essentially
the same axioms. Indeed, the difference between Aumann's axioms and ours (see
Theorem D) is just that the space to which the solutions belong changes: it

is the set of outcomes for the grand coalition of all players in the former,

versus the set of outcomes for all coalitions in the latter. The axioms in

both cases are identical. This suggests that the grand coalition plays a more
prominent role in the Shapley solution than in the Harsanyi onej; for an
extensive discussion, the reader is referred to Section 5.

The paper is organized as follows. Section 2 is devoted to specifying
formally the model and the notations used, including the basic assumptions on
the class of games considered. In Section 3 we present a set of axioms that

fully characterizes the Harsanyi solution, which is defined and studied in



Section 4. We then consider in Section 5 some variations on the axioms that
lead to further results, including additional characterizations of the
Harsanyi, the Shapley, and the Harsanyi-Shapley solutions (the last one is
just the intersection of the first two); comparisons between solutions,
including a (hopefully) illuminating example, are also to be found there.

Finally, the proofs are in Section 6.

2. PRELIMINARIES

We start by introducing our notations. The real line is denoted R. For
a finite set I, let 'I' be the number of elements of I, and let Rl be the
lI'-dimensional Fuclidean space with coordinates indexed by the elements of
I.1 We will thus write x = (xi)iEI e WL Some distinguished vectors in .
are: the origin 0 = (0,...,0); and for every J < I, its indicator ly,
with 15 = 14f i€ Jand = 0 if 1 ¢ J.

For x and y in E;, the inequalities x > y and x > y are to be understood

coordinatewise : x' > y' and x' > y1, respectively, for all i € I. The non-

negative, the positive and the non-positive orthants of E; (defined by the
inequalities x 2 0, x > 0 and x € 0, respectively), are denoted HJ, E&+ and
H&. For A and x in EJ, we write A*x for the real number EiEI kixi (their
scalar product), and Ax for that element of R! given by ()\x)i =21yl for a11
i in I.

Let A be a closed subset of EJ; its boundary is denoted 3A. For A in
HJ, the set AA is {Xa,aEA}; for another closed subset B ofﬁRI, A t B is the
closure of {a t b|a € A, be B}.

A non-transferable utility game in coalitional (or, characteristic

function) form--a game, for short--is an ordered pair (N,V), where N is a

finite set and V is a set-valued function that assigns to every S« N a subset

V(S) of H§. The set N is the set of players; a subset S of N is a coalition;




and V is the characteristic function of the game.

The set N of players will be fixed throughout this paper; a game will
thus be given by its characteristic function V. The space I' = T(N) of games
we will consider consists of all games V that satisfy the following

conditions:

(2.1) For every S<& N, the set V(S) is
(a) a non-empty subset ofﬁms;
(b) closed;
(¢) convex; and

(d) comprehensive; i.e., x € V(S) and x > y imply y € V(S).

(2.2) The set V(N) is moreover
(a) smooth; i.e., V(N) has a unique supporting hyperplane at each point
of its boundary 3V(N); and

(b) mnon-levelled; i.e., X, y € 3V(N) and x > y imply x = y.

Conditions (2.1) are standard. (2.2b) is a commonly used regularity
condition, meaning that weak and strong Pareto optimality coincide for V(N).
The smoothness of V(N) is an essential condition; (2.2a) implies that, for
every x € dV(N), there exists a unique normalized vector A in RY such
that A « x > X » y for all y in V(N). The normalization we will use
is maxlkil= 1 (so that IN = (1, «v., 1) is normalized); let A (V(N),x) denote
thizeinique vector. Note that A must be positive (i.e., X € H€+) by (2.1d)
and (2.2b). For a thorough discussion on these assumptions and their impact,

the reader is referred to Aumann [1983b, §9 and §10].

A special subclass of T is obtained as follows. A transferable utility

game on N-—-a TU-game, for short--is a function v that assigns to each

coalition S < N a real number v(S), with v(f) = 0. To such a TU-game v there



corresponds a (non-transferable utility) game V given by

v(s) ={xe B|] x < v(s)}
ieS
for all S« N. Note that V satisfies (2.1) and (2.2), thus V belongs to T; we
will say that V corresponds to v.2
In particular, for every non-empty T N and every real constant c, let
up o be the TU-game given by
»
c , if SOT,
u (S) =
The 0 , otherwise,

for all SC N; denote by Up . the corresponding game in I'. Such a game is

called 2 unaminimity game on T; it models the situation where each coalition S

can arbitrarily divide among its members the amount c—-if it contains all the

players of T--or nothing, if it does not.

Let X denote the product g .y E@; an element x = (x_.) where

*s’se N’

xg € RS for each S N, is called a payoff configuration. It assigns to

every coalition S a payoff vector xg = (xé)ies. In particular, the payoff

configuration x with xg = 0 for all S, will be denoted 0.

