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CAPITAL ACCUMULATION AND THE SUSTAINABILITY

OF COLLUSIVE MARKETS

by

Chaim Fershtman and Eitan Muller

1. Introduction

The main purpose of the paper is to examine an observed phenomenon in
semi-collusive markets in which the rivals compete along one variable (or one
set of variables) and collude along another variable (or set of variables).
Scherer (1971), for example, notes this phenomenon while observing that firms
in an oligopolistic markets tend not to compete along the price variable but
rather along three maln nonprice variables: technological innovation,
advertising, and product differentiation. The common element in the above
three nonprice competition variables is that they all involve investing over
time in a stock variable where the investment might be R&D expenditure,
advertising, and product line investment where the capital stock might be
either cumulative R&D expenditures or some cumulative probability distribution
function of an innovation, goodwill and brand loyalty. When cost of the
investment is convex (as we assume) the changes in capital stocks are not
instantaneous. Firms therefore will be reluctant to enter an agreement on
these levels of capital. If the agreement breaks the firm might find itself
with overcapitalization, or, even worse, with too low levels of capital which
were forced upon the firm by agreements, with a resulting unreasonably weak
market position. The difficulties in reaching a SALT agreement, for example,

are in part because of such considerations.



The natural question to ask is why the firms in an oligopolistic
situation find it optimal to both compete and collude at the same time, and
more importantly, whether such arrangements are stable over time.

The first question is more readily answered, as follows: consider the
firms as accumulating some capital according to, say, the Nerlove-Arrow
capital accumulation equation. At each period of time, price and market share
will be decided upon as a result of a bargaining process among the
participating firms. A bargaining model in the axiomatic approach can be
described as having two components: (i) a threat point which describes the
outcome when no aggreement is reached, and (ii) a set which comprises all
feasible utility payoffs that can be reached by cooperation. Both the threat
point and the bargaining set are dependent on the current capital stock of all
participating players (firms).

Thus, although the firms at each period cooperate and divide the market
between them, they realize that their relative power as precisely measured by
the threat point and the bargaining set is dependent on their stock of
capital. This will induce a competitive behavior in the nonprice variables
(investments in capital stocks) while at the same time the firms might find it
optimal to collude with respect to prices and market shares. Discussing the
strategic investment decisions of the firms, the competition between the firms

has the nature of structural dynamics. The game does not repeat itself

identically since in every period they face a different situation, namely,

different levels of capital. Thus, whatever the players do in one period

affects the game itself in the future. In order to best capture the dynamic

aspect of the competition we employ the differential games framework. The
tool of differential games has proven itself to be useful in analyzing

strategic interaction among firms involving investment decisions. Spence



(1979) has studied the problem of sequential entry in a new market when firms
have financial constraints on their investment rates. In our modeling the
capital in addition to its productive capabilities acts as a power base for
the collusive agreement. 1If the firms fail to reach an agreement, they will
find themselves in a noncooperative game which is similar to Spence's. There
are some notable differences, though, as we assume a convex cost function and
a depreciable capital, but we do not impose any financial constraints. In
addition, the firms' strategy space in our setting allows the firms to observe
the state of the competition in the market and to react accordingly.

We first show the existence of a solution to such a game (which is an
infinite horizon, nonzero sum differential game). The main question that we
address, however, is not existence but rather stability. To state that a firm
might find it optimal to collude is not sufficient. We would like to find
whether it is possible for the firms to collude throughout the (infinite)
planning horizon and whether this behavior is as likely to happen as, say, a
situation in which they engage in a rivalry throughout.

Osborne (1976) and Porter (1981) have argued that cheating and the
difficulty in detecting deviations from the agreement are two main sources of
cartel instability. In particular, Porter assumed that firms observe only
their own production and the market price but not the quantity produced by
other firms. If market demand has a stochastic element, cheating is difficult
to detect since an unreasonable low price can be a result of cheating, i.e.,
deviation from the agreed output levels as well as a result of an abrupt
decline in demand.

