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INTRODUCTION

A long standing goal of political theorists has been the development
of a coherent, consistent, and non—vacuous theory of elections, particu-
larly of those using majority rule. 1If possible, such a theory is to bhe
based on rational individual and group behavior. 1In spite of extensive
effort, recent writings (see, for example, Ordeshook and Shepsle, 1982)
reveal that many may now be prepared to give up this research program on
the grounds that no such model exists. There appear to be two main
stumbling blocks to a consistent theory based on the rational behavior of
participants: (1) the theoretical proposition that, given any realistic
assumption about the cost of voting, rational voters will not participate
in elections, and (2) even if they do vote, majority-rule equilibria
rarely exist. The first result is obviously contradicted by the facts,
the second means that the theory as we know it is fundamentally flawed.
Faced with these results, those who have not given up on political theory
all together have gone in two other obvious directions. They have either
given up on "rational” behavior (see for example Hinich et. al, 1972;
Coughlin 1979) or they have given up on "equilibrium” models and have
turned to “process” models (see for example Kramer, 1978.)

It is my belief that this retreat is premature. In particular, I
intend to show in this paper that even under assumptions of extremely
rational behavior, it is possible to combine voters, who may or may not
vote depending on the benefits and costs, with candidates who game
against each other, and end up with equilibria which not only exist but
which also have a remarkable social welfare property. The approach is a

straight—forward extension of the now standard spatial competition model



of elections. Voters have preferences (utility functions) over issues,
candidates choose a platform (a point in the issue space) and then voters
vote for their most prefered candidate-—in two candidate elections —— if
and only if the expected benefits from so doing outweigh the costs.

Given this voter behavior, candidates are assumed to maximize expected
plurality (a very good approximation to the probability of winning). A
full general equilibrium occurs when no voter or candidate wishes to

alter their strategy.
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FIGURE 1
To show where the theory posed in this paper fits into the
literature on the theory of majority rule elections, I refer the reader
to figure 1 in which existing theories are divided into four "boxes”
depending upon the assumptions concerning voting behavior. 1In the
traditional theory it is assumed that all vote (no abstentions) and that

choice behavior is rational (some form of utility maximization). It is



this theory for which equilibria rarely exist. Hinich et al changed both
of these behavioral hypotheses by allowing abstentions due to indif-
ference, alienation, etc., and by modeling the decision to vote as
probabalistic while leaving the choice of candidate to be based on
utility. Although equilibria exist in this modification, voting behavior
is somewhat ad hoc and certainly not rational choice based. Coughlin
maintained the traditional assumption of no abstentions but removed the
voter's choice of candidate from rational theory. Instead he adopted the
decision theoretic framework of Luce (1959, 1977) by assuming that choice
is probabalistic, where probabilities are proportional to utility. With
this model of voter behavior, equilibria exist and have an interesting
welfare property albeit different from that in this paper. It is not
known what occurs in Coughlin's models if abstentions are allowed.l

The model in this paper departs from the traditional by allowing
rational abstention behavior.2 We begin by recognizing the obvious fact
that when voters make the decision to vote they do not know how many
others have voted, or plan to vote, or, especially, how these others have
voted. They face a decision —— or better a game —- under uncertainty
similar in spirit to a sealed-bid auction. In modeling this simultaneous
decision problem for all voters we impose as much rationality as possible
-— rational choice and rational expectations — and arrive at a model in
which turnout is usually neither the 100%Z nor the 0% that have
traditionally been implied by rational choice models. It is this model
of the voters' behavior which constitutes the "new” component of the
theory in this paper. Most of the rest of our model is
standard, although the implications derived from this combination of new

and old are not.



In section 1 we describe the behavior of a single voter in much the
same way as that posed by Downs (1957), Tullock, and others. In section
2 we consider the simultaneous behavior of all voters and present the
equilibrium concept first introduced in Ledyard (1981). 1In section 3 we
define and describe both the behavior of candidates and the equilibrium
which arises when all actors —-—candidates and voters -— are combined into
a general equilibrium. In section 4 we explore the welfare properties of
those equilibria, in section 5 we examine the existence of equilibrium,

and some concluding remarks are added in section 6.



I. THE VOTER

The voter is assumed to choose whether to vote or abstain, as well
as for whom to vote, consistent with the expected utility hypothesis.
This model has already received much attention in the literature so I
will not dwell on its rationale but will immediately turn to the notation
and definitions. The interested reader can consult Ferejohn and Fiorina
(1974), for a good survey.

For now we assume that there are only two candidates, A and B.
Candidate A chooses a platform which we denote by A and candidate B
chooses a platform denoted by B. We assume that the voter knows the
candidates' choices and has a utility function over all possible
platforms, R, given by u(R,x) where X represents the appropriate utility
parameters for this voter. We assume throughout that u is continuous in
R. We sometimes call x the "type” of this voter. If this voter decides
to go to the polls, he will cast his vote for A over B if and only if
u(A,x) > u(B,x). We assume the voter receives no consumption benefit
from voting. Therefore, whether this voter will vote instead of
abstaining depends on a simple benefit-cost calculation. The expected
benefits from voting are equal to the probability of affecting the
outcome times the gain from so doing. Letting P be the probability that
this particular voter will alter the outcome, and assuming that u(A,x) >
u(B,x), the expected benefits are (P)(u(A,x) - u(B,x))/2. The utility
difference is divided by 2 since a voter affects the outcome only if they
create a tie or break one. Assuming that ties are broken by a fair coin
toss, the gain from either event is the utility difference divided by
2. We assume that the voter faces a known cost of voting equal to c>0

and that this cost enters the utility calculation linearly. Therefore,



if candidate A wins and the voter went to the poll, he receives u(A,x) -
¢ in utility.

In order to complete this model of rational voting behavior, we must
provide a basis for the voter's beliefs about Pa and Pb’ where Pj is the
probability that candidate j either ties the other or loses by one vote.
We assume, at this point, that the voter knows the probability that a
voter, randomly selected from all other voters, will vote for A, vote for
B, or abstain. (We will see in the next section how these can be esti-
mated.) Using these probabilities, denoted respectively Qa’ Qb’ and QO,
where Qa + Qb + Qo = 1, it is a standard exercise to calculate the
probability of a tie when there are n other voters. It is also easy to
calculate the probability that A loses to B by one vote. Adding these

together we find that P_ = f(Qa,Qb) where f(z,y) =

(C3o!

n! k k+1

n—-2k-1
Kl kin—2k=1r 2 v (1-z=y)

n—l‘
n! k k n—-2k 2

L Wiwinezer 2 ¥ (17zy) +

k=0 " ’ k=0

A symmetric calculation yields Pb=f(Qb,Qa)- Gathering this all together

we have described

THE VOTER
A voter with characteristics (x,c) who is faced with a choice
between two candiates, A and B, and who thinks the probability that
a randomly selected voter will vote for candidate j is Qj will
(a) vote for A if ¢ < (Pa/2)(u(A,x) - u(B,x))
(b) vote for B if ¢ < (Pb/2)(U(B,X) - u(A,x))
(c) abstain otherwise,

where Pa = f(Oa,Qb), P, = f(Qb,Qa) and f is defined above.

b



This model assumes rational behavior in the form of expected utility
maximization, no income effects, no candidate specific preferences other
than the platform choice, positive costs of voting, and knowledge by the
voter of x,c,A,B, Pa and Pb.

