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1. Introduction

A team problem, as developed by J. Marschak and R. Radner [8], is a
situation in which several agents act individually to maximize a common
expected payoff. Each agent acts on the basis of information he receives about
the state of the environment. We will be concerned here with the case in which
the payoff function is concave in the decision variables and its maximization
is subject to a convex constraint. The value of the constraint function
depends on both the action taken by the team and the state of the environment,
so we seek a shadow contingency price of the constraint for each state of the
environment,

Assuming that for each team decision rule the constraint is essentially
bounded, and that a constraint qualification is satisfied, optimality can be
characterized by a saddle-point condition. However, if there are infinitely
many states of the environment, the lagrange multiplier functional cannot always
be represented as a system of shadow prices. We will establish conditions on
the team's information structure under which the desired representation can
be obtained. The problem of representing a linear functional as a system of
prices has arisen in a different context in the infinite-dimensional commodity
space literature (see in particular [1] and [7]), and several of the techniques
used below have been adapted from these sources.

In this paper, the state space will be considered an abstract probability
space on which all relevant stochastic quantitites are represented as random

variables. The case in which the state space is infinite is of natural economic
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interest. For econometric purposes, economically relevant random variables

dre usually assumed to have absolutely continuous distribution functions,
necessitating an infinite state space, There is also a class of problems
arising in economic theory for which a finite state space is conceptually
inadequate. Suppose the relevant random variables constitute a collection of
stochastic processes, and economic agents make decisions at each point in time
based on current and past observations of these processes. In order to investi-
gate the behavior of agents in the limit, an infinite state space will generally
be required. For example, see [9].

The team problem is formulated and the relationship between the constraint
and the information structure is discussed in section 2. In section 3, saddle-
point conditions are established and the representation of the multiplier is
discussed. It is shown in section 4 that shadow prices exist if every agent
has sufficient information to know whether or not any preferred decision rule
(any decision rule which yields an expected payoff at least as great as the
optimum) violates the constraint. Conditions are also established under
which shadow prices exist if the event in which any preferred decision rule
violates the constraint could be identified by communication between agents.

In sections 5 and 6, two special classes of team problems are considered in
which shadow prices can be established for individual agents. It is shown in
section 7 that under certain assumptions, the choice of an optimal team decision
rule can be reduced to the choice of an optimal system of quotas, under which
each agent's quota is adjusted according to common information. Shadow prices

are then established for the reduced problem.



2. The Team Problem

2.1 Decision Rules. Let (X,7,P) be a probability space, where X is

the set of states of the environment, J 1is the ¢g-field of events, and P

is a countably additive probability measure. The team consists of n agents,
indexed by the subscript i. For each 1< i < n, let J; be the o-field
of events which can be observed by the ith agent. Let Ai be the set of
decisions available to the ith agent. For each 1 < i < n, Ai is assumed
to be a nonempty convex Borel subset of s-dimensional Euclidean space,

RS, § < ®, A team decision, a,1s an n-tuple of agent decisioms,

a = (al,...,an) € H2=1Ai' A decision rule for the ith agent is an essentially
bounded ji-measurable function di:X - Ai' Let Di be the set of decision
rules for the ith agent. A team decision rule is an n-tuple of agent decision
rules, d = (dl"'°’dn) € H2=1Di' For notational convenience, let A = H2=1Ai

and let D = H?_ D,.

i=1"1
2.2 Remarks. The requirement that decision rules be essentially bounded is
used directly only in section 7 and in the appendix. 1Its primary purpose is to
insure that the constraint function, f£(d); defined below, is essentially
bounded for each d e D.

The description of an agent's information structure as a o-field of
observable events is due to Radner {10], and has the following more concrete
interpretation. Suppose the ith agent observes a collection of random
variables {Yl,...,YHJ. Let J, = U(Yl,...,Ym), the smallest o-field with

respect to which all of these random variables are measurable. Then a function
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di:X -+ Ai is ‘?i—measurable if and only if it can be written
di(x) = Ci[Yl(X)""’Ym(X)] for each x ¢ X, where s is a Borel measurable
function on Rm[z,p. 278].
2.3 The Payoff. Let w_:X ¥ A 4 R be the payoff function for the team.
The function LR is assumed to be J X an—measurable, where A"° 1is the Borel
field on Rns; and for each x ¢ X, wo(x,-) is assumed to be concave on A.
For each d ¢ D, define the function w(d):X + R by w@d)(x) = WO[X,dl(X),...,dn(X)]
for x ¢ X. The function w(d) 1is assumed to be integrable for each d e D.
The expected payoff function W:D + R 1is given by W(d) = fw(d)dp for d e D.

It follows that W 1is concave on D.

2.4 The Constraint. Let fo:X XA9R bean J ¥ @ns-measurable function such
that for each x ¢ X, fo(x,-) is convex on A, fo is assumed to be bounded on
X X B whenever B 1is a bounded subset of A. For d ¢ D, define the function
f(d): X+ R by fd)(x) = fo[x,dl(x),...,dn(x)] for x ¢ X. 1t follows that
for each d ¢ D, £(d) 1is J-measurable and essentially bounded. A decision

rule d will be said to be feasible if £f(d) < 0 almost surely (a.s.).

2.5 The Team Optimization Problem. The team must choose d ¢ D to maximize

W(d) subject to £(d) < 0 a.s. The quantity f£(d)(x) can be interpreted

as the amount of a scarce resource required by the decision [dl(x),...,dn(x)]
minus the amount available in state x. 1In an appendix to this paper, certain
assumptions are shown to be sufficient for the existence of an optimal decision

rule. Our results will extend in a direct but cumbersome fashion to the case
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in which the expected payoff is maximized subject to several constraints of

the above form.

2.6 Definition. Let Iy = ﬂr.l_ 7. and let JK = Vr.i J ., the smallest
e r l_I i 1_1 17
o-field containing v for each 1< i < n. Let wl = sup {W(d):d ¢ D and

f(d) < 0 a.s.} (allowing w° to equal infinity). We will say that .

(respectively gﬁ) is weakly constraint adequate if for all d ¢ D such that

W(d) > W, {x:f (@) (x) > 0} e 7, (resp. ).

2.7 Remarks. J, 1is the o-field of events observable by every agent, and

is the "greatest lower bound" of the Ji's. J is the o-field of events

which could be obzerved if agents communicated their information to one another,

and is the "least upper bound" of the Ji's. For each 1< i < n, jggayi CQT*.
If a o-field is weakly constraint adequate, it contains all the informa-

tion the team needs in order to know whether or not f£(d)(x) < 0, where d

is any preferred decision rule and x 1is any state of the environment.