In these works and others (e.g., Abreu (1983)) the firms have to agree

once and for all on a collusive output. In our setting at each period of

time, a new bargaining session takes place because the circumstances as



measured by the capital levels changed since the previous sessions. In
addition, because we model a deterministic approach, the problem of detecting
cheating does not exist since if the price deviates from the agreed upon price
and/or one firm fails to appear at the bargaining session the collusion breaks
down.

The firms in our setting prepare two paths of capital investment. One is
for the collusive case, and one can be thought of as a threat strategy which
the firm employs if the collusive agreement is broken for some reason. It
prepares itself for a contingency in which one firm finds the market share
agreement not to its liking or finds its investment in capital excessive
compared to what it would have invested in the competitive case and decides
therefore to break the agreement. If the threats of the planned contingency
investment paths are sufficient to sustain the collusion throughout the
infinite time horizon, then we call such an agreement sustainable.

We show the existence of a sustainable equilibrium for such a game. Our
game, however, has the additional complexity of possessing multiple
equilibria. We would like to know whether the sustainable equilibrium
processes some desirable properties which are not shared by other
equilibria. We thus restrict or "retract” the set of strategies of each
player so as not to include nondominated strategies. What we show is that
such a retract is exactly what characterizes sustainable solutions. The
desirable property of this retract is that if we propose to each player that
he plays strategies from this retract, he will agree and moreover will have no
incentive throughout the game to use any strategy which is not in the
retract. This notion is related but not equivalent to the persistent
equilibrium notion of Kalai and Samet (1983) to be discussed later.

Lastly, we investigate the possibility of overcapitalization which might



occur in the collusive market versus the competitive one when the capital in
question is goodwill. This phenonomon is heavily empirically researched; see,
for example Comanor and Wilson (1979). Telser (1964) observes that: “There
is little empirical support for an inverse association between advertising and
competition, despite some plausible theorizing to the contrary.” What we show
is that even the theoretical support is rather weak. It highly depends on the
structure of the benefits that the firm achieves while engaging in the

collusive agreement.

2. The Model

Consider n firms all operating in a single market accumulating capital
denoted by K according to the Nerlove-Arrow (1964) capital accumulation
equation
(1) f(i =1, - 8K, K(0) =K, ieN
where Gi is the depreciation parameter, a dot above a variable denotes
differentiation with respect to time, N is the set of firms, Ii is the
investment in capital. Let K(t) denote the vector of capital.

We investigate a market in which the firms consider the option of a
collusive arrangement as follows: price and market shares will be decided
upon as a result of a bargaining process among the participating firms at each
period of time. Let M be the set of all possible allocations of market shares
to firms. The result of the negotiation at time t will be a price p(t) e R,
and market shares vector m(t) € M. As mentioned earlier, the reason why the
firms do not divide the market equally between them, is that when they enter
the bargaining "game™ they view their relative bargaining powers as being

different due to their different levels of capital. It should be emphasized



that at each given time point t, the firms distribute the market according to
the solution of the bargaining game. The dynamic part of the problem is their
decision concerning their investment in capital.

Following the axiomatic approach presented by Nash (1950), the bargaining
problem can be characterized by two components (S,d) where d is a point in R"
which describes the outcome when no agreement is reached, and S is a compact
convex subset of R" containing d, which describes the set of all feasible
(utility) payoffs that can be reached by cooperation. For a recent survey on
the bargaining problem see Kalai (1983).

For each possible outcome of the negotiation p(t) and m(t), let
m(K(t), p(t), m(t)) denote the payoff vector which is the vector of gross
operating profits, net of all costs except the cost of investment in

capital. The set of all possible payoffs can be described as follows:
n
S(K(£)) = {m(R(t), p(t), m(t)) & R}|p(t) € R, m(t) e M}

Let 4d(X(t)) ¢ Rz, be the payoff vector if the firms fail to reach an
agreement. In this case they resort to rivalry and for our purpose it is
enough to assume that an equilibrium will result. See, for example, Spence
(1979). Under the assumption that the firm's utility function is linear with
respect to the payoffs the result of the bargaining process via the axiomatic
approach can be generally described as p(S(X), d(K)). ©Note that this result
might be sensitive to the axiomatic approach used.