At this point most writers reach an unsettling conclusion. "Since
the expected benefit from voting is obviously small (if Qa = Qb and QO =

0 then Pa and P, are of order of magnitude 1/2n — see Chamberlain and

b
Rothschild, 1980) and since the cost of voting is not small, no rational
voter will ever vote in large elections. Therefore, something must be
wrong with the theory.” This is a not an unreasonable conclusion but the
analysis is incomplete since it is based on a partial equilibrium view
which is simply not appropriate. If this voter and others are embedded

in a general equilibrium model, the apparent failure of rational choice

to explain voting disappears. We turn to that task next.

IT. RATIONAL VOTERS' EQUILIBRIUM

We now explore what happens when voters take into account the fact
that other voters are also rational. The logic is simple and compelling
and is contained in Ferejohn and Fiorina (1974). If eveyone is rational
and carries out the partial equilibrium calculus in the previous section
then, presumably, no one will vote. But then the probability of a tie is
1. If this is true and if these same rational, partial equilibrium non-
voters redo their calculus most will find that it is now definitely in
their interest to vote; they will be able to determine the outcome by
themself. And so on. Somewhere between no one voting and everyone
voting lies a situation in which some vote and in which the probability

of a tie is consistent with those numbers and with the beliefs of all



voters. It is this stable, rational, intermediate situation that we
capture in the voters equilibrium defined below.

To close the partial equilibrium model in the previous section, it
remains only to specify how a voter estimates Qa and Qb. We assume that
it is common knowledge among all voters that each is rational and, there-
fore, that each follows the model of section I. What is not known to
each voter, and never will be, are the values of the others' character-
istics (x,c). We do, however, assume that the distribution of these
characteristics is known, by all, to be described by the density
functions h(c) and g(x). That is, ¢ and x are independently distributed,
where g(x) is the probability that a randomlv selected voter will have
characteristic x, and h(c) is the probability that a randomly selected
voter will have a cost of voting equal to c.3

Given these densities, one can compute the probability that a
randomly selected voter will vote for a candidate. We already know that
the voter will vote for A if and only if her characteristic, (x,c),

satifies
c < (Pa/Z)(u(A,X) - u(B,x)).

Using the densities g and h we can compute that the probability of this
134
o, = J H((P_/2)(u(A,%) = u(B,%)))a(x)dx
X+(A,B)

where X+(A,8) = {x|u(A,x) > u(8,%)},and H(r) = f§ h(c)de.
Writing this as Q, = t(Pa,A,B;g,h), it is easy to show that Qb =
t(Pb,B,A;g,h) and QO =1 - Q, = Qe

We can thus compute Qa and Qb from Pa and Pb. In the previous

section we computed Pa and Pb from Qa and Qb' A fully rational voter



with fully rational expectations will require these calculations to be
consistent with one another, and will be able to compute the values of Q

and P for which consistency obtains.

RATIONAL VOTERS' EQUILIBRIUM
Given the densities on characteristics, h and g, and given the
candidate platforms A and B, we call <Pa,Pb,Qa,Qb> a RATIONAL

VOTERS' EQUILIBRIUM if and only if

lae]
i

= f(Qa,Qb) and P, = f(Qb,Qa) and

b
t(P_,A,B;g,h) and Q

O
]

b = t(Ph)B,A;g)h))

where f( , ) is defined in section 1 and t(r,s,w;g,h) is defined

As an aside the reader should note that if we were to model the
voters as playing a game of incomplete information, as is done in
modeling auctions, the three pure strategies would be vote A, vote B, and
abstain, and the Bayes equilibria of that game would be exactly the
Rational Voters Equilibrium defined above. I chose the approach above
for its expositional simplicity.

To complete this section, we consider several properties of the

rational voters equilibrium.

PROPOSITION 1: (EXISTENCE) If H(c) C (that is, if H is continous), then
a rational voters equilibrium exists.

PROOF: 1If A = B, then Qa = Q, = 0, Pa = Pb = 1 is an equilibrium. If

b
A # B, then define the functions P, = Nl(Pa,Pb) = f(t(Pa,A,B),t(Pb,B,A))

and P = N2(Pa,Pb) = f(t(Pb,B,A),t(Pa,A,B)). It is easy to show that Nl



and N2 are continuous in (Pa,Pb) since f is polynomial and therefore
continuous, while t is continuous in P since H is by assumption.
Further, NI and N2 map {0,1]x[0,1] into itself. Therefore Brouwer's
fixed point theorem can be applied. There is at least one pair P* =
(Pa* ,Pb*) such that P* = N(P*). Let Qa* = t(Pa*,A,B) and Qb* =

t(Py*,B,A). Then (P*,0%) is a rational voters equilibrium.

10

QED

PROPOSITION 2: (SYMMETRY) (Pa’Pb’Qa’Qb) is a rational voters equilibrium

given (A,B) if and only if (Pb,Pa,Qb,Qa) is a rational voters equilibrium

given (B,A).

PROOF: Immediate.

QED

This is the first of several propositions concerning the symmetry of

the model in this paper. The primary reason for symmetry is that we have

assumed that voters care only about the platform candidates adopt and not

the name of the candidate.

Another interesting property of equilibrium is uniqueness, or lack

thereof. We have two propositions to present, both of which depend on

the turnout probabilities.

DEFINITION: (Maximum Turnout Probability) Given the candidates'
platforms, A and B, and given the distribution of voters'
characteristics, we can compute an upper limit on turnout
which is independent of the particular voter equilibrium
which is arrived at. In particular, let

M(A,B,g,h) = H((1/2)]u(A,x) = u(B,x)])g(x)dx.

We call M( ) the maximum turnout probability.
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We have defined M( ) this way since M is the probability that a
randomly selected voter will go to the polls if he thinks the probability
of a tie is 1. To see this, remember that

o, + 0y =/ H((P,/2)(u(A,x)- u(B,x)))g(x)dx

a a

X+(A,B)

+ H((Pb/Z)(u(B,x) - u(A,x)))g(x)dx.
X+(B,A)

Let Pa=Pb=1. The observation follows immediately since H is a

distribution function, and H' 2> O.
The next property is of interest for its implications about the

voting probabilities in equilibrium.