Although the definition depends on w°, it could of course be verified by

checking the condition for all d ¢ D. For example, 7 is weakly constraint

adequate if

5
{(x,a) e X ¥ A:fo(x,a) >0} eg ¥ RS,

2.8 Definition. For each d ¢ D, let f(d)* (resp. f(d)x) be the conditional

x 2
expectation of f(d) given J, (resp. J ). 2/
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2.9 Remark: If J% is weakly constraint adequate, 3 is an optimal decision
rule if and only if 3 maximizes W(d) subject to £f(d), < 0 a.s. Similarly,
if J% is weakly constraint adequate, 8 is an optimal decision rule if and

~

only if d maximizes W(d) subject to f(d)x < 0 a.s.

3. The Lagrange Multiplier

3.1 Notation. For each d ¢ D, £(d),£(d),, and £(d)  will be considered

%

elements of the normed vector space L & (X,7,P), written L e®. Let L« be the

normed (strong) dual space of L w. L o 1is the space of continuous linear

%

functionals on L w. The norm on L w [l-]l.., 1s given by

-

llgll, = sup { ] < f,g> |:felLewand ] £ ”m = 1},

e

where < f,g > denotes the value of g at f. For g e L », one says
g>0 if < f,g>> 0 whenever f > 0 a.s.

*
®

3.2 Lemma. Let f Dbe an integer and let h:D + L «, the g-fold product
of L o. For each 1< k< £, and each d e D, let hk(d) be the kth

component of h(d); and suppose that h is convex in the sense that for each

1 <k <4 and any two decision rules d and d',
k [] k k T
h'[Ad + (1-A)d'] < AbT(d) + (1-A)h"(d') a.s. for 0 < A < 1.

Suppose further that there exists a real number r < 0 and a decision rule

d® ¢ D such that hd°) < r a.s. for all 1< k< 4.

Let G:D + R be a concave function on D. Then d maximizes G(d)

k
subject to h (d) < 0 a.s. for all 1 < k< ¢ 1if and only if there exist
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functionals gy 2 0 in Le s 1L < k< g, such that
L ke ST S . N, b kS
(1) 6(d) - 71k (d),gk> < G(d)- Zp-1 < h (d), g, > < G(d)-Zp=1 < h'(d), g, >

for all d ¢ D and all 8 = 0 in L ;, 1< k<.

Proof: The lemma is an application of [6,pp. 217-218 Theorem 1; p. 219,

Corollary 1; and p. 221, Theorem 2].

3.3 Corollary. Suppose there exists a real number r < 0 and a decision

rule d° ¢ D such that f(do) <r a.s. Then d 1is an optimal decision rule

if and only if there exists g > 0 in L ® such that

(2) W) - <f(d),g > < W) - < £(d),g > < W) - < £(d),g >

'
A\

for all de¢ D and all g> 0 in L ®.

Proof: 1In Lemma 3.2, let g =1, let h:D+ Lo be given by h(d) = £(d) for

]

d ¢ D, and let G = W.
3.4 Remarks. If X 1is finite, the hypothesis of Torollary 3.3 reduces to the

Slater constraint qualificationm.
In the infinite-dimensional commodity space literature, functionals similar
to g have arisen as efficiency price systems, [7]; competitive equilibrium

price systems, [1l]; and price systems supporting an optimal stationary

consumption program, [9]; and their representation has been a major issue.

3.5 The Representation of the Multiplier. In general, a representation of

ata
w

a nonnegative functional g ¢ L » can be constructed as follows [11,pp.118-119}.
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For E ¢ 7, let XE be the characteristic function of E, and let
¥(E) = < Xg’8 > Then ¥ is nonnegative and finitely additive on J. More-
over, VY(E) <[ gl !l XE”w ; so Y 1is finite and absolutely continuous with
respect to P.
. m -
For f e Lo and & > 0, let {Bj}j=1 be a partition of the interval
[ -lfllg 5 [1fll, 1 1into intervals of length less than §. Let E, = f—l(Bj),

]

1 < j < m. Then choosing bj € Bj for each j, we have

m

< 8
and thus
m
<f,g > - 5. b¥(E.) | <58 L.
'8 =1P5Y @) el
Letting m—* « in such a way that § + 0, we have
<f,g > = lim 57 _b.Y(E.).

This limit is called Radon's integral of f with respect to ¥ and is
written _r fdy. Henceforth functionals in L  will be referred to by their

measure representations.

3.6 Remarks. Unfortunately, the measure ¥ given by (2) does not as such

have a clear economic interpretation, However, suppose ¥ 1is countably additive.
Then by the Randon-Nikodym Theorem [4,pp. 128-129, Theorem B] there exists a
nonnegative function p ¢ L;[¥,7,P] such that lfdy = [pfdP for all f ¢ L w.
Then for each x e¢ X, p(x) 1is interpreted as the shadow price of the resource

in state x, fpf(d)dP is the expected shadow cost of resources associated with

~

the decision rule d, and the optimal decision rule d maximizes the expected
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net payoff .r[w(d)(x) - p(x)f(d)(x)1dP for d e D.

3.7 Definition. A nonnegative function p in Ll[XﬂY,P] (written Ll)’ will

be said to be a shadow price system if for some decision rule d,

(3 [1w(@ - pE(@)1dP < [Tw(@ - pE@1dP < [[w(@) - pf(d)]dp

for all d ¢ D and all nonnegative functions p ¢ Ll'

3.8 Lemma. If p 1is a shadow price system and d 1is a decision rule such

~ A ~

that (d,p) satisfies (3), then d 1is an optimal decision rule.

Proof: The second inequality in (3) implies W(d) > r[w(d) - pf(d)1dpr. 1t

then follows from the first inequality and the nonnegativity of p that

W(d) > W(d) if d 1is fcasible. The second inequality implies that d is

feasible.

3.9 Remarks. The complementary-slackness condition associated with (3) is
stronger than that associated with (2). Suppose (3,;) satisfies (3) and

let E = {x:f(s) < 0} . The second inequality in (3) implies ;(x) = 0 for
almost all x ¢ E. This fact is particularly important because in many

simple constrained concave team problems, £(d) < 0 a.s. only if £(d) < 0 a.s.,

which implies that unless the constraint is nonbinding, shadow prices do not

exist for these problems. For example, let the probability space be the

interval [0,1] with the uniform distribution, let n 1, 3i= {¢,X},A1= A =R;
and let wO(X,a) = a and fo(x,a) =a - x for (x,a) ¢ X * A, The problem is

then to choose the greatest number a such that a < x a.s. The hypothesis
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of Corollary 2 1is satisfied, d = 0, and f£(d) = - x < 0 a.s. Thus although

3/

the problem has a 'Lagrange multiplier, shadow prices do not exist. =

4. The Existence of Shadow Prices
Suppose (a,w) satisfies (2). The remarks in 3.6 indicate that a
shadow price system exists if ¥ 1is countably additive. Actually, if a
subfield % < J 1is weakly constraint adequate, it suffices to prove that V¥
is countably additive for events in %. This tactic will be used in all of

the proofs in this section.