Note that a game V may be regarded as a (rectangular) subset of X, namely
HSC:NV(S). Operations are thus always understood coalitionwise. For example,
V + W is given by (V + W)(S) = V(S) + W(S) for all S N, and V< W means
V(S) < W(S) for all S. If X is vector in HQLJ let AS = (Ai)i€S be its

restriction to RS ; the game AV is defined by

av(s) =A%v(s) = {aldh),

1€Slx - (xi)ies ev(s)}.



3. AXIOMS AND MAIN RESULT

A solution function on T is a set-valued function § that assigns to each

game V in T a set3 of payoff configurations $(V)< X. An element of Y (V) is a
solution of V; in general, there need not be a unique solution, therefore ¢y is
a set-valued function.

We impose the following axioms (¢ denotes a solution function, V, W and U

arbitrary games).
Al. Efficiency: ¢(V)< 9V,

Every solution x € (V) satisfies Pareto-efficiency for all coalitions S,

which by (2.1d) is just x_, € 3V(S).

S

A2. Scale Covariance: Y(AV) = AY(V), for all A in ﬂﬂ{k+.

If the payoffs of the players are (independently) rescaled, all solutions

will also be accordingly rescaled.

A3. Conditional Additivity: If U =V + W, then ¢(U) D [Y(V) +y¢y(W)] QY aU.

Let x € Y(V) and y € V(W) be solutions of V and W, respectively. If

z = x + is efficient for U (i.e., zg € dU(S) for all S), then z is a

1

solution of U.

A4. Independence of Irrelevant Alternatives (IIA): If VaW, then ¢y (V)D¢Y(W) N V.

Let x € ¢(W) be a solution of W. If V is a game such that V(S)c W(S)
and Xg € V(S) for all S, then x is also a solution of V. Note that A4 may be
equivalently stated in a weaker form as follows: Let T be such that

V(T) < W(T) and V(S) = W(S) for all S# T; then y(V)D ¢v(W) N V.

A5. Unanimity Games: For every non-empty coalition T < N and every real




~

c
i = = i > = ise;
number ¢, define z zT’C e X by zS WET-IT if S T and zg 0 otherwise;

then ¥ (Up ) = {z}.

~

Each unanimity game Up c has a unique solution z = z
’ ~

T o the payoff

vector zg of a coalition S that contains T assigns equal shares c/|T| to all
members of T, and zero to the rest; if S does not contain T, everyone gets

ZE€Tro0.

A6. Zero-Inessential Games: If O € 3V then 0 € Y(V).

A game V is called zero-inessential if 0 e 9V(S) for all S, i.e., the

zero payoff vector is efficient for all coalitions.4 This means that, for all
coalitions, 0 is feasible, whereas no positive vector is feasible; in

. Oy oo (Ui {i} 1,1
particular, V({l}) = {x e IR \x <0 }. For such a game, the payoff
configuation 0 is a solution.

We can now state our main result.

Main Theorem. There exists a unique solution function on T satisfying axioms

Al-A6; it is the Harsanyi solution function.

The definition of the Haranyi solution will be recalled in the next
section.

Some remarks on interpretation are now in order. A solution x of a game
V is a payoff configuration; it specifies for every coalition S a feasible
(and even efficient) outcome xg for that coalition. One may view xg as the
payoff vector (chosen from their feasible set V(S)) that the members of S

agree upon; if coalition S "forms,’ x% is the amount that player i (in §) will
receive (note these are contingent payoffs--if S forms).

A second interpretation, following Harsanyi, is to view Xg as an optimal

threat of coalition S (against its complement N N\ 8), in the bargaining



problem of the grand coalition N. Further discussion of these interpretations
will be found at the end of Section 5 (see Example 5.6 and the remarks

following it).

4, THE HARSANYI SOLUTION

Harsanyi [1963, 1977] introduced a bargaining solution for general n-
person games. For games in ', which are already given in characteristic
function form, the definition is as follows.

A payoff configuration x = (XS)SC: y 1s a Harsanyi solution of a game V

in T if there exists a vector A € R and real numbers €r for all TC N, such

that

(4.1) For each S < N, Xg € av(s).
(4.2) A e x>t oy for all y e V(N).
(4.3) For each SC N and each i € S,

Let H(V) denote the set of all Harsanyi solutions of the game V; H is called

the Harsanyi solution function.

The conditions (4.1)-(4.3) may be interpreted as efficiency,

utilitarianism, and equity (respectively). Assume first that

A= lN = (l,...,1). Then the payoff vector of every coalition is efficient.

For the grand coalition N, it is moreover utilitarian, maximizing the sum of

payoffs over the feasible set V(N). And finally, the payoff xé of each member



of any coalition S is the sum of the "dividends™ ET that player i has
accumulated from all subcoalitions T of S to which i belongs; the dividend ET
being the same for all members of T, the vectors Xg are said to be
equitable. In the general case, the payoffs of each player are appropriately
rescaled so that A = ly, and then the above three criteria apply.