Let ¢(K) & TR® denote the firm's benefits from engaging in a collusive

behavior at time t, i.e.,

(2) $(K) = n(s(x), d(x)) - m (K)



where nr(K) is the payoff vector which is achieved under the rivalry
equilibrium, i.e., the threat point payoffs. The individual rationality axiom
(Nash, 1950) guarantees that ¢(K) is nonnegative. Each firm has to decide
whether or not to stay within the collusive agreement. Once this is decided
it has to choose optimally a path of investment in capital. The optimal
strategy and the study of equilibrium will be discussed following the
illustrative example of bargaining with side payments. It is possible, of
course that the firms will cooperate with respect to both price (and market
share) and investment (and capital) as well. Fershtman (1983) has shown that
for a bargaining problem over time which involves some state variable, for
every partition of the time interval, the axiomatic approach can be used in
order to construct a solution. Thus in case of a complete collusion the
problem can be converted into one which is solvable by the axiomatic

bargaining approach.

3. Collusion with Side Payments

Consider the model described in the previous section for the two player
case and in addition to the assumptions made there, assume that we allow for
side payments. The bargaining set is then a triangle as depicted in Figure 1.

The threat point for capital levels of R(t) is given by nr(R). The
extreme points of the triangle are constructed such that all benefits from
collusion will be accrued by firm 1 (respectively 2) to achieve the point

(n [ (R), 7 _,(R)) (resectively (n_ (R), m_,(K))).
In this case we can use either the Kalai-Smorodinksy (1975) or the Nash

solution to arrive at

(3)  wu(s(K), d(K)) = ((n_ (K) + ﬂcl(K))/Z, (m ,(K) + TTCZ(K))/Z)
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observe that both the extreme points and the threat point are functions of the
capital levels K = (Kl’ K2). In Figure 1 we have depicted the case where

K # ﬁ. Note that it is possible that ﬁ > K since though “ii > 0 we have

“gi < 0 and so the movement of the threat point (and the extreme points)
depend on the magnitude of the changes in both levels of capital. The
solution, therefore, changes as well, according to equation (3). Now it
becomes clear that the collusive agreement is not costless, since the level of
capitals are to be supported by appropriate levels of investment. The profits
L and T. + ¢ are gross operating profits, net of all costs except investment

in capital. Thus, it is not obvious, a priori, in what case are the net

profits higher.

4, The Dynamic Collusive Game

In order to define the game, we need to specify the strategy spaces iy,
i € N, the payoffs, and the state or "kynematic"” equation. In order to
specify our main game, we first deal with two simpler games. The kynematic
equation, however, remains the same, i.e., equation (1) for all three games.
Firm i's strategy for the first two games is assumed to helong to the

following set:
Qi = {Ii(t): [0,) » [O,Ei]'li(t) is piecewise continuous on [0,@)}

Let @ = 1 Qi.
ieN
We assume that the control Ii(t) takes its value in a compact set
[O,Ii]. For example, a cost investment Ci(Ii) which is convex and satisfies

that lim C; » = as I; » Ti will induce a control function satisfying this

assumption. In addition we assume that nri(K), ¢1(K) € 02 are increasing



concave functions of Ky decreasing in K Ci(Ii) € C2 increasing and strictly

j’
convex, and C'(O) = 0.

Since we deal with the possibility of rivalry and collusion, define the

following two games:

Game A: Let GA(KO) be the game that starts at the initial stocks of Ky with
strategy space {2 and payoff functions as follows:
—I‘t{

(4) J,. = fg e

Al m () = € (T)]de

Game B: Let GB(KO) be the game that starts at the initial stocks of KO, with
strategy space {}, and payoff functions as follows:
—I‘t{

(5) J,. = f; e

Bi T (K + 4 () - € (T))de

Thus game A is the rivalry setting while in game B we force a collusion from
the initial time onwards.