4.1 Proposition. Suppose
. . . o
i) there exists a real number r < 0 and a decision rule d ¢ D such
o
that f(d ) < r a.s.; and
ii) T 4 is weakly constraint adequate.
Then d 1is an optimal decision rule if and only if there exists an J,-measurable

shadow price system p such that (d,p) satisfies (3) and

[pf(d)dp = J“pf(d)*dp for all d ¢ D.

Proof: Sufficiency follows from Lemma 3.8.

To prove necessity, in Lemma 3.2, let £ = 1, let h:D* L «» be given

W. By (ii), d maximizes W(d)

by h(d) = f£(d),, for d e D, and let G
subject to f(d), < 0 a.s. Using (i), it follows from Lemma 3.2 that there

exists a nonnegative measure ¥ in L « such that

(4) wW(d) - [£(d),dy SW(:l) - j‘f(?l)*dv _<_W(l£1) - jf(ﬁ)_kdv'
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for all d ¢ D and all nonnegative measures v' ¢ L:.

We will prove that Y is countably additive on 7, using an argument
suggested by Bewley's proof of [1, Theorem 2, pp. 523-524}. [The argument has
the following economic interpretation.] If ¥ is mnot countably additive
on J,, there are events, E, in J, with arbitrarily small
probability such that V¥ (E), the 'cost" of using resources in event E,
is disproportionately high. Since these events can be observed by all agents,
the team can apply the decision rule d° in these events alone and obtain
credit for a resource surplus in these events without significantly reducing
the expected payoff.

More precisely, suppose ¥ 1is not countably additive on J,. Then there
exists & > 0 and a decreasing sequence of events {Ej}§=1 in J, such that
lim E. = ® and Y(Ej) > & for all j[4,p.39, Theorem F]. Let a° e D and

]
r < 0 be given by (i). Then there exists k > 0 such that

jE \ w(é) | dP < - r8/4  and jE | w(d®) | dp < - r8/4
j 3

(3}

whenever j > k. Let F = Ek and define the decision rule df by

8" (x) = { d%(x) for x ¢ F

d(x) for x é F.
Since F ¢ J,, d' ¢ D. Then

|Ww(d) - w@d | = | IF[W(E) - w(d")]dp | < - r8/2.

Also If(d')*dy = I XFf(do)*d\y < r§ , since the second inequality in (4)

implies IXX_Ff(d)*dY = 0. Therefore
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W(d') - jf(d')*dY > W(a) -r §/2 > W(;) - ff(a)*dw

which contradicts (3). Thus V¥ 1is countably additive on T g
Therefore, there exists a nonnegative J_ -measurable function P ¢ L1
such that Y¥(E) = [;pdP for all E ¢ J,. Since f(d), is J -measurable

for ecch d ¢ D, [£f(d), d¥ = {pf(d),dP for each d ¢ D. Indeed, since is
J % % P

J ,-measurable, it follows that for each d ¢ D,
[pf(d)dp = [E{pf(d) | 7 }dP = JpE(d),dp = [£(d) d v.
The conclusion now follows from (4).
4.2 Remark. Suppose that the hypothesis of Corollary 3.3 is satisfied and
that (d,y) satisfies (2). Then, without assuming 4.1 (ii), the proof of

Proposition 4.1 can be imitated in part to show that ¥ is countably additive

on J,. This fact will be used in section 5.

4.3 Proposition. Suppose

i) for each optimal decision rule d € D and each 1 < i < n, there
exists a real number r(d) < 0 and an agent decision rule dg(d) € Di such

o) o} o
that f(d ) < r(d) a.s., where d = (dl,...,di_l,di(d),di+1,...,dn);
A kS - el . R A
ii) 7 {UizlEi. E, e Ji, 1< i< n}; and

iii) 7 is weakly constraint adequate.
Then d is an optimal decision rule if and only if there exists an J*-measurable

~ ~ A

shadow price system p such that (d,p) satisfies (3) and Ipf(d)dP = rpf(d)&dP

for all d ¢ D.
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Proof. We need only prove necessity. In Lemma 3.2, let ¢ 1, let

L:D+ L w be given by h(d) = £(d) for d ¢D,and let G

d maximizes W(d) subject to f(d)x < 0 a.s. Then it follows from (i)

W. By (iii)
and Lemma 3.2 that there exists a nonnegative measure V¥ ¢ L © such that

() (@) - ME@"ay W@ - @ ar < W@ - e

for all d ¢ D and all nonnegative. measures V' ¢ L :.
If it can be shown that ¥ 1is countably additive for events in J*,
the conclusion will follow as in the proof of Proposition 4.1. Suppose V¥
is not countably additive on J*. Then it follows from (ii) that for
some 1 < i< n there exists &§ > 0 and a sequence of events {Eij}?=1 in
F; such that Y(Eij) > 6 for all j and lim Eij = @. The proof can be

~

completed by applying (iii) to modify d as in the proof of Proposition 4.1.

!
4.4 Remarks. Roughly speaking, 4.3 (i) states that at the optimum, eszch
agent can, by modifying his own decisions, produce a resource aurplus which

is bounded away from zero. The imrortance of this assumption will be illustrated

by an example in 6.5 below.

4.3 (ii) states that any event which can be identified by communication

between agents is a union of events observed by individual agents. In general,

let £ = {U2=1Ei: Ei € Ji, 1<i< n}. It is apparent from the proof that

4.3 (i1i) could be replaced by the weaker statement: TFor any decreasing

sequence of events {Ej}?=1 in 7 such that lim Ej = @, there exists a
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sequence of events {Fj}?=1 in % such that Ej (o Fj for each j and 1im P(Fj) = 0.
The importance of 4.3(ii) 1is illustrated by the following example.

Let the probability space be the square [0,1] ¥ [0,1] with the uniform

distribution, let n = 2, and let A1 = A2 = R. Let Y1 be the random

variable given by YI(X) =% for x = (X1X2) ¢ X, and let Y, be given by
YZ(X) = %, for x ¢ X. Let ,71 = o(Yl) and let Jé = G(YZ)-
Let wo(x,a) = a, + a, and fo(x,a) =3 + a, - max (Xl’XZ) for (x,a) e X X A.

Then 4.3 (i) and 4.3 (iii) are satisfied but 4.3 (ii) is not. The decision

~

rule given by d;(x) = x1/2, dy(x) = x,/2 for x ¢ X is optimal but
f(d)(x) = (x1 + X2)/2 - max (xl,xz) < 0 a.s.

so shadow prices do not exist for this problem.