PROPOSITION 3: In any rational voters equilibrium, (Pa - Pb) = (Qb -
Qa)F where F > = 0.

PROOF: P_ - P = f(Qa,Qb) - f(Qb,Qa) =

n—1

n!

N 2 n-2k-1
(0,70) Zk=o K Tn-2k=11 X '

k k
y (1-x%~-y)

QED
It should be noted for completeness that F = 0 if and only if the

number of voters is even and Qa + Qb =1, (i.e.,turnout is 100%).

PROPOSITION 4: (Uniqueness 1) If M(A,B,g,h) = O then (1,1,0,0) is the
unique rational voters equilibrium.

(M( ) = 0 if no rational voter will go to the polls even when the
probability of influencing the election is 1. For an example of this,

assume H(0) = 0 and let A = B.)
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PROOF: Under the hypothesis, Q, = Q = 0 for all values of P_ and P

a b

since H(c) » H(c') whenever ¢ > c¢'. But if Q, and Q, are 0 it follows
that P, = Pb = 1.
QED

It would be nice if we were also able to exhibit a proposition
listing sufficient conditions for the uniqueness of the voter equilibrium
when the maximum turnout probability is positive. Unfortunately I have
not yet discovered such a result. It is, however, true that if the
candidates' platforms are close enough then M is near 0 and the equi-

librium will be both unique and continuous in (A,B).

PROPOSITION 5: (Uniqueness 2) Suppose M(A,B,g,h) > 0, u( ,x)eCl for all
x, and H(c)eCl for all c. If M(A,B,g,h) is near 0, (which is true, for
example, if A is near B), the equilibrium (Pa,Pb,Qa,Qb)is unique and is
Cl in A and B (for A # B).S

PROOF: Let Qa(Pa) = t(Pa,A,B) and Qb(Pb) = t(Pb,B,A). (P,Q) is an
equilibrium if and only if P solves

P - f(Qa(Pa),Ob(Pb)) = 0 and

Pb - f(Qb(Pb),Qa(Pa)) = 0. The Jacobian of this system of equations
is
. 1 - £, 000 - £,(Q,0)07
- fz(Qb,Qa)Q; 1 - fl(Qb,Qa)Qg
Q7 = 8q_ /3P = af +H[(pa/z)(u(A,x) - u(B,x) )] g(x) dx/3P_
X

{ nle /e, - us,x))] gt (Ua,x) - uB,x)) ) dx

+
X
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+
Since this integral is taken over X its value is positive. Similarly

for Q;.

From Ledyard <18> we know that

n—ll
- 2 n! k-1 k
£,665) = (57x) ) kol oz ¥y (xmy)
k=1
n—-1
-3 n! K (1oxmygy P2k
] 1n—2%k |
k=1 klk+1!n-2k!
- n(l-x-y)n“l
and
o
2 ! k-1 k-1 -2k
f2(x,y) = (x-y) 2 ETE:%T;:EET-X y (l-x-y)n .

k=1

From these it can be seen that the signs of f; are:

£100,,0)  £,00,,0)  £,(Q,,Q)

if Q, > Q - + ?
if Q= Q - 0 -
if Q < Q ? - -

Since fl’ f2 are continuous if Qa is near Qb then

fl(Qa,Qb) < 0 and fl(Qb,Qa> < 0. Therefore,

for Qa > Qb J

for Qa = Qb J = 0

n-2k-1

£,(Q,,Q,)
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for Qa < Qb J

Now we know that any solution must satisfy O < Qa + Qb < M(A,B), and
Qa’Qb > 0. Therefore |Qa = Qb' < M(A,B) and if M(A,B) is small enough,

Q, 1is always near Qb'

J is positive definite for all such Qa’Qb' Therefore, the equilibrium is
unique. (Gale-Nakaido, 1965)

Continuity follows from the Implicit Function Theorem.

QED

To summarize, if the maximum turnout probability is small enough (or
if the candidate's platforms are close enough) then the voter equilibrium
is unique and Cl in the platforms. I do not know how close is "enough”.
If A is not near B, then it seems that multiple equilibria may be

possible.

A final comment seems in order about the amount of turnout predicted
by this model. We have seen that if the maximum turnout probability is O
or if A = B then turnout is predicted to be 0. Since we have adopted a
rational behavior hypothesis, one might suspect that, in fact, turnout is

never positive. Such a suspicion would be false.

PROPOSITION 6: (Positive expected turnout) If the maximum turnout
probability is positive, given A and B, then expected turnout is positive
in any rational voters equilibrium.

PROOF: Remember that expected turnout is (n + 1)(Qa + Qb)- Suppose that

+ = = ( = N = . = =
Qa Qb 0. Then Qa Qb 0 But £(0,0) 1 Therefore, Pa Pb
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1. It follows that expected turnout is then (n + 1)M(A,B) > 0 which is a

contradiction.
QED
Corollary: If there is a set of x, with positive measure, such that

u(A,x) - u(b,x) # 0 and if H(c) > 0 when ¢ > 0 (i.e., h(c) > O for all c
> = 0) then expected turnout will be positive in equilbrium. M( ) gives
an upper-bound on expected turnout.

Thus, contrary to naive expectations based on partial equilibrium
analysis, a full rational general equilbrium consideration of voting
behavior yields positive turnout in equilibrium unless each voter refuses

to vote even when they know they are the only voter.

III. THE CANDIDATE AND THE ELECTION EQUILIBRIUM

In this section, we model how candidates determine their platforms
and, therefore, the outcome of the election. We begin by considering
what it is that motivates the candidates. Since this is a static model
and since we have been assuming that platforms will be implemented and
that the extent of implementation does not depend on the margin of
victory, it seems reasonable to me to assume that these candidates care,
ex post, only about winning. The appropriate outcome space then is
simply the two point set {W,L} = {win,lose}. The simultaneous choice of
platforms by the candidates determines a probability distribution (Ra,Rb)
on this set and the rational, expected utility maximizing, candidate A
will want to choose the platform to maximize Ra*V(W) + Rb*V(L). Thus,
this candidate will always want to maximize the probability of winning.
We assume that these candidates know the model of the previous section,

or at least act as if they know it. From that model they can determine
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an election outcome function, or more properly an outcome correspondence,
which maps pairs of platforms (A,B) into sets of 4-tuples

(Pa,Pb,Qa,Qb). It is possible for candidates to compute various

implications of their choices such as the probability of winning.