For games V in ', the conditions (4.1)-(4.3) can be restated as

follows: x € H(V) if and only if

(4.4) x € 3V,

(4.5) There exists real numbers ET for all T <N, such that

TeS T

T31i

for each i € S < N, where X = X(V(N),XN).
Indeed, Xy € 9V(N) (by (4.1)) implies that there exists a unique normalized
A = X(V(N),xy) satisfying (4.2); the normalization does not matter since (4.3)
is homogeneous in A and the ET's. From now on, we will sometimes write for
short A(V,x) instead of A(V(N),XN).

Condition (4.5) may be restated as follows. For a TU-game (N,v), let
(S,v) denote its restriction to S (i.e., the restriction of the function v to

subcoalitions of S only). Let Sh be the Shapley value operator; for

i € S<N, Shi(S,v) will thus denote the Shapley value of player i in the game

v restricted to S. Then (4.5) is equivalent to

(4.6) For all i € S N,
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Xix% = shi(s,v),

where A = A(V,x) and v(T) = AT . Xp = y Xlx§ for all T < N.
ieT

This may be checked by noting that v(S) = 2 lT’ET (see also Imai [1983,

T<S
§31).

Remark 4.7: Conditions (4.5) and (4.6) depend on the game V only through A;

thus, if V and W are games in T and x € H(V), then x € 3W and A (V,x) = A (W,x)

imply x e H(W).

The Harsanyi solutions of a given game V are constructed as follows.

every vector A in E@', define inductively

géx) = max{t € Hﬂzéx)(t) e V(S)},

(0

where zS

) _ i S . .
(t) (Zs(t))i€S e R® is given by

) i,
aT + t)/A7;

let5
(OO IO P Y
xg L o=zg (g7
Then x(x) = {xéx)}s is a Harsanyi solution of V if and only if (4.2) is

satisfied, i.e., if A = A (V(M), x{* 7).

From this construction, one can readily analyze some special classes

For

of
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games that are of interest.

Proposition 4.8: let V be a zero-inessential game (i.e., O0e 3V). Then

H(V) = {0}.

Proof. For every A in RY , the construction above gives Eéx) = 0 and

x}) = 0 for all s (this is shown by induction: assume £E{)) = 0 for

all T ggS, then zéx)(O) =0 € 3V(S), therefore ng) = 0 too—--see footnote 5),
thus g(x) = 0. For X = X(V,0), (4.2) will be indeed satisfied, thus

H(V) = {0}. Q.E.D.

If V is an inessential game, i.e., if there exists a vector a in RY such

that aS

e 9V(S) for all S (see footnote 4), then it is easily checked that V
has a unique Harsanyi value x, given by Xg = aS for all S. The following is

in Harsanyi [1963, §12]:

Proposition 4.9: Let V be a game in I with V(N) a half-space (i.e., V(N) =

{y € ﬂﬁ”u * y < c} for some u ¢ Kﬁh_and c € R). Then V has a unique Harsanyi

solution.

Proof. The only possible vector A is u (by (4.2)); the procedure described

above will construct g(u) with xéU) € 9V(N), hence (4.2) will be indeed

satisfied, and H(V) = {x(U)}. Q.E.D.
In particular, we obtain

Proposition 4.10: Let V correspond to a TU-game v. Then V has a unique

Harsanyi solution x given by

x; = Shl(S,v)
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for all i € ScN.

Proof. The payoff configuration x is a Harsanyi solution since it satisfies
(4.4) and6 (4.6) (with A = IN); its uniqueness follows from Proposition 4.9.

Q.E.D.

Let h(v) denote the unique Harsanyi solution of a game V that corresponds
to a TU-game v; thus, H(V) = {h(v)}. Note that h, as a function from the
space of TU-games into the set X of payoff configurations, is a linear
function; it assigns to every coalition the Shapley value of the subgame
restricted to that coalition.

We conclude this section by showing that the Harsanyi solution function

indeed satisfies all the axioms Al-A6.

Proposition 4.11: The Harsanyi solution function H satisfies Al-A6.

Proof. Efficiency (Al) is just (4.4). Scale covariance (A2) is immediate
too. For conditional additivity (A3), assume U =V + W, x € H(V) and

y € H(W), and moreover z = x + y € dU; in particular, Zy

xy + vy € daU(N)
implies that the supporting hyperplane to U(N) at zy is also a supporting
hyperplane to V(N) at XN and to W(N) at yys since it is unique, we obtain

A =x(U,z) = x(V,x) = A(W,y), hence by adding (4.6) for x and y

Azg = Axg + ATy = ShU(S,v) + Sh'(S,w) = Sh'(S,v + W),
T T T . . s
where v(T) + w(T) = A" Xn + A7 . Yp = AT . Zps which proves that z satisfies

(4.6) for U, thus z € H(U). Independence of irrelevant alaternatives (A4) is
satisfied since VC W and x € ¢(W) NV < 3dW NV implies x € 3V, and also

A(V,x) = A(W,x); recall now Remark 4.7. And finally, unanimity games (A5) and
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zero-inessential games (A6) are covered by Propositions 4.10 and 4.8,

respectively. Q.E.D.