4.3 (ii) is satisfied if, for example, the information structure is of
the following type. Let Y be a positive random variable and let {Bi}?=1
be a partition of the interval (0,») into n Borel sets. For each 1< i < n,
suppose the 1ith agent observes the random variable Yi given by

Y(x) if Y(x) ¢ B,
Y, (x) =

0 otherwise.

s

Then, letting Ji = G(Yi) for each 1< i< n,‘7“ satisfies 4.3 (ii). 1In
this case, the information structure acts as a switchboard, relaying the

signal Y to an agent selected according to the content of the signal.

4.5 Proposition. Suppose

i) 4.3 (i); and
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ii) for each d ¢ D such that W({d) > WOJ

n
{x:£(d) > 0} ¢ Ui=1 Ji'

Then d 1is an optimal decision rule if and only if there exists an

~ A A~

.
rl

g‘—measurable shadow price system p such that (d,p) satisfies (3) and

fpf(d)dp = [pf(d) dp for all d e D.

Proof: We need only prove necessity. For each 1< i< mn, let
£(d); = E{f(d) | Ji}. From (ii) it follows that d maximizes W(d) subject
to f(d); < 0 a.s. for all 1< i< n. Using (i), it follows from

Lemma 3.2 that there exist nonnegative measures ¥ in L = such that

(6) W(d) -z [£(d);dy, <W(@) - 5j ) [f(d),dy, <wW(@) - 7, [ £(d),d¥]
for all d ¢ D and all nonegative Wi in L w. Then, using (i), it can be
shown as before that for each 1< i < n, Wi is countably additive on Ji,

and thus that there exists a nonega“:ive Ji—measurable function pi € L1 such

~

that [f(d);d¥; = [p,£(d). dP for each d e D. let p = _p . Then for

each d ¢ D,

n n ~ ~ E3
3 = ¥ = = r
i [P (@) dp = o0 [p £(d)dP = [p £(d)dP = [pf(d) dp,

~

where the last equality follows from the 7 - measurability of p. The

conclusion now follows from (6).

4.6 Remarks. 4,5 (ii) states that if d 1is a preferred decision rule, the
event in which d violates the constraint can be observed by at least one

agent independently. Thus Proposition 4.5 indicates that 4.3 (ii) can be
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dropped if 4.3 (iii) is strengthened.

5. Single-Agent Constraints
The information received by individual agents has so far been considered
only indirectly, through the o-fields J, and 3*. In order to treat the
gi's individually, we devote this section and section 6 to discussions of
two special classes of team problems. 1In this section, we consider the case
in which the constraint takes the form of a vector of n constraints, each

constraining the decisions of a distinct agent.

5.1 Notation. For each 1< i < n, let f .:X X Ai + R be an J ¥ B°-measurable
function such that foi(x,-) is convex on Ai for each x ¢ X, and foi is
bounded on X ¥ Bi whenever Bi is a bounded subset of Ai' For each agent
decision rule di € Di’ define the function fi(di):x-+ R by fi(di)(x) =

= foi[x’di(x)] for xe¢ X, 1< i<mn. Then fi(di) is J-measurable and

essentially bounded for each d, € Di’ 1 <1i<n.

5.2 Definitions. Consider the team problem
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(*) Choose d ¢ D to maximize W(d) subject to fi(di) <0a.s., 1 <i<n.

Let w° = sup {W(d) : d ¢ D and fi(di) < 0a.s., 1<i<mn}, For 1<i<n,

we will say that Ji is weakly constraint adequate if for each d ¢ D such

(o]
that W(d) > W , {x.fi(di) > 0} eJ,. For d . eD, let £ (d), =

1
E{e, @) | 7.1

5.3 Remarks. J& is weakly constraint adequate if, in particular,
s
: O . 3 .
{(x,ai) e X x Ai foi(x’ai) > 0} e J& x R 1f Ji is weakly constraint
adequate, the constraint fi(di) < 0 a.s. can be replaced by the constraint

f'(di)i < 0 a.s. without changing the set of optimal decision rules.
i <

5.4 Proposition. For the problem (%), suppose
i) there exists a real number r < 0 and a decision rule do e D

such that fi(dio) < r a.s. for each 1 < i< n; and

11) 7, 1is weakly constraint adequate for each 1< i < n.

Then d is an optimal decision rule if and only if for each 1< i <n

~

there exists a nonnegative .?i - measureable function P, € L1 such that

~
n

On ’~ I\\ . ’~
[ lw(@ - 20 _p £, (@)1dP < [lw(@ - 2}_jp. £, (d,)]dP <
" n. -
- d
< [ W@ 5i-1 Py E;(d;)04P
for all d ¢ D and all nonnegative functions P; € L 1<i<nm,

1}

Proof. The proof of sufficiency parallels the proof of Lemma 3.8 exactly.
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To prove necessity, apply Lemma 3.2 to obtain nonnegative measures V, in
i

*
1w, 1 <i<n such that

. sh d q) - o0 A 3y - o 3.
W(d) g1 [E @ v, < W@ - o) TR ) dv, < W@ - 2] FE£,(dp) avs

1 KX
EAY

for all d ¢ D and all nonnegative measures Yi e Lo, 1<i<n. For
each 1< i< mn, Ilet w;(di) = W(al,...,;i_l, di’ ;i+1,...,3n), di € D1
Then

W', - J £.(d). 4% < w'(:ii) - fi(:ii)idvi gw'(:ii) - T fi(ﬁi)idvi'

1 oo
for all di € Di and all nonnegative 5 in Lo, 1< i< n. The proof

is completed by showing as before that Wi is countably additive on 3&,

for each 1< i < n.

5.5 Remark, It is easily seen that if 5.4 (i) is satisfied and if Ji is
~ o

weakly constraint adequate for some 1 < i, <n, d 1is an optimal decision

rule if and only if there exist nonnegative measures 8 in L'w, i % io’
and a nonnegative Jl -measureable function p; ¢ L1 such that
o o
w@) - fp. £ (d, )P - 3 a) - [ 7 E -
@) - ey £ ()P -2 [E(d)dy, < W) - [ p, £ (d; )dP
o "o o o o 0o o

- - - 1]
2i#i IEACRLERCY oy £; (4, )dP - 7., £,(d))dv}
(o] (o] [e) (o] (o]

for all d ¢ D, all nonnegative P, ¢ L1 and all nonnegative Wi € L*m,

o]

i % ige
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6. The Decomposable Team Problem

6.1 Notation. Suppose that the function v defined in 2.3 can be written

(7) Wo(x:a) = zzzlwoi(x’ai) for (x,a) ¢ X x A,

d ) =W . . i
For each ; € Di’ let wi(di)( ) a ’di( )}, 1< i< n. For each

o1

1<i<nm, Wi(di) is assumed to be integrable for each di € Di' Suppose

further that the function fo defined in 2.4 can be written

(8 £ (x,a) = st Of  (x,3,) for (x,a) € X x A,

i=1 o1
where, for each 1< i < n, foi is J x,@s- measureable and foi is bounded

on X x Bi whenever B, 1is a bounded subset of Ai' For each di € Di’ let
i

£ (@) () = £ 1,4 (D],

6.2 Definition. For 1< i < n, we say that Ji is constraint adequate

if for all d. ¢ D., £ (d.,) 1is J. - measureable.
i i it i i

s
6.3 Remark. J& is constraint adequate if foi is Ji x A - measureable.