THE PROBABILITY A WINS: Given A,B h(c), and g(x), and a
rational voters equilibrium of a two—-candidate election, the

probability that A wins is:

n
[EJ -2k+1 +11 K+ k -2k-r+1
R, = 1 7o L CIRANICIORCC T oL
k=0 __, k+r! k! n-2k-r+l!
[n+1]
1 2 n+l! k, .k n—-2k+1
T3 Zk=0 KT k! nozke1 (d) (ag) (1mayag)

where Qa(A,B) and Qb(A,B) are the appropriate parts of a rational
voter equilibrium for A,B.

Although the analysis can be carried out using it, this is a
remarkably unwieldy function. To simplify, let us use an approximation
of Ra which is appropriate for large elections. (See Hinich, 1977.) 1If n
is large, then Qa—Qb is a good aproximation for a candidate to use in
place of Ra. To see this, let Si =1 if voter i votes for A, Si = 0 if i

abstains, and Si = -1 if i votes for B. Then A wins if and only if

n+l n+l _
) Si > 0. This is true if and only if (1/(n + 1)) |} Si =S > O.
i=1 i=1

Since the Si are independently and identically distributed, it follows

from a Law of Large Numbers that
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1 if Q, > Qy

]
O

lim Pr s> 0 = 1/2 if 0,

n o+ 0 if Q, < Q-

Therefore maximizing Qa - Qb maximizes (in the 1limit) the probability
that A wins. Using this approximation, we posit the following model of

the candidates.

THE CANDIDATES'™ OBJECTIVES
In a large, two-candidate election, each candidate will try to
maximize expected plurality. In particular, the objective function
of candidate A is
W(A,B) = Q_(A,B) - Q (A,B)
and that of candidate B is
v(a,B) = Q,(A,B) - Q_(A,B)
where (Pa,Pb,Qa,Qb) is a Rational Voters Equilibrium for the platform
choices A,B.6 The observant reader will have already noticed a potential
difficulty with this model-——a rational voters equilibrium may not be
unique and, therefore, the mapping W(A,B) may not be a function. We do
have to confront this problem, but if W( ) and V( ) were unique, the
above objective functions would point instantly to the appropriate
behavior for the candidates in their choice of a platform, since this is
a two-person zero—sum game for which game—theorists are in agreement
about a solution concept. We adopt the concensus solution concept with

modifications because of the non—uniqueness.
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THE CANDIDATES' BEHAVIOR
In a two-candidate large election, candidates will choose platforms

(A* ,B*) which satisfy

min W(A* B*) > max W(A,B*) for all A
min V(A* ,B*) > max V(A*,B) for all B
where W(A,B) = {w]Qa - Qb = w for some rational voters equilibrium},

and V(A,B) = {V’Qb - Q, = v for some rational voters equilibrium}.

We call (A*,B*) a (STRONG) RATIONAL ELECTION EQUILIBRIUM.

If W( ) and V({ ) are single-valued this definition corresponds to
the non-cooperative equilibrium (or maximin solution) of this game. Due
to the modification, we have called this a strong equilibrium since if
the candidates choose these strategies then even if candidate A could
choose from the multiple set W( ) after changing her strategy, she could
do no better than now. Weaker equilibria may also exist since a risk
averse candidate might choose to play a strategy A*, even though max
W(A,B*) > min W(A* B*) for some other A, in order to avoid a possible
loss if min W(A,B*) < max W(A*,B*). T have chosen the stronger version
since a more strategic candidate would notice that even if such a loss
occured they could regain at least a payoff of O by choosing A = B*,
Thus, no outcome which yields less than 0 to some candidate should
survive as an equilibrium. A strong equilibrium has the property that

each player receives O.

PROPOSITION 6: (VALUE) If (A*,B*) is a strong rational election
equilibrium, then W(A*,B*) = V(A* B*) = 0

PROOF: Given any B, since candidate A can always choose the same
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platform, B, it must be true that min W(A*,B*) > 0. Also, min
V(A*,B*) > 0. But it is easy to see that if weW(A*,B*) then
-weV(A*,B*)., Therefore, min W(A*,B*) > max W(A*,B*) = 0.
QED
This means that (A* ,B*) is a strong equilibrium if and only if
max W(A,B*) > 0 for all A and max V(A*,B) < O for all B. Even if there
are "weaker” equilibria, one suspects that only strong equilibria are

permanent. We, therefore, concentrate on them.

IV. EQUILIBRIUM AND OPTIMALITY

In this section we show that if utility functions are concave and
have continuous derivatives in A, and costs are distributed from zero,
then all equilibria can be characterized in a remarkably simple manner;
the candidates choose the same platform, the chosen platform maximizes
fu(A,x)g(x)dx, and no one votes. Thus if an equilibrium exists there is
a very simple maximization problem by which it can be computed. We give
several examples at the end of this section.

To show these properties of equilibrium, we need to establish some
intermediate results. The first of these occurs because of the symmetry
of the model; candidates are essentially anonymous in all respects except

their platforms.

PROPOSITION 7: (SYMMETRY) If (A,B) is a strong rational election
equilibrium then so are (A,A), (B,A), and (B,B).

PROOF: Since (A,B) is an equilibrium, W(A,B) = 0 = V(A,B) from pro-
position 4. For all D and w if weW(D,B) then w € 0. For all D and v if

veV(A,D) then v € 0., Further, we know that weW(A,B) if and only if
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-weV(A,B) if and only if weV(B,A). Now suppose that weV(B,D) for some
D. Then, -weV(D,B) which implies that weW(D,B) and therefore w < O.
Therefore, (B,B) is a strong rational election equilibrium. The rest

follows in a similar manner.

QED

Now we take up a couple of lemmas which allow us to use calculus in
the analysis of equilibrium.
LEMMA 1: (A* ,B*) is a strong equilibrium if and only if
fH((Pa/2)|D|)I(D)g(X)dx = 0 for all A where D = u(A,x) - u(B*,x) and
where I(D) =1 if D> 0, I(D) = 0 if D = 0, and I(D) = -1 if D < 0.

PROOF: By definition (A*,B*) is a strong equilibrium if and only if

1y H((Pa/Z)(lDl))g(x)dx - H((Pb/z)(lnl))g(x)dx < 0 for all
X+ X~
A. This is true if and only if

(2)  JH(R/2)(IDINTDIg(x)dx + [ [H ((P_/2)(|D]))
X_
- H((P_/2)(|D]))] g(x)dx < O for all A. This in turn is true if

and only if
(3)  JH((P_/2)(ID| N I(D)g(x)dx < O for all A.