5. ADDITIONAL RESULTS AND THE SHAPLEY SOLUTION

We start this section by considering some variations on our
characterization of the Harsanyi solution.

First, we disregard axiom A6 on zero-inessential games. The remaining
axioms Al-A5 no longer fully characterize the Harsanyi solution. However, we

have

Theorem A. The Harsanyi solution function H is the maximal (relative to set-

inclusion) solution function on I' satisfying axioms Al-A5.

That is, if ¢ is a solution function on I' satisfying Al-A5, then
Y(V) € H(V) for all V in I'; and moreover, H does satisfy Al-A5 (this follows
already from the Main Theorem).

As we shall see later (Example 5.6), axiom A6 is not necessarily
satisfied by other solution functions. Thus it is of interest that it follows
from axioms Al-A5 together with maximality.

We now define an alternative solution: a payoff configuration

X = {XS}S<: N is a Shapley solution of a game V in T if there exists a vector

A€ EN such that

(5.1) 25 e x> a8

g + y for all ye V(S) and all S < N.

(5.2) For all i € N,

A x; = Sh(N,v),
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where v(S) = XS * Xg for all S < N.

We will denote the set of all Shapley solutions of the game V by L(V); L

is called the Shapley solution function.

This definition is due to Shapley [1969]; it is usually known as the Non-
Tranferable Utility Value. Note that, again, we consider payoff
configurations (x) and not just payoff vectors for the grand coalition (xy).
To compare it with the Harsanyi solution, note that both are efficient (i.e.,
x € 3V; for H, it is (4.1); for L, it follows from (5.1)); H satisfies the
utilitarianism condition (4.2) for the grand coalition N only, whereas L
satisfies it (5.1) for all coalitions; as for equity, L requires it for N only
(5.2), and H for all coalitions (4.3) (or(4.6)).

When there are only two players (i.e., .N|=2), the two solutions are
easily seen to coincide (for coalitions S consisting of a single player, both
(4.6) and (5.1) impose no restrictions). 1In case V corresponds to a two-
person pure bargaining problem (the only additional requirement being that
there exists at least one agreement which is beneficial to both participants;
formally, that V({l}) x V({Z})c: int V(N), where N = {1,2})——the two solutions
coincide with the Nash Bargaining Solution (Nash [1950]; X{l} and X{Z} are the
disagreement payoffs, and Xy the agreement).

Since both the Harsanyi and the Shapley solution are extensions of the

Nash solution, it is of interest to consider also their intersection K, given

by RK(V) = H(V) Y L(V) for all V in T; we will call it the Harsanyi-Shapley

solution function.

Theorem B. The minimal (relative to set-inclusion) solution function on T

satisfying axioms Al-A5 is K = H N L, the Harsanyi-Shapley solution function.
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Theorems A and B together state the following: any solution function ¥
on I' for which Al-A5 hold, must satisfy K(V) = H(V) N L(V) C¢(V) < H(V) for
all V in ', And moreover, the two extreme functions, K and H, do satisfy
Al-A5.

A direct characteriziation of K is as follows: 1let V be a game in ', and
x a payoff configuration; then x € K(V) if and only if both (5.1) and (4.6)
are satisfied (indeed: (5.1) includes (4.1) and (4.2), and (4.6) includes
(5.2)). From this we further obtain: x & K(V) if and only if there exists

A€ Hﬁh_and a TU-game w such that

(5.3) h(w) = Ax € AVCW,

where W e T corresponds to w (note that w(S) = AS

* Xg for all S). Thus, K(V)
is non—-empty if and only if, after appropriate rescaling, the game V is
contained in a game W corresponding to a TU-game w, and it contains its unique
Harsanyi solution h(w).

For a general game V, the two sets H(V) and L(V) may well be
incomparable, neither one including the other (see, e.g., Example 5.6). By

[

Theorem A, L cannot satisfy all axioms Al-A5. Indeed:

Proposition 5.4: The Shapley solution function L satisfies axioms Al-A4, and

does not satisfy axioms A5 and A6.

Proof. The proof that L satisfies Al-A4 proceeds in a similar way as for H

(see Proposition 4.11)., If Ur o is any unanimity game, the set L(UT C) is
b b

easily seen to consist of z = ZT o (the unique Harsanyi solution) together

with all x such that xy = zy and
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N X, = N z: =u, (S) for all S# N.
. S - S T,c
ieS ie$S

As for A6, see Example 5.6. Q.E.D.