A Nash equilibrium for the game GA(KO) (respectively GB(KO)) is a vector

of functions I*(t) such that I;(t) maximizes J,; (respectively JBi) subject to

* * * *
(1) given (Il(t),...,Ii_l(t), Ii+1(t),...,1n(t)).

A stationary Nash equilibrium for G,(Ky), (Gp(Ky)) is a vector of values

(I*, K*) such that II = GiKI and the vector I* is a Nash equilibrium for the

game GA(K*) (respectively GB(K*)).

Theorem 1: Games A and B as defined in equations (4) and (5) satisfy the
following:
(a) TFor every initial capital stock KO, there exists a Nash equilibrium

solution.
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2 2 2
(b) 1If for game A |a ﬂri/aKi|>jZi|3 nri/axiale and for game B

|o%n__jox? + 8% /3x2|> T |o%n_ /oK oK, + a7 /9K 9K, | then there exists a
ri i i i 3#1 ri i 3 i i 73
unique stationary Nash equilibrium point for each game.
(¢) Under the above conditions, from every initial capital stock Ky,

there exists a Nash equilibrium solution which converges to the unique

stationary equilibrium point.

Proof: The conditions of Theorem 1 follow the requirements of Theorems 2 and

3 in Fershtman and Muller (1983). Q.E.D.

When setting out to prove Theorem 1 it became obvious to us that we could
not have used the then currently available existence theorems. For this type
of open loop, nonzero sum differential games, Scalzo (1974) was the first to
prove existence for any finite duration. Proofs of existence prior to this
were known only for "small” duration. Scalzo's work and his further
extensions (e.g., Scalzo and Williams (1976)) were not sufficient for our
purpose because of two reasons. First, it is easy to show that such markets
will not converge to a stationary point in any finite time and thus finite
duration will not suffice. Second, existence does not imply conditional
global asymptotic stability, which is part (c) of theorem 1. The conditions
specified in (b) are the standard contraction requirements on reaction
functions which are used in relation to one period games. See, for example,
Friedman (1976, chapter 4). Game A is the rivalry game in which the firms do
not engage in any collusive agreements. In game B, however, the firms start
the collusion at time zero (initial time) and continue with it throughout the

planning horizon without considering the possibility of breaking the

agreement. Since this consideration of breaking the agreement is a generic

part of a reasonable economic game, we define game C to include such a
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possibility. Let B ¢ {1,0} be a variable that describes the state of the
competition in the industry. 1If at time t, the industry is colluding with
respect to price and market share, then B(t) = 1. If the industry has not yet
reached a collusion or has already broken the collusion by time t, then

B(t) = 0. Firm i's strategy for game C is assumed to belong to the following

set:

Qci = {Ti, Ii(t): [0,0) x B » [O,Ti]|Ti e [0,°), Ii(t) is piecewise continuous on [O,m)}
where Ti is defined as the time at which firm i decides to break the
agreement. While making the decision to break the agreement, the firm
realizes that the other firms will exercise a threat which is to resort back
to rivalry. It is clear from the definition of 2.; that firm i is behaving
just the same way. If the collusive agreement is broken, the firm will engage
a different strategy, i.e., a different investment path than if collusion
continues. Thus, the firm has the following contingency planning: it has two
paths of investment, and it continues with its original path as long as the
state of the competition is collusion. If at time t it finds that the state
of competition has just switched to rivalry it switches its investment plan to
the alternative “contingent” plan.