Statement (1) follows from the remark after Proposition 6 above.
Statement (2) follows by adding and subtracting [H ((Pa/2)()D|))g(x)dx
to and from the left side of (1). To establish (3§_takes a bit more
work., I will prove that (2) implies (3) and leave the converse to the
reader. Assume that fH((Pa/Z)(lDI))g(x)dx > 0 and that (2) is correct
for some A. It must then be true that

J®e, /2)|D]) - B((PL/2)|D])) g(x)dx < O.

Therefore, P_ < Py Refering to Lemma 3 in section II we see that Qb <



21

Qa. But this implies that (1) is >0 since (1) is Qa - Qb. This in turn

implies that (2) is > 0 which contradicts our initial assumption.
QED

LEMMA 2: Given (A*,B*,Pa) where Pa is a voters equilibrium for A%* B*,
If A* is "near” B* and if ueCl and HeCl and if their derivatives are
bounded then

d [H((P,_/2)[D[T(D))g(x)dx /dA =

Jn((p,/2)[D)) [(dP_/dA)(D/2) + (P_/2)(dD/dA)] g(x)dx.

PROOF: For any A and x such that I(D) # 0, we find that
d(H((Pa/2)|D|I(D))/dA =
h((Pa/2)|D|)[(D/2)(dPa/dA) + (Pa/2)(dD/dA)].
It follows that equality is also true if I(D)=O.7 From Proposition 5 of
the previous section dH/dA exists for all x since A* is near B*. The
Lemma then follows from the Lebesque Dominated Convergence Theorem.

QED

Lemma 2 is valid even if A is n-dimensional where A is replaced by
Ai for i = 1,...,n.
We now have all the tools we need to establish the main proposition

of this section.

THEOREM 1: Given the distribution of voters' types, g(x) and h(c), such
that ueCl, HeCl, their derivatives are bounded, h(0) > 0, and u is
concave in A for all x and strictly concave for some x. If (A* ,B*) is a
strong rational election equilibrium, then A* = B*, P =P =1, Q_ = Qb
= (0, and A* maximizes f u(A,x)g(x)dx.

PROOF: From proposition 7 we know if (A*,B*) is an equilibrium then so
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is (A* ,A*). We concentrate on the latter. Suppose that (A* ,A*) is an
equilibrium. We know that maxW(A,A*) < O for all A. From Lemma 1 it
must be true that J = [H((Pa/2)|D|)I(x)g(x)dx € 0 for all A. From Lemma
2 and the first order conditions for maximization it must therefore be
true that

dJ/dA = 0 at A = A*, If A = A* then D = 0, Pa = 1, and

h(0) [(du(A*,x)/dA)g(x)dx = 0
Since fu(A,x)g(x)dx is a strictly concave function, A* maximizes that
function.

To finish the proof, we need to show that if (A*,B*) is an
equilibrium then A* = B*, Suppose not. From propositon 7, both (A% A%)
and (B*,B*) are equilibria. Therefore both A* and B* are maximizers
of fu(A,x)g(x)dx. But u is strictly concave for some x which implies
that there is a unique maximizer; that is, A* = B¥*,

QED

Theorem 1 fully characterizes the rational election equilibrium if
it exists. In that equilibrium, even though no one votes — thus
avoiding all the non—productive costs of voting —— candidates are led to
select a platform which maximizes a social welfare function, the sum of
voters' utilities. The existence of voters who are on the margin of
voting, those with costs near O, leads candidates to take the preferences
of these voters into account. Because of the linearity of utility in the
costs of voting, the change in the probability that a voter will vote,
due to a change in a candidate's position, is "locally"” proportional to
the extra utility received by the voter if that candidate is elected. It

is always in the interest of the candidates to change their position in
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the direction which maximizes the "aggregate marginal utility of the
marginal voters”. This leads them inexorably to a position which
maximizes the aggregate utility of the voters whose costs are minimal.8

Because of the similarity of this theorem to the fundamental welfare
theorem that competitive market equilibrium allocations are Pareto-
Optimal, I am finding it difficult to refrain from phrases like "the
invisible hand of the electorate”. However, the fact that equilibrium
platforms maximize a "social utility function” should not lead the reader
to conclude that election equilibrium allocations are also Pareto-
Optimal. The next few examples help illustrate this and other

implications of the model.

EXAMPLE 1: Supppose there is a one dimension issue space and that the

class of utility functions which any voter can have is given by

u(A,x) = -|A-x|. x is usually interpreted to be voter x's ideal
platform. For this type of example, traditional theotry tells us that the

election equilibrium will be the ideal platform of the median voter,

KN

s
A = x* where f g(x)dx = 1/2. Let us calculate the rational election

equilibrium. A* will maximize fu(A,x)g(x)dx = f—lA-xlg(x)dx. It is easy
to see that A* will also be the median of the density g{x). The two
theories yield the same predicted equilibrium platform although turnout

is predicted to be 100% by the traditional theory but 07 by this theory.

EXAMPLE 2: Let us now look at a well used example. We suppose that
preferences over a one dimension issue space are given by the Type 1
utility functions u(A,x) = —(A—x)z. In this case traditional theory

still predicts the platforms will be the median voter's ideal platform.
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The rational election equilibrium is, however, the mean voter's ideal
platform. That is, A* maximizes f—(A - x)2 g(x)dx. Differentiating, one
gets f—2(A - x)g(x)dx = 0. From this, we know that ng(x)dx = fxg(x)dx
or A = [xg(x)dx, the mean of g(x).

This simple example illustrates that there is absolutely nothing
sacred about the median voter.9 One might just as easily be concerned
about the mean or, indeed, any other moment. For example, if u = —-(A-x)"
then the (n-1)st moment is the equilibrium platform. The predicted
equilibrium platform depends on the composition of the class of utility
functions. An important implication of this and the prior example is
that functional forms are important. The functions ~|x - A| and —(x -
A)2 each represent the same ordinal risk-free preferences on the set of
A. However they do represent different attitudes towards risk and
different indifference surfaces between ¢ and A. These differences are
reflected in different equilibria. The intensity of preference for A, as
opposed to ¢, as measured by the willingness to vote is what drives the
result.

One other fact to note in this example. A multiple issue space will
not eliminate this equilibrium. If A and x are, say, n-dimensional then

the equilibrium is the mean of the multivariate distribution g(x).