Let us replace axiom A5, which L does not satisfy, by

B5. For every non-empty coalition T € N and every real number c,

) = {f € X|xN = Tiq-lT and ‘z xé = uT,c(S) for all S # N}.
ie S

w(UT,c

Theorem C. There exists a unique solution function on I' satisfying axioms

Al-A4 and BS5; it is the Shapley solution function L.

Thus, the difference betwen the Harsanyi and the Shapley solution lies

in

axiom A5 versus axiom B5. The fact that the Shapley solution is not unique for

unanimity games-—-the outcome of subcoalitions S # N not being determined--
yields, when applying the other axioms, different solutions for other games
well.

This non-determinacy for S # N suggests considering, instead of payoff
configurations, payoff vectors for the grand coalition N only. This is the
standard approach. Following Aumann [1983b], let I'; be the subset of games

I' that are monotone ((3.3) there) and have a Shapley solution. A value7

as

in

function ¢ on 'y is a set-valued function that assigns to every game V in Ty a

subset ¢ (V) of RY. The axioms considered are as followsS (for every V, W and

U in PL):

CO0. Non-Emptiness: ¢(V) # .

Cl. Efficiency: ¢(V) < 3V(N).



_17_

C2. Scale Covariance: ¢(AV) = Ap(V) for all X ¢ BﬁL,

C3. Conditional Additivity: If U =V + W, then

$(U) D [$(V) + ¢(W)] N 3U(N).

C4. Independence of Irrelevant Alternatives: If V(N) < W(N) and V(S) = W(S)

for all S # N, then ¢(V)D ¢(W) N V(N).

C5. VUnanimity Games: For every non-empty coalition T, cp(UT 1) = {—E;4.
’ 7]
Theorem 5.5 (Aumann [1983b]. There exists a unique value function on I'y that

satisfies axioms CO-C5; it is the Shapley value function.

The Shapley value function A is defined as the N—-coordinate of the

Shapley solution function:

AV = {xgfx = {xc} e LM} .

SaN
To compare this to our axioms, let FH be the subset of games in I' that

have at least one Harsanyi solution, i.e., I, ={Ve F’H(V) + P}, Let A5, be

H
the axiom A5 stated for unanimity games with c=1 only; and let A0 be the

axiom:

AO0. Non-emptiness: ¢(V) # 0.

Theorem D. There exists a unique solution function on FH satisfying axiom39

AO-A4 and A51; it is the Harsanyi solution function.

Theorems 5.5 and C should be viewed in parallel; the two axiom systems
CO-C5 and AO-A5; differ only through the consideration of all coalitions in

the latter versus the grand coalition only in the former. It is remarkable
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that essentially the same axioms, stated in two contexts, characterize both
functions, Harsanyi's and Shapley's. To compare the two axiom systems, note
that A0, Al, A2, and A51 are similar to CO, Cl, C2 and C5, respectively; A3 is
weaker than C3, since the sum has to be efficient for all S in A3, and only
for N in C3; and finally, A4 is stronger than C4, since one may decrease the
feasible set of any coalition in A4, but only that of N in C4.
We conclude this section with an example, further emphasizing the

differences between the Harsanyi and the Shapley solutions. Let UO correspond

to the TU-game ujy that assigns O to all coalitions.

Example 5.6. let N ={1,2,3}, V(S) = Uy(S) for all $# {1,2} and
vi(1,2) = {edx? e B2 el + 26 < 0 and <! < 2

(see Figure 5.1).

LA

-
Y

(2 ,-1)

Figure 5.1

This game is zero-inessential: the origin O is efficient for all

coalitions. Proposition 4.8 therefore implies that V has a unique Harsanyi
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solution, namely 0. To find the Shapley solutions, note that V(N) is a half-
space, therefore A = 1y = (1,1,1) is the only normalized vector satisfying
(5.1) for N; we then have v(S) =A5 .« 0 =0 if S# {1,2} and

v({l,Z}) = (1,1) » (2,-1) = 1, which implies that x is a Shapley solution of V

1 1
1,2} 56

For every coalition S, the vector xg is an outcome agreed upon by the

if and only if X{ = (2,-1), x_ = ( --é) and xg € 9V(S) otherwise.

N
members of S, in the event that S will form; it may be further regarded as a
threat of S in the general bargaining problem. The difference between the two
solutions can therefore be viewed, in this example, as a question of
"perfectness” or "credibility.” For the coalition {1,2}, the outcome (0,0)
assigned by the Harsanyi solution is credible, whereas (2,-1), as assigned by
the Shapley solution, is not. 1Indeed, every player by himself is guaranteed a
payoff of 0, hence (2,-1) is not acceptable to player 2; if coalition {1,2}
has to put into effect this threat, player 2 may well refuse to do so. In
this sense, (0,0) is the only feasible point that is credible for coalition
{1,2}. Note further that the difference in the values--the grand coalition
outcomes——-is entirely due to this difference in X{I,Z}'

As a possible justification for (2,-1), note that in this game there is
room for "profit making” since the rates of utility transfers for {1,2} and
{1,2,3} differ; if both coalitions can simultaneously form, then (2,-1) for
1

{1,2} together with, say, (-Ll, Lf’ 0) for {1,2,3} give payoffs of 1/2 to each

of the two players 1 and 2. This is the positive contribution of coalition
{1,2}, which makes the Shapley value of its members positive.