6.4 Proposition. Suppose

i) the team problem satisfies (7) and (8);
o
ii) there exists a real number r < 0 and a decision rule d € D
such that f(do) < r a.s.; and

iii) JZ., is constraint adequate.
i

Then if d 4is an optimal decision rule, there exists a nomnnegative

g .-measureable function p. in Ly such that di maximizes the expected
i i
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net payoff

[ fw;(dp) - py £,(d;)0dP

[

for d, € D_.

i i
Proof. The proof uses an argument which has become standard in the
infinite-dimensional commodity space literature. By (ii), the hypothesis
of Corollary 3.3 is satisfied, so let y be a nonnegative measure in Lo

such that (d, ®) satisfies (2). Let Wi be the restriction of V¥ to 3&.

= + . .
Then by [12, p.52, Theorem 1.23], ¥, wic Yip where Yic is nonnegative

and countably additive on Ji and Wip is a nonnegative purely finitely

additive measure on ‘?i' - Moreover, there exists a decreasing sequence

[==]
f t E.s5. in i = =
of events { J}J=1 3& such that 1lim P(Ej) 0 and Wip(Ej) Yip(X)

for all j [12, p. 52, Theorem 1.22]. Then there exists a nonnegative

- i r =
ji measureable function P, € L, such that J fi(di)d\yic fpifi(di)dP

for all d, ¢ D,. For d, ¢ D.,, define the decision rule d, , by
i i i i ij

d,(x) for x ¢ E,
d; () = t J
di(x) for x & Ej.

Since Ej € 3& for all j, dij € Di for all j. (2) implies

-0 f dy, r AP - [ £ (a.)dy.
[ p SR P < (dy) J g e

for all j. Therefore
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jwi(dij)dp - ffi(dij)dwi = IXX\Fj[wi(di) - p;£;(d,)]dP +

+ ~ ~ ~ ~
fxEj[wi<di) - p;£,(d)1dP - fXEjfi(di)dVip S-fXX\gj[wi(di) -

.f‘ d. Pa) - ~ _ ”~ B
Py fi(dy)1dP + ‘rXEj[wi(di) Py fi(dp1dp erEjfi(di)inp -

I}

[w,(@)dP - [£ (@ )av_.

Thus

Frag, %00 = Pyf (40198 < P 0, @) - p,£,(d,)]dP
J

for all j. Letting j + = and applying Lebesgue's bounded convergence

theorem [4, p. 110}, we have
d _ d (‘ ”~ . _ ”~
[lvp@p -pg,@plae < [ [w (d) - p£ (d)]ap

for all di € D.

6.5 Remarks. Proposition 6.4 states that if the ith agent always knows

the value of his piece of the constraint, then there exists a system of

prices such that the ith agent's component of an optimal decision rule
maximizes an expected net payoff. This system of prices is not, of course,

a shadow price system as defined in 3.7. The reason why Proposition 6.4

does not assert the existence of a shadow price system is that even if 6.4(iii)
were satisfied for all 1< i< n, the price systems p; might not be the
same for all 1< i < n.

It may be useful to illustrate this difficulty with a simple example.
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Let the probability space be the interval [1,2] with the uniform distribution.
Let n =2, let Jy = {0,X}, and let Jé be the Borel Field on [1,2].
Let Ay = A2 = [0,»); and let Vo1 (x,al) = 2a1, v 2 (x,az) = a,, fol(x’al) =ap,

and foz(x,a ) = a, - X for a, ¢ A a, ¢ A x ¢ X. Then the team

1 1’ 2 2’
optimization problem is to choose d1 € D1 and d2 € D2 to maximize

2
E [2d,(x) + d,(x)}dx subject to d,(x) +d,(x) - x < 0 a.s. Then

~

(d, v) satisfies (2), where d1 = 1, dz(x) =x -1 for xe¢X, and ¥ = WC + Yp
_ . e 1 _ 1 _
where Y. = P and Wp satisfies Wp[(l, 1+ ;)] = 1, WP[X\\(l, 1+ ;)] = 0
5
for all m > 1. 2/ Then Py = 2 and P, = 1. Note that this example

satisfies 4.3 (ii), 4.3 (iii), and 4.5 (ii), but a shadow price system does

not exist.

7. Quotas and Shadow Prices

In the preceding section, shadow prices were shown to exist under
hypotheses which insured that agente¢ had sufficient information with respect
to the constraint. The strongest of these hypotheses, the constraint adequacy
at zero of ‘?*, is not likely to be satisfied in the absence of substantial
communication between agents. However, one can easily envision situations in
which agents bound by a joint constraint receive and act upon information
which they do not communicate to each other. For example, consider the case
in Which show tickets are sold by agents at different locations. 1In order to
prevent oversales, it will in general be necessary either to establish an
information system sufficient for each agent to know at any given moment

whether he can continue selling, or to institute some type of quota system.
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If the latter alternative is used, the choice of quotas is itself an opti-
mization problem. Thus in the absence of centralized information, the choice
of an optimal team decision rule can sometimes be reduced to the choice of an
optimal system of quotas. In this section, we establish conditions under which
this reduction is possible and shadow prices exist with respect to the problem

of choosing the optimal quotas.

7.1 Definitions. For each E ¢4 and 4T J, let P(E \,g) be the con-
6
ditional probability of E given ,&.'-/Suppose that the decisions of each

agent can be represented by real numbers; i.e., suppose that Ai C R for

each 1< i < n. Then for di € Di, let P*(-,di) be the conditional

. . . 7 .
distribution of di given J%.—/ For di € Di’ 1 <1i<n, let the function

¥*
dg be defined by

d:(x) = inf {r e R:P,( ( - m,r],di)(x) =1} for x ¢ X.

o o K
A -~ <

For d e D, let d = (dl,...,d;).
7.2 Remarks. The function d; is the conditional essential supremum of di
given J,. Suppose Ai is right closed. Then di(x) € Ai a.s. 1If di(x) € Ai

¥ v
for all x ¢ X, di € Di since di is J,-measurable.