Example 3: Finally let us look at a simple application of this theory
and consider what happens if the election is held to decide the
allocation of a public good and the assignment of the taxes needed to pay
for that good. Let u(y,I,x) be the utility of voter x for the public
good level, y, when that voter's income is I. We assume that x and T are

not correlated and are distributed according to r(x)s(I). Platforms will
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be of the form (y,t( )) where the function, t(I), indicates the tax to be
paid if income is I. I am assuming that taxes cannot be placed directly
on the unobservable x. If the cost of the public good is C(y) we require
that [[t(I)r(x)s(1)dldx = C(y) for all platforms —- no deficit or
surlplus financing is allowed. Given this model, we know that, in a
rational election equilibrium, y and t( ) maximize ffu(y,l ~
t(1),x)r(x)s(1)d1dx subject to the above constraint. Letting L be the
Lagrangian multiplier associated with the constraint, it follows from
first order conditions that

d [Ju(y,I-t(1),x)r(x)s(I)dIdx)/dy - L dC(y)/dy = O,

- [(du(y,I-t(1),x)/dI)r(x)dxs(1) + Lfr(x)dx s(I) = 0 for all I
and Cly) = ff t(I)r(x)s(I)dIdx. Let I* solve f(du(y,I*,x)/dI)r(x)dx
=1L fr(x)dx. The second equation above implies that in equilibrium I -
t(1) = I* for all I; that is, t(I) = 1 - I*. This means, among other
things, that everyone's after tax income will be identical—- income 1is
redistributed towards the mean. Using the constraint we find that I* =
RM - (1/N)C(y) where N = [s(I)dI, R = [r(x)dx and M = [Is(I)dI.
Therefore, everyone's after tax income is I* = (RM - C(y))/N. Turning to
the first of the first order conditions, it can be shown that if
d(du/dI)/dx = 0, that is if du/dl is constant over all x, then

N [ (du/dy)/(du/dl) r(x)dx = dC/dy.

This is simply the Samuelson-Lindahl condition for the Pareto-optimal
allocation of the public good. Thus we can conclude that if the post-tax
marginal utility of income is independent of the voter's type then large
two-candidate elections allocate resources efficiently. There are no

'"free riders' in this situation.lO
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Some examples of utility functions for which d(du/dI)/dx = 0 can be

given:
u = viy,x) +1
u = v(y,x) + w(y,I), and, as a special case,
u=xIny+ In I. I leave it to the interested reader to show

that if income and type are not independent, then in general the
efficiency disappears and redistribution will no longer require equal
post—tax income. One can also show that if costs of voting and income
are positively correlated, as is sometimes argued, then low income types
will have a larger impact on the extent of redistribution.

These three examples are only a small indication of the powerful use
one can make of the rational election equilibrium. T am sure the eager
reader can provide many more.

To prove that all the above is not vaccuous we move next to the

question of existence.

V. EQUILIBRIUM AND EXISTENCE

In the traditional theory of majority rule equilibrium with no
abstentions, existence of equilibrium is an unusual occurance. One
implication is that we cannot rely on theorems which assume existence.
For example, local public goods theories using the median voter should be
highly suspect; the results are likely to be vaccuous. The equilibrium
described in this paper, on the other hand, exists in a large number of
cases. These equuilibria can potentially provide the foundation for many
models which make social choices by majority rule elections.

In the last section we proved that if A* was a rational election

equilibrium then A* maximized aggregate utility. If we could prove the
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converse, that if A* maximizes aggregate utility then A* is a rational
election equilibrium, we would be done since the appropriate compactness
and continuity conditions which ensure the existence of a maximum (the
Weierstrauss Theorem) are well known. Unfortunately the converse is not
true without some additional conditions on the densities g and h.11 It

is our task to delineate as much as possible the set of distributions for

which the following is true;

(5) if A* solves max fu(A,x)g(x)dx then A* is a rational election

equilibrium.

If we knew for which (g,h) the function W(A,B) were concave in A and
convex in B, with V(A,B) hehaving symmetrically, we would be done since
under these conditions the game—-theoretic solution to the candidates'
problem is known to exist. Unfortunately, one cannot take this
approach. Remember that W(A,B) = Qa - Qb where Qa
= f H((Pa/Z)(D))g(x)dx and Qb = f H((Pb)(—D))g(x)dx, and where D is

X+ X-

concave in A and convex in B from the concavity of u, (leaving aside the
behavior of Pa and Pb for the moment). If H is a concave function of ¢
then Qa is concave, but we can't tell about Qb which, in this instance,
is a concave function of a convex function. If H is convex then we have
a symmetric problem since —Qb is concave but we can say nothing about
Qa. Only if H is linear, both concave and convex, can we say something
about the concavity properties of W. We capture this intuition in the

next proposition.

PROPOSITION 8: 1If h( ) is the uniform density on [0,k], k > 0, then (S)

is true.
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Proof: Let J = [H((P,/2)(|D])T(D)g(x)dx = [(1/k)(P_/2)|D{1(D)g(x)dx

= f(l/k)(Pa/Z) Dg(x)dx. At A*, the maximizer, letting D = u(A,x) -
u(A*,x), we see that J = 0, At any other A, J < 0., Refering to lemma 1
we can now conclude that A* is a rational election equilibrium.

QED

Absolutely no conditions have been placed on g. That is, we need
not worry about single-peakedness, symmetry, unimodality, or unidimen-
sionality. Any old density over concave utility functions can be
accomodated. The second thing to notice is that we have been pretty
precise about h. An obvious question is whether (S) is true when h is

not uniform. The answer is no if we require all g to be accomodated.

PROPOSITION 9: (S) is true for all g if and only if h is uniform.
Proof: The "if" is simply proposition 8. We prove the "only" if
statement.

Suppose we have a non—uniform g, an A, and an A* such that A%
solves maxJu(A,x)gdx and such that fH((Pa/2)|D|)I(D)gdx < 0 when
D = u(A,x) - u(A*,x), If there are no such g and A then we are done. If
we can perturb g to g' such that fg'Ddx < 0 and fH((Pa/Z)IDI)I(D)g'dx > 0
then we will prove that (S) is true. To see how the perturbation works,
consult Figure 2.

Let Sl be the set of x for which D > 0 and H(c) > c/k, let S2 be
those x for which D > 0 and H(e) < c¢/k, let S3 be the x for which D < 0
and H(c) > c/k, and let S4 be the set of x such that D < 0 and H(c) < c/k.
We make g larger on S] and S3 and smaller on S2 and S4 by letting g'(x) =

g(x) + ei when xeSi such that Jel dx + [e2 dx + [e3 dx + [e4 dx = 0,
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such that el[Ddx + e2[Ddx + e3[Ddx + e4[Ddx < O and such that
elfH((Pa/Z)D)I(D)dx + e2[HIdx + e3[HIdx + e4[HIdx > 0. The careful
reader can check to see that as long as H is not uniform this

perturbation will he possible, since the sets Si will bhe non-empty.