Thus, a difference between the two solutions may well be that, when
determining xg for an intermediate coalition S, the Harsanyi solution takes
into account subcoalitions of S, whereas the Shapley solution considers only

the grand coalition N. This can also be seen formally: X is determined by
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V(N), and then xg depends only on A for the Shapley solution (see (5.1)), but
also on xp for Tif S in the Harsanyi solution (see (4.6)).

The game in Example 5.6 is not superadditive. One may instead consider

the game W with W(S) = V(S) for S# N and W(N) = {x ¢ n@ﬂ Y x' < 1}, which
ie N
is superadditive. The solutions are then easily obtained: the unique

Harsanyi solution y is given by yy = (%u éq %J and yg = O for S# N; and z is

!
N 2 1,2}

zg € 3W(S) = 3V(S) for S * N, {1,2}. Again, the difference lies in the

a Shapley solution if and only if 2z 0, z{ = (2,-1) and

outcome of coalition {1,2}: the Harsanyi solution selects (0,0), and the

Shapley one (2,-1); the same discussion as above applies to this game as well.

We summarize the results in the following table.

Axioms Domain Solution* Theorem
Al-Ab r H Main
Al-A5, maximal r H A
Al-A5, minimal r K=H L B
Al-A4, B5S r L C
AQ-A4, A5, PH E* D
C0-C5 FL L Aumann [1983b]
*H = Harsanyi
= Shapley
K = HN L = Harsanyi-Shapley

%%
Value, not solution

Table 5.2
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6. PROOFS
In this section we prove our results: the Main Theorem (see Section 3)

and Theorems A, B, C and D (see Section 5). Let PTU denote the set of all

games in I' that correspond to TU-games.

Proposition 6.1. For any domain I' with Tpp & I'e ', let ¥ be a solution

function on r' satisfying A3 and A5. Then:

(6.2) For every game V that corresponds to a TU-game v,

Y(V) = H(V) = {h(W)}.

Proof. By Proposition 4.10, h(v) is the unique Harsanyi solution of a game V
that corresponds to the TU-game v. We will show that ¢ (V) = {h(v)} too.

If V is a unanimity game UT,c’ then w(UT’C) = {h(uT,c)} is just axiom
A5. Recall that Uy is the game that corresponds to the TU-game u, which is
zero for all coalitions; thus, Ug = UT,O for all T, and we have
vy = {hp} = {o}.

Next, note that if both V and W correspond to TU-games v and w,
respectively, then V + W corresponds to v + w; moreover, 9(V + W) =23V + 9W,
and A3 becomes in this case Y(V + W) D Y(V) + Y(W). Any TU-game v can be

decomposed into a sum of unanimity games

therefore
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pV) =y U )D ) w(U ) =) {h(u )} = {h(w)}
T T,cT T T,cT T T,cT

(the last equality is due to the linearity of h—-—-see the remarks following the
proof of Proposition 4.10).
Finally, let V correspond to the TU-game -v, then V + V = Uy, which

implies

{o} = v v +v).

Since Y (V) D {h(v)} and Y(V ) D {h(—v)}, we must have that each set is

actually a singleton, thus (V) = {h(v)}. Q.E.D.

Proposition 6.3. Let y be a solution function on T satisfying Al-A4 and

(6.2). Then Y(V)< H(V) for all V in T.

Proof. Let x e Y(V), and X =X (V,x); let p € EE+ be given by i = ant for

all i € N. Define the following games:
Vi(s) = {ye By < xg} for S# N
1 y Sl ’
V(N = V(N);
Vy(S) = {y £ H@IXS + y <« AS . xs}, for all S.

Using A4, from Vi< V and x € (V) ) V;, we obtain x € w(Vl). It is easy to
see that V, = Vi +uly (for N, recall that Aey < A-xN for all

y e V(N) = Vi (™). By (6.2), ¥(Up) = {0}, hence v(uUy) = {u0} = {0} by A2;

applying A3 gives
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x =x+ 0elW(V) +vWU)] NIV, < b(V,),

i.e., x € $(Vy). Consider now AV,; it corresponds to a TU-game v (given by

v(S) = AS . Xg for all S); therefore, by A2 and (6.2):
Ax € M(V,) =¥OV,) = {n(v)} = HQV,) = MH(V,),

or x € H(Vy). From this it readily follows that x € H(V) (recall Remark 4.7).

0.E.D.

Proof of Theorem A. The Harsanyi solution function H satisfies Al-A5 by

Proposition 4.11; it is the maximal one by Propositions 6.3 and 6.1. Q.E.D.