7.3 Condition. For the remainder of this section we will impose the condition
that for each 1 < i< n, A is a right-closed interval in R and for each

kS
d; € Dy, di has been modified on an event of probability zero in J,, if

necessary, so that d;(x) e A, for all x e X.

7.4 Proposition. Suppose

i) Condition 7.3 1is satisfied;
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ii) fo(x,n) is nondecreasing and continuous on A for each x ¢ X;

iii) for each 1< i < n, for all E ¢ V?zr?j, p(E\ 3&)(x) = 0 implies
P(E ],?*)(x) =0 a.s; and j#H

iv) for each a ¢ A, P({x:fo(x,a) > 0} | J*)(x) = 0 implies

P({x:fo(x,a) 01 | ) (x) =0 a.s.

Then for each d ¢ D, f(d) < 0 a.s. if and only if f(dx) < 0 a.s.

% B
Proof: Since d < d a.s., it follows from (ii) that £(d) < f(dx) a.s.

To prove necessity, we will first show that there is a countable set C CA

and a mapping J from A into the collection of subsets of the first n integers

such that for each d ¢ D,
9) {(x:f@ ) >0} = Uaec[{x:fo(x,a) > 0]} ﬂ(ﬂiej(a){x:di(x) >ai])].

For each i such that Ai is left closed and has a finite left endpoint, let
bi be the left endpoint. Otherwise, let bi= - . Let C = {a e A: for each i,
a; is rational or a, = bi}. For each a ¢ A, let J(a) = {i:ai > bi}.

Then C 1is countable and the left hand side of (9) includes the right hand

side. Let d e D and x ¢ X such that f(d)(x) > 0. Since £ _(x,7) is

continuous on A, there exists a e ¢ such that di(x) > a; for all
ie Jdx)], a; = bi for i é JId(x)1; and fo(x,a) > 0. Since di(x) > a;
for all 1< i< n, J(@) < J{d(x)]. This proves that the right hand side of

(9) contains the left hand side.

It now suffices to prove that for aeCand d e D, if

8/
P[{leo(x)a) > O‘% m(nlej(a){di> ai})] =0 -
then .
PL{x:f_(x,2) > 0} NNy g0,yld; > 3, D] = 0.
Let E = ﬁiej(a){di > ad, E = miej(a){di > a3,

and let M = {x:fo(x,a) > 0}. Supposing that P(E N M) = 0, we must show
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P(E" N M)= 0. But P(EN M) = e |76 so pM | 7)) = 0
for a.e. x in E. It followsEfrom (iv) that P(M | 7)(x) = 0 for
a.e. xe E, Let L = {x:p(M \ Fy) > 0}. Then L ¢ J, and P(EN L) = 0.

{17---)1'1};

Assuming for convenience that J(a)

P(E N L) P({d, > a cesd > an} ]Jl)dP.

- T . .
LN {dl > al} 2

By (iii), the set {x: P({d2 > az,...,dn > an} ] gi)(x)= 0}, except possibly

for a set of measure zero, is in J,. Therefore, by the definition of d;,

*
LN {di > al} c {x:P({d2 > a

2,...,dn > an} ] Ji)(x) =0} a.s., and

thus

P(EN L) = ‘rm{di S al}P({dz > ay,...,d > an} }Jl)dp =

'fLP({dl > a;,d) > ay,...,d > an} \ 7 )dP =

*
[Pd]>ap,d, > a

L 1’72 oy an} | 7,0dp.

g
Continuing in this fashion, we have

PENL) = [ P({di> a

|
o

. cod >a} | F)dP = PEEN L).

17"

* kS *
Thus P(EN L) = 0, and since P(ENM) =[ . PM | J,)dP, P(EN M) = 0.
E NL
This completes the proof.

7.5 Remark. Proposition 7.4 is essentially a straight-forward generalization
of a result in [8, pp. 175-177]. Marschak and Radner assume that X is

finite; that 7, = {#,X}; that for each x ¢ X, fo(x,') can be written as a
constant plus a linear function of a; and that A, = [0,2), 1 < i< n. They

do not assume that fo(x,') is nondecreasing for a.e. x ¢ X. Assuming
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7.3 (iii) and 7.3 (iv) 1in this context, they show that f(d) < 0 a.s. if
and only if fo(x,a) < 0 a.s. for all a ¢ A such that min {di(x):P(x) > 0} <

7 ay < max {di(x): P(x) > 0} for all 1 < i< n.

7.6 Remarks. Under the hypotheses of Proposition 7.4, the question of the

feasibility of d 1is reduced to the question of the feasibility of d%. Roughly
speaking this reduction results from the fact that the information each agent
possesses in addition to J, 1is irrelevant with respect to the question of
feasibility. 7.4 (iii) states that an agent can only rule out an event
observed by other agents (and thus a set of decisions taken by other agents)

if the event can be ruled out on the basis of 7. 7.4 (iv) states that J,

contains as much information as J  with respect to the feasibility of
constant decision rules.

These assumptions are satisfied ir. the following situation. Let (X&) =

n+1 Rn+1

= (R R ). Suppose fo(x,a) caan be written fo[Yo(x),a] for each

(x,a) ¢ X ¥ A, where Yo is the random variable given by Yo(x) =X for
X = (xo,xl,...,xn) € X. For each 1< i <n, let the ith agent's information
consist of the observation of the random variables Y_ = and Y., where Y. (x) = x;

for each x ¢ X. Suppose that the joint distribution of {Yo’Yl""’Yn} is such

that the support of the conditional distribution P(Yl"'"Yi—l’Yi+1""’Yn\

] YO,Y,) is equal to the support of P(Y .Y vee,Y \ Yo) a.s.,
1 n

.. Y
I i-177i+17
for each 1< i < n. One can envision an organization in which a central

plamner receives the signal Y and communicates it to the individual agents,
o
who also receive information from other sources. Proposition 7.4 is then

addressed to the questions of whether or not the central planner can ensure

feasibility by assigning each agent a quota based on Y, and whether or not
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every feasible decision rule can be obtained by this procedure.

7.7 Definitions, For each 1< i < n, let D; = {di e D.: d, is

x %*
J,-measurable }. Let D = H?=1 D;. The elements of D  will be called

*
quota systems. Then for each d e D , d =d a,s. Also, for each d ¢ D,

.
* k3

d € D . Accordingly, the symbol a” will henceforth denote a quota system,

as well as the function defined in 7.1. Define the function

B

WD+ RU {+® by

s

* * ¥ * x
W (d) = sup {W(d'):d' ¢ D and d' < d a.s.} ford e D

Consider the problem

% % % %
(Q) Choose d e D to maximize W (dw) subject to f(d ) < 0 a.s.

ate .