S S S
3 4 33 Figure 2 ! 2 1 Pab

If we want a simple existence theorem and we want it to be
applicable to all possible g, we must restrict our attention to only
uniform distributions of costs. Suppose we instead wanted a theorem which
would be applicable to all distibutions of costs? The answer is similar
to that in proposition 9 —- statement (S) is true for all cost
distributions if and only if we severely restrict the distribution of x.
In order to see why, let us first define the derived distribution of

utility differentials. Let J(r) = | ) g(x)dx where X(r) = {x|u(A,x)-

X(r
u(A* x) < r}, and let j(r)dr = dJ(r). Finally let 1(r)

= j(r) -j(-r) for all r » 0. A* maximizes fu(A,x)g(x)dx if and only if

(5.1) IO rl(r)dr < 0 for all A.

Also expected plurality W(A,A*) =
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oo

(5.2) IO{ H((Pa/z)r)/r}rl(r)dr.

Statement (S) is true when (5.1) implies that (5.2) is less than or equal
to 0. Therefore in order for statement (S) to be true, the function
H((Pa/Z)r)/r cannot weight r relatively more heavily when 1(r) > 0 than
when 1(r) < 0. Notice that an equal relative weighting, of (Pa/Z)r,
occurs exactly when H is uniform. If we require that (S) be true for all
possible h then we must not allow 1(r) > 0, for otherwise there will be
at least one H which weights 1(r) incorrectly. We capture all of this in

the following:

PROPOSITION 10: (S) is true for all h if and only if le(r)dr < 0 for
all z » 0, and all A at A¥*,
Proof: (if)Let (5.1) be true and let zl = sup {r|1(r) > 0 }. If
1(r) < 0 for all r then we are done since [(H/r)rl(r)dr < 0. TIf zl = 00
then there is a z* such that 1(r)dr > O which is impossible by
assumption. Therefore, if zl does not exist we are done. Let z2 =
sup {r|0 < r <= zl, 1(r) > 0}. TLet 11 = [2z1,00) and 12 = (z2,zl].
Since [ 1(r)dr € 0, it follows that [;;1(r)dr + [{,1(r)dr € 0. Further,
since H is a distributuion function, H(kz) » H{(kzl) if z > zl and
H(kz) < H(kzl) iflz < z1. Therefore, letting p = Pa/z,
AG(po)1(r)dr = jz H(pr)1(r)dr + len(pr)l(r)dr < H(p(z1)) [1(r)dr < 0.
One can iterate this proof for all zi until zi = 0.

(only if) Suppose that le(r)dr > 0 for some z* #? 0. Let
H"(z) =1 if z 2 z* and = 0 if z < z*, Then I{H"((Pa/Z)r)/r}l(r)dr
= [1(r)dr > 0. But then A* cannot maximize [u(A,x)g(x)dx.

QED
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Restricting ouselves to H which are continuous is no problem since
we can always find a continuous H which is near to H" and which also is
an appropriate perturbation. Thus the above proof remains applicable
with minor adjustments.12

In this section, we have proven results only about the extreme
limits of the set of (g,h) for which rational elction equilibrium
exists. That is, we have required existence to occur either for all g or
for all h. 1If we are willing to consider only some g or h we should be
able to do better. One can show that there is an open set of (g,h) for
which existence obtains. In particular, if h is almost uniform or if g
is almost 'symmetric' then equilibrium will exist. I suspect that there
is a rather large set of such (g,h) but its precise characterization
remains an open question.

Since the results of Coughlin, of Hinich, Ledyard and Ordeshook, of
Hinich, and of this paper all point to the fact that multi-dimensional
election equilibria exist more often than suspected and that they rarely
involve the median voter, one might speculate whether it is my assumption
of rationality or the role of uncertainty which drives these results.

I suspect uncertainty is the key to existence and that some form of
rationality is the key to "optimality". This remains a future research

issue.

VI. VARIATIONS ON A THEME
As I have presented this paper in many places, a number of issues
have been raised which seem to be easily handled within the framework of

the above model. Let me address these variations one at a time.
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1) INCOME EFFECTS

In the analysis of the rational voter I assumed that the cost of
voting entered the voter's utility function linearly. This assumption is
not necessary and can be eliminated. In particular, let u(A,0,x) be the
utility received by the voter if A wins and this voter did not vote. Let
u(A,c,x) be the utility if A wins and this voter voted where x and c are
as in the original model. Assume that du/dc exists and is less than zero
(that is, an increase in the cost of voting lowers x's utility, ceteris
paribus). Although the analysis is messier than above, one can derive
similar results. For example, at an equilibrium

h(O)]uA((A,O,x)/—uC(A,O,x))g(x)dx = 0.
This is identical to the earlier result if we "normalize"” marginal
utility by the marginal utility of voting costs at 0. That is if an
equilibrium exists A* = B* and A* maximizes
I[U(A,Q,x)/UA(A*,O,X)] g(x) dx.

I do not vyet know how other results translate. For example, establishing

existence appears to be more difficult.

2) NEGATIVE VOTING COSTS

I find myself suspicious of any one who claims to vote no matter
what the issues or how close the election. In almost every election held
there are some frictions, or other phenomena ignored by this model, which
cause there to be some difference in the candidates, and which might lead
low cost voters to vote. As far as I can tell there is still no common
agreement on the facts about voter behavior. In spite of my scepticism
it is important for completeness of the theory to explore what will
happen to the equilibrium if there are indeed voters who derive some

utility from the act of voting itself. It is easiest to model these as
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voters whose cost, ¢, is negative. In the model of the calculus of
voting any voter with ¢ < 0 will always vote for their most prefered
candidate. With this in mind consider now the equilibrium in which those
voters with ¢ < 0 always vote and those voters with ¢ > O behave as
described before. If A = B then only the voters with ¢ < 0 will vote
and, therefore, if A = B in equilibrium it must be true that A is the
ideal platform of the median voter, the median of those who always vote,
if one exists. (We know from standard theory that existence can be
problematical.) If ¢ and x are uncorrelated and if that median platform
also maximizes fu(A,x)g(x)dx, then A will be the equilibrium. However,
if the median either does not exist or does not equal the maximizer of
aggregate utility then we must look elesewhere. It is an open guestion
as to whetheran equilibrium even exists in this situation and, if so,
what it is. I am not even sure whether candidates will choose the same
platform in equilibrium. All I can conclude so far is that "irrational”
voters who derive utility from the act of voting create an externality
which interferes with the selection by the election of a socially
desirable outcome. Perhaps we should educate voters not to be "citizens”

but to be selfish?