The game is thus defined as follows:

Game C: Let GC(KO) be the game that starts at the initial stocks of Ko’ with

strategy space Qc, kynematic equation (1) and payoff functions as follows:

(6) J - —rt{

. e
Cc1l

O-— 8

m_ (K) + B(t)¢ (K) - Ci(Ii)}dt



5. Sustainable Collusion

What are the pitfalls of the collusive agreement we have just
described? 1In a repeated prisoners dilemma, it is possible that one player
will find it advantageous not to cooperate if the momentary (or transitional)
gains he makes by not cooperating dominate the discounted losses he makes when
all other players stop cooperating. It has been argued in the industrial
organization literature that in cartel environment, cheating (i.e., not
cooperating) might be hard to detect. Signals on detection, however, do
exist. If demand has a stochastic element, an unreasonable low price may act
as a signal that deviations from the collusive agreement are currently being
carried out by some members of the cartel. 1In our framework, neither of these
two problems exists. First, we do not pose our problem as stochastic and
second, in continuous time differential games, no momentary gains based on
delayed actions of the rivals exist since reaction is instantaneous. The main
source of potential instability in our game is due to the fact that capital is
a source of power for the bargaining agreements. These capital levels have to
be built and maintained by appropriate levels of investments, and the latter
are costly. 1In the last section we show that it is likely that the levels of
capitals will be higher at a collusion. Thus, even if the gross operating
profits at collusion are higher than at rivalry, i.e., ¢ > 0, it is not
clearly a priori that ¢ is larger than the additional costs of maintaining
these high levels of investments.

Our concern, therefore, is with the existence of an equilibrium solution
for which the colusive agreement remains in effect throughout the planning
horizon. Such an equilibrium will be called sustainable. Let Q§ = T Q ..

. ci
ieN

Let w ¢ QC be a strategy profile. Let ;i = (Wl""’ LA wi+1"'°’wn)' A

i-

Nash Equilibrium for the collusive game (game Gc(KO)) is a strategy profile W
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* * * —%

€ 2, such that w, = (Ti’ Ii(t,B(t)) maximizes J_; subject to (1) given w, . A

Nash equilibrium for the collusive game is sustainable if there does not exist
* *

an i such that Ti is finite. Note that even with infinite T; the firm still

plans two paths: one for the collusive agreement, as long as it holds and one

for the rivalry case which it can use as a threat strategy.

Proposition 5.1. Let T(;i) be the minimum of Ti’ jeN- {i}. For a given

w,, any strategy wy for which Ti < T(G;) is not optimal.

Proof: Assume a contrario that there exists an optimal time Ti < %(;). The
method of proof for this case will follow a variation on Amit (1977) which is
an extention of a method by Kamien and Schwartz (1981). While making the
decision to break the collusive agreement at time Ti the firm realizes that as
a consequence, the paths of investment and capital stocks of its rivals will
change accordingly. Thus, the firm chooses time Ti and investment path such
as to maximize its total discounted profits as follows:

[><]

T, _
él{nri(K) +9,(R) - C (1)) e Tfae + | fn () -cap}e

Ty

—rtdt

subject to (1) and for j # i

Kc,(t) for 0< t < Ti

K.(t) =] ¢

J K .(t) for T, <t
rj i

T, < %, and K;(T;) 1is free. ch(t) is the capital path of firm j which is
induced from its investment policy Ij(t,l), followed while being a part of the
collusive agreement and Krj(t) is the corresponding path when firm j is in a
rivalry situation. Define the following two current value Hamiltonians Hl and

H, corresponding to the two different time periods:
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o o}
1l

wri(x) + ¢i(K) - Ci(Ii) + ini - xia K

1i i1

==l
n

21 = Ty - G Ty - 8Ky

At time T;, it follows from Amit that Xi(Ti) = ui(Ti), and that Hl(Ti) =

HZ(Ti) if 0 < Ti < T, Hl(Ti) < HZ(Ti) if 0 = Ty» and Hl(Ti) > HZ(Ti) if

Ti = T.