N * ko Kk L oA
If d e D ,W ) < o, and d solves the problem (Q), then d

will be called an optimal quota system,

~

KN
o~ c

7.8 Remarks. W is a concave function on D . If d is an optimal decision

~
%

rule and 7.4 (i) - (iv) are satisfied, then d is an optimal quota system.

~

7.9 Definition. A nonegative function p e L, will be called a shadow price

1

)

system for the problem (Q) if for some d " e DW,WK(d7< ") < ©» and

(10) W@ - [ peedydp < W@ "y - [ pE® “ydp < Wit ) - [ped” *ydp

S

% X
for all d ¢ D and all nonnegative functions p ¢ Ll'

7.10 Lemma. If p is a shadow price system for the problem (Q) and " is

a quota system such that W (d” ") 1is finite and (d* “,;) satisfies
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(10), then d " is an optimal quota system.

Proof: The proof is similar to that of Lemma 3.8.

7.11 Proposition. Suppose

i) Condition 7.3 is satisfied;

‘4\0
ii) there exists a real number r < 0 and a quota system d such that

*0
f(d

)< r a.s.;
iii) for each a e A, {x:f (x,3) >0} e J,; and

" * * %
iv) W (d) < o for every d € D

Then d ~ is an optimal quota system if and only if there exists a nomnnegative

J,-measurable function p e L1 such that (d“ “,p) satisfies (10).

Proof: We need only prove necessity. Substituting d for d in (9) shows
that {x:f(dx) > 0} € 3;, for each dx € DN. Therefore dx ~  maximizes
wﬁ(dﬁ) subject to f(dw)* < 0 a.s. In Lemma 3.2, let 3& =7, for all

1<i<n, sothat D=D; let £ =1, let h:D -+ Lo be given by h(d ) =

) e ate
<

= f(d“)* for d e D“; and let ¢ =W . Then using (ii), it follows from

%*
Lemma 3.2 that there exists a nonnegative measure ¥ in L_ such that

E S % ok % k% *
W) - [E@r,dy <Ww @ ") -Jf@ "dy <wWw @ ") - [£(d ") dy

e

for all d ¢ D and all nonnegative measures V' in g;. The proof is

completed by observing as before, that ¥ 1is countably additive on I e

7.12 Proposition. Suppose
i) Condition 7.3 is satisfied;

.. . o
ii) there exists a real number r < 0 and a decision rule d € D such

o
that f(d°) < r a.s.;
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iii) £, is 7, ¥ 5" -measurable; and
iv) 7.4 (ii) - (iii).
Then if 3 is an optimal decision rule, let ¥ be a nonnegative measure

s ~
in L_ such that (d,¥) satisfies (2), and let Y, be the restriction of
¥ to J,- Let p be the Radon-Nikodym derivative of ¥, with respect to

”~ TN

P. Then p 1s a shadow price system for the problem (Q) and (d“,p)
satisfies (10).
Proof: By (ii), the hypothesis of Corollary 3.3 is satisfied so Y exists.

By Remark 4.2, vy, is countably additive on 7, so p exists. We will

first show that

an W@ - [e@Hey <u@ - [e@e

Ja P AL

for all d* eD . Suppose that for some d e D, (11) is false. Then by the

definition of w*, there exists d' e D such that d' < d* a.s. and

w@d'y - jf(d*)dw W) - ff(?i)d‘f’ . Since d'<d  a.s., £(d') < £(d°) a.s.,

so W(d'") -'rf(d')dw > W(a) - ff(a)dy , contradicting (2). This proves (11).
Since (iii) implies 7.4 (iv), it follows from Proposition 7.4 that

~ ale

f(d) < £(d") < 0 a.s. Therefore

(12) W(d) -] F(aydy =W (d) - L['f(:i*)d\y .

KN KR
il

It follows from (iii) that f(dw) is J*—measurable for all d e D‘, and

the conclusion now follows from (11) and (12).

~

7.13 Remarks. Proposition 7.12 does not state that p 1is a shadow price

system (as defined in 3.7) or even that a shadow price system exists. It is
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interesting that the function ;, derived from the multiplier Yy for the
original problem, could be a shadow price system for the problem (Q) but not
a shadow price system for the original problem. The measure Y is a multiplier
for both problems because the feasibility of a decision rule d is equivalent
to the feasibility of the associated quota system d*. However, under
7.12 (iii), the excess resource requirement associated with any quota system
is perfectly predictable by every agent. Thus, for the purpose of choosing
a net payoff maximizing quota system, only the shadow cost of resources in

events in J, need be considered; and in these events, shadow cost is

proportional to probability.

7.14 Remarks. The results of this section have further implications for the
decomposable team problem in a planning context. Suppose that the information

structure is of the type discussed in 7.6 and that
= n -
£ (xa) = 70 g (@) - g [Y ()],

where 85 is a nondecreasing continuous function of a; for each 1< i < n.
Let f_. = 8 - (1/n)g0 for each 1< i < n, and suppose that the team
problem satisfies the conditions of 6.1, and that the constraint qualification
6.4 (ii) is satisfied. Then each J& is constraint adequate and the hypothesis
of Proposition 7.12 is also satisfied.

This problem can be interpreted as one in which a central planner is
responsible for appropriately allocating an input resource, the availability

of which is given by gy An optimal allocation can be achieved by communicating

to each agent either the appropriate price system P; or the appropriate quota

system d;- Each agent then maximizes, respectively, f[wi(di) - pifi(di)]dP
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~
%

for d; e Di’ or fwi(di)dP for di < di a.s. However, in order to

communicate the appropriate price systems, the central planner must have the

<
information structure J, whereas communicating quota systems requires only J,.
<

Thus, in this case, the use of quotas is the more reasonable alternative.

8. Conclusion

Throughout this paper we have emphasized the relationship between the
xistence of shadow contingency prices and the information structure of the
team. If X 1is finite this relationship does not appear, since the constraint
is then simply a vector of constraints, and shadow prices are easily seen to
exist irrespective of the information structure. However, if X is infinite,
there may exist preferred decision rules which violate the constraint with
arbitrarily small positive probability. It is then possible that for any
system of contingency prices, the probability of paying can be made small
enough so that it is still profitabe to violate the constraint. The examples
presented above indicate that this situation can arise even in the simplest
team problems if the information structure is coarse enough. We have sought
to exclude this situation by insuring that the team can appropriately modify
any preferred decision rule in the event in which it violates the constraint,

Finally, it should be noted that the difficulties encountered in establishing
the existence of shadow prices also arise in connection with efficiency prices

when the firm is a team, Specifically, let q:X * A~ R™ be an
7 % an-meaSurable function such that q(x,*) is concave on A for all x ¢ X

and q is bounded on X ¥ B whenever B is a bounded subset of A. Let
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Y ={ye L:: y < q(d) a.s. for some d ¢ D} be the team's production set.
Then neither Bewley's Exclusion Assumption [1,p. 524} nor the hypothesis of
Majumdar's Theorem 4 {[7,p.9] are reasonable without special assumptions on

the team's information structure.
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Appendix: The Existence of Optimal Decision Rules