Proposition 6.4. Let ¥ be a solution function on T satisfying Al-A4, (6.2)

and A6. Then Y(V) D H(V) for all V inT.

Proof. Let x € H(V) and A = A(V,x). We define the following auxiliary games:

Vl(S) = {y € H@{XS sy < AS . xs}, for all S;
Vy(S) = {y € H@ly < xs}, for S # N,
Vo(N) = Vi(N);
V3(8) = V(S), for S # N,
Vy(N) = V;(N);

and finally
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(i.e., W(S) = V(S) - {xs} = {y - xs|y € V(S)} for all S). Note that xe 3V
implies Q € 9W, hence W is a zero-inessential game and 0 € Y (W) by A6.

Since x € H(V), we have x € H(Vl) (again, recall Remark 4.7). But AVI
corresponds to a TU-game; as in the proof of Proposition 6.3, we then obtain

by A2 and (6.2) that x € w(VI). Now x € Vo < Vy, hence x ¢ w(Vz) by A4; next,

Vq =V, + W, which using A3 implies that

X = x + 9 E[‘JJ(VZ) +y(W)1 N0 8V3C_'1JJ(V3),

or

Ll

€ w(VB). And finally, xe V c Vg yields x € Y(V) by A4. Q.E.D.

Proof of the Main Theorem. The Harsanyi solution function H satisfies Al-A6

by Proposition 4.11; it is unique by Propositions 6.3, 6.4 and 6.1. Q.E.D.

Proposition 6.5. The Harsanyi-Shapley solution function K = H NLonT

satisfies axioms Al-AS5.

Proof. Both H and L satisfy Al-A4 (see Propositions 4.11 and 5.4), hence

their intersection does too. A4s for A5, note that K(UT c) = H(UT c), thus A5

is also satisfied. Q.E.D.

Proposition 6.6. Let y be a solution function on I' satisfying Al-A5. Then

P(V) D> K(V) for all Vv in T.

Proof. let x € K(V) and A = A(V,x). Define the TU-game w by w(S) = AS * Xg

for all S, and let W correspond to it. We then have h(w) =ix € AVCW

(recall (5.3)) and Y(W) = {h(w)} (by Proposition 5.1); applying A4 yields
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YAV) DY) NAV = {ax},

hence x € Y(V) by A2. Q.E.D.

Proof of Theorem B. Propositions 6.5 and 6.6. Q.E.D.

To prove Theorem D, one must make sure that all games considered are in
Iy, i.e., that they have a Harsanyi solution. Note that 'ty Ty by
Proposition 4.10, and furthermore, whenever V(N) is a half-space, Ve FH by

Proposition 4.9.

Proposition 6.7. Let y be a solution function on Iy satisfying AO-A4 and

A51. Then ¢ satisfies (6.2).

Proof. Let T be a non-empty coalition, then lp(UT 1) = {h(UT 1)} by A51.

Applying A3, we have

{htag P} = (U ) =9y | + U2 ) + 9 = {Blup D} +¥(Uy).

But w(UO) is non-empty by AO, hence ¥ (Uy) = {Q}. Applying again A3:

(o} =¥y = vy |+ DUy D +9@p ) = {htay D} +9@p ),

thus lp(UT _1), which is non-empty by AO, must consist of —h(uT 1) = h(—uT 1) =

h(uT _1). And finally, for every real c # 0, let A = 'cllN = (lc’,...,

|,
then A2 yields

V(U D =0T ) =2 ) = x{h<uT,ﬂ>} = {h(UT,c)}
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(where %1 is the sign of c¢).

Therefore V satisfies A5, and (6.2) follows by Proposition 6.1. Q.E.D.

Proposition 6.8. Let ¥ be a solution function on Iy satisfying AO-A4 and

(6.2). Then V(V) H(V) for all V in FH'

Proof. In order to guarantee that all games are in 'y, we will need a
modification of the proof of Proposition 6.3.

Let Wy(S) = &S = {y ¢ RS|y < 0} for S+ N and Wo (M) = U (M) =
{y E'EN'IZ yi < O}. The game W, belongs to I'y (by Proposition 4.8 or 4.9);
moreover?eag c Uy and 0 € ¥(Ug) N Wy, hence O & $(Wy) by A4,

Given a game V in I'y and x € Y(V) with X =X (V,x), put u = (1/>\i)i€N and

define the following games:

VI(S) = V(8), for S# N,
Vi) = {ye RYx « y < x o xys

V2(S) = {y € H@'y < XS}, for S# N,
V2(N) = Vl(N);

Vy(8) = {ye H@,AS - y< S, XS}, for all S.