The relevant necessary conditions for optimalilty are that

1
o

\
BHli/BIi —Ci + Ai

1]
-C, + u,
i M

[}
(@]

BHZi/aIi

The equality of u; to A; at time Ty, therefore, implies the equality

i
of II and I; at time Ti' The continuity of the capital paths implies that
ch(Ti) = Krj(Ti)' The individual rationality condition implies that ¢ is
positive and thus at time Ti we have that Hl(Ti) > HZ(Ti)' Thus, there does

~

*
not exist such a finite Ti < T and we have our desired contradiction. Q.E.D.

Proposition 5.1 states that given the strategies of its rivals, the firm
does not find it optimal to be the first one to break the collusive
agreement. The main driving force behind this proposition is that the
multipliers are continuous at T;. This forces the investment strategy to be
continuous and thus it allows us to compare the Hamiltonians at time Ty.
Intuitively, the reason they are continuous is that the level of investment is
directly related to the multipliers via the equation BHi/BIi = (0. Suppose the

multipliers were not continuous at T;+ Just before T;, the firm invested
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according to Ai(T;), but it already knew that at Ty, the multiplier will make
+
a discontinuous jump to ui(Ti) which implies that the investment made at

Ti was not optimal. The situation will not be the same with an unexpected
shock to the system, since such a shock might necessitate reevaluation and
therefore, possibly, a discontinuous jump. 1In our case, the firm chooses Ti
optimally and no randomness enters the game. This excludes the possibility of
a discontinuity.

As mentioned earlier, the setting of our problem as a continuous time
differential game excludes the possibility of momentary gains to be made by

the firm by breaking earlier, since the reactions of the rivals are

instantaneous.

Theorem 2: The collusive game Gc(KO) satisfies that for every initial capital

stock Ky, there exists a sustainable Nash Equilibrium.

Proof: Consider I*(t), the Nash equilibrium of game B whose existence is
* *
assured by Theorem 1. Using I (t), we construct a strategy profile w for

game C such that

*
I (t) for B(t)

"
—

*
w = m, I(t X B) =

i
(=)

I (t) for B(t)
r

where Ir(t) can be a pilecewise continuous function such as the solution for
game A. We have to show that w* is a Nash equilibrium. Sustainability will

* * —x
follow by definition of w . wi is the best response for w, since using

i
* *
proposition 5.2 if Tj =w for j € N - {i} the optimal T, is Ti = ®., Now,

*
given that Tj = o for all j € N since I*(t) is a Nash equilibrium for game

* *
B, Ii(t) is the best response of firm i against Ij(t) for € N - {i}.

Q.E.D.
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By the above arguments, it is evident that every Nash equilibrium of game B
induces a Nash equilibrium for game C which is sustainable. Still, games B
and C are not equivalent since the strategy space of game C allows for threat
strategies and in addition the set of equilibrium points of game C is larger
since it contains equilibria in which the collusion breaks at some finite
time. Using Theorem 1, we have the following corollary:
Corollary: If |aznri/axi + 32¢i/axi| > 1 |aznri/axiaxj + 32¢i/axiaxjf,

j#i
then there exists a unique stationary sustainable Nash Equilibrium point, and
from every initial capital stock K, there exists a sustainable Nash
Equilibrium solution which converges to the unique sustainable stationary
equilibrium point.

Theorem 2 guarantees only the existence of a sustainable equilibrium.
Other equilibra, however, which are not sustainable, exist as well. Using
proposition (1), which shows that no firm will find it optimal to be the first
one to break the agreement, we wish to establish that the sustainable
equilibrium satisfies some desirable properties which the other equilibria do

not.

6. Globally Absorbing Equilibrium

In this section we show that the distinguishing feature of sustainable
equilibrium can be defined using nondominated strategies. In order to make

this distinction in a formal manner we need some notions which are related to

1

the ones developed by Kalai and Samet (1983). A set W C Qci weakly dominates

A

the set ch: Qci if for every strategy w, € w2 and

— -~ 1
= e ce £ Q i
v, (wl, s Vi Y s wn) 1 there exists w, € W~ such

J ., %) >J (w..w.).
that J (v, w) > J  (wpw,)



_18_

A set W¢C Qci is globally absorbing if it weakly dominates the set

If we propose to each player that he, unilaterally, will play strategies
of W, he will agree and will have no incentive to use strategies outside of

W.