A.1 Notation. For a ¢ A, 1let |l a |l = Max {\aij‘ :1<i<n, 1<j<s}.
' n s '
Let  L; =1L, Hj=1L1(X"yi’ P), and for each d ¢ D, let |l d o=
= max {/] dij “1 l<is<n, 1< js<s}, where dij is the jth coordinate
t
of di' For each d ¢ D, let NI dll e = max f J! dij fle: 1 <1i<n, 1< j<s}

A.2 Proposition. Suppose

i) for each 1 £ i < n, Ai is closed;
ii) for a.e. x ¢ X, wo(x,- ) and fo(x,- ) are continuous on A;
iii) there exists an integrable function h:X + R such that
sup flwo(x,a)] :aeA, fo(x,a) <0} < h(x) a.s.;
iv) thzre exists a real number K > 0 such that f(x,a) < 0 1implies
Ilall <K a.s.; and
v) a feasable decision rule exists.

Then an optimal decision rule exists.

Proof. Let F =¢d ¢D : f(d) €0 a2a.s.}. By (v), F % @. We will show that
F 1is a weakly compact subset of Lll. It follows from (iv) that

N d H"; < K for all d ¢ F. Therefore, by [5, p 160, Theorem 17.13; 3,
p.294, Corollary 11; and p. 430, Theorem 1] we need only show that F is
weakly closed. But since F 1is convex, it suffices to show that F is
closed with respect to the H-Hi topology [5, p. 154, Theorem 17.17.

It follows from [11, p. 53, Corollary] that any sequence in F which is

convergent in the ]l-][i topology contains a subsequence which converges

to the same limit a.s. By (iv), the limit is essentially bounded. Since
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A 1is closed (in Rns) and for a.e. x ¢ X, fo(x,-) is continuous, it
follows that the limit must be in F. We now show that W 1is weakly
upper-semicontinuous on F. Since W 1is concave, we need only show that
W 1is upper-semicontinuous with respect to the H-Hi topology on F..
For r ¢ R, let Br =fd eF : W > r}. Assuming Br % g, let
fdm}:=1 be a sequence in B such that 1lim || d - a° Hi = 0. We can
assume dm(x) -+ do(x) a.s. By (ii), w(dm) > w(do) a.s. Therefore, by
Lebesgue's bounded convergence theorem, W(dm) -+ W(do)- Thus W 1is weakly

upper-semicontinuous on F, and the conclusion now follows.

A.3 Remarks. A.2 (iv) 1is only slightly weaker than the assumption that
A 1is compact. The following.proposition indicates that A.2 (iv) can be

weakened if information is centralized.

A.4 Proposition. Suppose
i) A.2 (1) - (ii);
ii) there exists a feasable decision rule do, a real number X > 0,
and an integrable function h : X + R such that
a) sup{\w(x,a)] :aedlA. !l all <K, fo(x,a) < 0} < h(x) a.s.,
and

b) wb(x,a) = w(do)(x) and fo(x,a) < 0 1implies |l a !l £ K a.s.; and

iii) ,ji =7. for each 1 < 1i < n.

Then an optimal decision rule exists.
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Proof. Let F =(d e¢D : £(d) <0 a.s.}. For d e F, define the function

d(x) if | dx) |l <K
d'(x) = o
d (x) otherwise,
for x ¢ X. By (iii), f{x: ! d(x) |l < K} € J., so d' ¢ D. It follows from
(ii) that W(d') =2 W(d), and that |ld'll; < K. Therefore, it suffices to
prove that W achieves a maximum on the set F' =¢(d e F : Il dllf < K}.

The proof is completed by substituting F' for F in the proof of

Proposition A.2.

A.5 Remarks. The importance of the assumption of centralized information is
indicated by the following example. Let the probabibility space be the
interval (0,1) with the uniform distribution, let n = 2, and let

A1 = A2 = (- ®»,1]. Let ji = ($,X} and let jé =7 . For x ¢ X, let

m(x) be the unique -.onnegative integer m such that 1 - (%)m <x <1 _(%)m+1.
Let the functions fo and W be given by
- 1 m(x) 1 m(x) )
fo(x,a) a; + a2(‘) + (1) 1
a, + az(%)m(x) TlooiE a0 <4
w (x,a) =
° )
(a1 + az)G%)m if mx) > 4,
where 4 1is a positive integer. This example clearly satisfies A.2(i) - (ii).

+
Letting d° be the decision rule d,° =0 and dg = 0,and letting K = 4¥™1 shows

1

that A.4(ii) is satisfied. Since fo(x,-) and wo(x,-) are each strictly

~

increasing functions of a for every x, an optimal decision rule d
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must be of the form d1 = a), dZ(X) = min (1, 4m(x)[1 - (%)m(x) - al]},
where a; < 1. If a1 =1, d2 is unbounded from below and thus is not
in D2. However, if ¢ 1is sufficiently large, W(d) 1is a strictly

~

increasing function of a,,so no optimal decision rule exists.
1
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NOTES

This research was supported by the National Science Foundation Grant
(3935 621). 1 have benefited greatly from discussions with Professors
Theodore Groves, John Ledyard, Roy Radner, and Stanley Reiter. Professor
Ledyard suggested the topic and has provided continued encouragement, as
has Professor Groves who also suggested Proposition 5.4. Section 7 grew
out of a conversation with Professor Radner. All errors were achieved

independently.

If & 1is a o-field contained in J, the conditional expectation of
f(d) given &, E {f(d) | &}, is defined to be any J4-measurable random

variable such that [ E{f(d) | 4}dP = [ £(d)dP for all F ¢ 4.
F F

The Lagrange multiplier, V¥, satisfies v¥[(0,1/m)] = 1, Y[X\\(O,l/m)] =0
for all m > 1. The existence of such a measure follows from [12,p.59,

Theorem 4.17.

A nonegative measure Y on (X,?i) is said to be purely finite additive

if it is finitely additive and if whenever Y¥' is a nonnegative countably

additive measure such that Y'(E) < y(E) for all E ¢ 3&, y' =0.

The existence of a measure Yp satisfying these conditions follows from

[12,p. 59, Theorem 4.1].
P(E 1.3‘) =E{XE ]&}.

For any x ¢ X, P+(-,di)(x) is a probability measure on (R,Bl), and

1 . .
for any set Be B, P (B,d;) is a version of P({x:di(x) e B} | 7).

The expression {di > ai} is an abbreviation of {x:di(x) > ai}. This

abbreviation will be used when there is no risk of confusion.