3) MINIMAX REGRET VOTERS

If some of the voters in the electorate use the minimax regret
criteria of Savage (made popular by Ferejohn and Fiorina 1974, 1975).
Then the analysis remains pretty much the same but the conclusions are

slightly altered. As I showed in < >, if we replace Pa by 1/2 in the
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model of rational voting behavior we will have modeled the behavior of a
minimax regret voter. If one then follows the model to its conclusion
one will see that, in equilibrium, A* = B* and A* will maximize
fu(A,x)(g(x) + (l/Z)g*(x))dx where g( ) is the density of the expected
utility maximizing voters and g*( ) is the density of the minimax
voters. It appears that because minimax voters don't care about
closeness they end up being weichted at half that of utility maximizers
in their effect on the outcome. At the margin, when A is near B, they
react more slowly to changes in platforms and, thus, lose their

effectiveness.

4) VOTE MAXIMIZING CANDIDATES

It is sometimes argued that candidates care about other things than
just winning. This is another of those areas of disagreement in
political theory. There is no agreement on the factors which motivate
candidates. Although it is obviously of little use to a candidate to
have a large vote if that candidate does not win, some argue that
candidates should want to maximize votes, not the probability of
winning. Several of our conclusions change if that is the case. First
of all, candidates will not choose the same platform. If they did, one
of them could increase their votes (from 0) by simply moving away from
the other candidate. (Of course this could lead to an election loss.)

In equilibrium, if one exists, turnout will occur.

5) TURNOUT
A major issue raised by many who see this model for the first time
is the lack of turnout in equilibrium. While I see this as a good (the

deadweight loss of voting costs is avoided), many see this as a
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prediction of the model which is clearly contradicted by the facts. It
must be remembered that, because of the many possible frictions, actual
elections will rarely match this theory. Among other things, most
elections are held to decide several contests simultaneously and polit-
ical activitists, ignored in my model, operate to interfere with the
natural forces. It is true that single issue elections with few
activists and with little at stake do have very little turnout. Examples
abound but the normal school tax election is the obvious one. In a New
Hampshire town an election was held to fill the school board. Only one
slate was on the ballot. No one voted. I am not sure why the judges did
not write in their own names but the moral is clear; when there is no
choice it pavs not to go to the polls.

I am not sure what an appropriate example is for the model in this
paper but the following does provide an ease of computation. Let u =
-(A-x)z, H( ) = l-exp(-ac), and let g( ) = (R)(b) exp(-bx). Going
through the appropriate manipulations one can, somewhat tediously,

discover that given the platforms A and B, the maximum turnout M( ) is
1 + (b/(aD-b))((exp —2aDS) — ((2aD/(aD+b))exp -bS)).
Here, D = (A-B)/2 and S = (A+B)/2.

It can be easily shown that M is near 1 if D,S,a,b are large. M is
near 0 if D,S,a,b are near 0. I have no idea what "reasonable” values of
these parameters are. Does anyone want to make a guess?

If one wishes to estimate equilibrium turnout, given A and B, one
must solve the following equation; let M(a,b,D,S) by the equation above,
then solve N = M(a/N,b,D,S) for N. N/R will then be an estimate of the %

turnout since 1/N estimates Pa'
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These are but a few of the possibilities for refinement of the

model.

little,
a)
b)
c)
d)
e)
£)

g)

Others which I think are as important, but of which I know
follow.

Three candidate elections (and multiple candidates)

Political activists and parties

candidate choice and the role of primaries

intertemporal considerations

representative democracv and the responsiveness of the system.
multiple, simultaneous elections

empirical estimation.



FOOTNOTES
1StoD press: I have recently seen Coughlin (1983b) in which abstentions
are allowed but only on an aggregate basis. Individual behavior remains

unspecified.

ZIn many respects, I am finally getting around to answering the
complaints of Slutsky (1975) about the ad hoc and unrealistic nature of
our earlier paper (Hinich et al, 1972). 1In spite of my efforts he still
remains unconvinced of the "reality” of the model.

3The assumption of independence is made only for espositional

convenience. The eager reader can easily show that correlation between

¢ and X in a density function like g(x,c) can be accomodated without

destroying any of the results which are detailed below.

“Note that if A = B, then Q, = 0 since U(A,x) = U(V,x), H(O) = 0 and to

modify this, see section VI, (2).

5Qa and Qb may have discontinuous derivatives at A = B. 1 thank Peter

Coughlin for noting this in an earlier version.

6The Rational Voters Equilibrium is defined in Section II.

7 . . . -

For arbitrary functions f(x), if £7°(x) + a as x + 0 for all sequences of

x, then f7(0) = a. Let A + B so that D + 0.

Then dH/dA ~+ h(O)Géﬂ(dU(A,x)/dx) for all such sequences.



81f types and costs are correlated, that is if the density is G(x,c)
instead of g(x)h(c), then candidates will choose the platform A* which

maximizes fu(a,x)G(x,0)dx.

9Hinich(1977), Coughlin and Nitzan (1981) and Coughlin (1983a) also find
the median to be unimportant when uncertainty is included in the voting

model.

105 side issue: Since this case covers utility functions without income
effects, it covers all situations covered by the Demand Revealing

Mechanisms. Therefore, it dominates that method for social choice.

1Economists will notice that this phenomenon also arises when
considering the welfare theorems about competitive equilibria.

12As a side note, the cost distribution, H”, used in this proof, which
assumes equal costs of voting which are known to all, is the same
distribution used in Ledyard (1981). The fact that this distribution
causes the most difficulties for existence partly explains the rather

weak theorem in that paper.

13These remarks are motivated by an insightful remark of Howard

Rosenthal.
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such that el/Ddx + e2fDdx + e3/Ddx + e4[/Ddx < O and such that
el [H((P_/2)D)I(D)dx + e2[HIdx + e3[HIdx + e4[HIdx > 0. The careful
reader can check to see that as long as H is not uniform this
perturbation will be possible, since the sets Si will be non-empty.

PaD
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If we want a simple existence theorem and we want it to be
applicable to all possible g, we must restrict our attention to only
uniform distributions of costs. Suppose we instead wanted a theorem which
would be applicable to all distibutions of costs? The answer is similar
to that in proposition 9 —— statement (S) is true for all cost
distributions if and only if we severely restrict the distribution of x.
In order to see why, let us first define the derived distribution of
utility differentials. Let J(r) = fX(r) g(x)dx where X(r) = {x|u(A,x)-
u(A* x) < r}, and let j(r)dr = dJ(r). Finally let 1(r)

= j(r) -j(-r) for all r » 0. A* maximizes Ju(A,x)g(x)dx if and only if

=]

(5.1) IO rl(r)dr € 0 for all A.

Also expected plurality W(A,A%*) =