Note that, by Proposition 4.9, all three games are in FH' We now proceed as
follows: Vi = V + uW,, thus X = X + u9 € w(Vl) by A2 and A3; vV, C Vy, thus

X € w(Vz) by A4; and V3 = Vy +uly, thus X =X + u? € w(VB), again by A2 and
A3. But AVj corresponds to a TU-game, thus w(AV3) = HQVy) = {Ag} by (6.2),

hence finally x € H(V) by A2 and Remark 4.7. Q.E.D.
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Proposition 6.9. Let y be a solution function on T'y satisfying AO-A4 and

(6.2). Then V(V) D H(V) for all V in FH'

Proof. Let Ve Ty, xe H(V) and A =A(V,x). Let V, be defined as in the
proof of Proposition 6.8. Thus Vl(N) is a half-space, implying that H(Vl)
consists of a unique point (Proposition 4.9). But w(Vl)cz'H(Vl) by
Proposition 6.8 and w(Vl) is non-empty by A0, hence w(Vl) = H(Vl).

By Remark 4.7, x € H(V) implies x € H(Vl), thus w(Vl) = H(Vl) = {g}.

Using A4, we now have Y(V) D w(Vl){W V = {x}, completing the proof. Q.E.D.

Proof of Theorem D. Propositions 6.7, 6.8 and 6.9. Q.E.D.

Proof of Theorem C. The arguments being similar to those used above, we will

only mention them briefly. Assume y is a solution function on T satisfying
Al-A4 and BS.

First, if V corresponds to a TU-game v, then (V) = L(V) (proceed as in
the proof of Proposition 6.1; note that Xy is uniquely determined). Second,
for an arbitrary game V, $(V) < L(V) (follow the same construction as in the

proof of Proposition 6.3; note that w(xvz) = L(AVZ) since AV, corresponds to a

TU-game). And third, (V) D L(V) (let x € L(V) and X = A(V,x), define
vi(s) = {y e BSAS « y < A5 . x} for all s, and then x € L(V|) by definition
of L; XVl corresponds to a TU-game, thus x € w(Vl); and V V, together with

A4 give x € V(V)). Q.E.D.
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Notes

lghen I is the empty set f, H@ contains just one element, namely 0.

2Note that we distinguish between a TU-game v and the corresponding iEIHl
game V; the latter is a game according to our definitions, whereas the former
is not.

3Possibly, empty.

4 S

A game V is inessential if there exists a e RN such that a° =

.

(al)ies € dV(S) for all S; if a = 0, then V is zero—-inessential.

SSince V(S) is non-empty and comprehensive, there exists t small enough
such that zék)(t) € V(S); since it is moreover closed, the maximum is indeed
attained. Note that zgx)(t) € V(S) if and only if t < ng), and xék) € 9V(S).

6Note that v as defined in (4.6) coincides with the original v.

7We distinguish between "solution™ and “"value”; the former is a payoff
configuration, and the latter a payoff vector for N.

8ye only consider games with V(S) a closed set for all S (2.1b),
therefore the closure invariance axiom ¢ (V) = ¢ (V) is not needed.

IThe axioms thus apply to all V, W and U in FH.



..29_

References

Aumann, R. J. [1983a], "On the Non-Transferable Utility Value,"” RM-55, Center
for Research in Mathematical Economics and Game Theory, The Hebrew
University, Jerusalem.

Aumann, R. J. [1983b], "An Axiomatization of the Non-Transferable Utility
Value,” RM-57, Center for Research in Mathematical Economics and Game
Theory, The Hebrew University, Jerusalem.

Harsanyi, J. C. [1959], "A Bargaining Model for the Cooperative n-Person

Game,” in Contributions to the Theory of Games, IV, A. W. Tucker and R.

D. Luce (eds.). Princeton: Princeton University Press, 325-355.
Harsanyi, J. C. [1963], "A Simplified Bargaining Model for the n-Person

Cooperative Game,"” International Economic Review, 4, 194-220.

Harsanyi, J. C. [1977], Rational Behavior and Bargaining Equilibrium in Games

and Social Situations. Cambridge: Cambridge University Press.

Hart, S. [1983], "Non-Transferable Utility Games: Some Examples and the
Harsanyi Solution.”

Imai, H. [1983], "On Harsanyi's Solution,"” International Journal of Game

Theory (forthcoming).

Nash, J. F. [1950], "The Bargaining Problem," Econometrica, 18, 155-162.

Roth, A. [1980], "Values for Games Without Side-Payments: Some Difficulties

with Current Concepts,” Econometrica 48, 457-465.

Shafer, W. [1980], "On the Existence and Interpretation of Value Allocations,”

Econometrica 48, 467-477.

Shapley, L. S. [1953], "A Value for n-Person Games,” in Contributions to the

Theory of Games, II, H. W. Kuhn and A. W. Tucker (eds.). Princeton:

Princeton University Press, 307-317.



_30..

Shapley, L. S. [1969], "Utility Comparison and the Theory of Games,"” in La

Decision. Paris: Editions du CNRS, 251-263.