A set Ai(T) is a time retract if it is the set of strategies w; e Q; for

which T; > T.

A minimal globally absorbing time retract is a time retract that is
globally absorbing, and does not properly contain any globally absorbing time
retract.

A strategy profile W o= (w?,...,w:) is globally absorbing equilibrium if

* *
w 1is a Nash equilibrium and every w; belongs to a minimal globally absorbing

time retract.

Theorem 3
A Nash equilibrium of the game Gc(KO) is sustainable if and only if it is
globally absorbing.

Before we prove the theorem the following lemma is needed:
Lemma. Consider the following set:

Ay = {w, = (T, L(£,B)) ¢ QcilTi = =},

The set Ai is globally absorbing.

Proof: The proof will be carried out in two steps: for every w,,

let BR(Gi)c: Qci be the set of all best response strategies of firm i

against W

Step 1: BR(wi) N Ai # .
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First observe that BR(;i) is not empty. This is so since for
every;i from proposition 5.1 the best response of firm i is not to be the
first to break the agreement. Now that the time T for breaking the agreement
is given, standard existence theory for optimal control assures us of
existence of a best response wy (see for example Baum (1976)).

Observe further that if 51 = (fi, fi(t,B)) £ BR(;i), then if ;1 ¢ Ai’ it

follows that Ti { »©, From proposition 5.1, we know that Ti > Ti(a;), where

Ti(;i) is the minimum of Tj jeN- {i}. Define w, = (=, fi(t,B)).

i

Since ;i and w share the same ii(t,B) and the time of breaking the collusion

i

continues to be Ti(wi)’ it follows that Jci(w . wi) =] (wi, wi). Therefore

i ci

w, € BR(wi). By definition w, € Ai'
. F ~ - — -~ —

Step 2 or every w, ¢ Qci Ai and every wi, if Wy ¢ BR(wi), then by step 1,

i(wi, wi).

€ Air1 BR(;i) such that

there exists w, € Aifw BR(wi) such that Jci(wi’ Wi) > JC

If ;i £ BR(;i), then by step 1, there exists vy

A

Jci(wi’ wi) = Jci(wi’ wi). Thus, in both cases we have found a weakly

dominant strategy with respect to;i which belongs to Ai.

Proof of Theorem 3: Using the lemma just proven, we conclude that for every

T, Ai(T) is a globally absoring time retract since it contains Ai‘ Moreover
it is clear that the only minimal globally absorbing time retract is Aj.
Given a sustainable Nash equilibrium w* whose existence is assured by

Theorem (2), wz e A; for every i and thus w* is a globally absorbing

equilibrium.

. . *
Given a nonsustainable Nash equilibrium v , there exists at least one
*

firm j such that TJ

is finite. Therefore, v? £ Aj(T§) which is not minimal.

Q.E.D.

The intuitive meaning of Theorem 3 is that the firms are playing the game
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where their strategy spaces are restricted or retracted to include
nondominated strategies. In such a game what characterizes a sustainable
equilibrium is that it is the only equilibrium which belongs to such a retract
which is minimal out of all time retracts.

Note that this restriction of the strategies is self enforcing since no
player has any incentive to choose a strategy outside of his retract.

This notion of globally absorbing equilibrium is closely related, but not
equivalent to, the persistent equilibrium notion of Kalai and Samet. There
are two main differences. First, our absorption is a global property and is
not defined in a neighborhood of a retract. This allows us to restrict the

strategy space of each player unilaterally and his agreement to this

retraction does not depend on the retract of the rest of the players. 1In a
locally absorbing retract all strategy spaces are retracted simultaneously and
the agreement to this retraction depends on the fact that the strategy space
of the rest of the players is retractable as well. Second, we are dealing
with a specific form of retract, namely, time retracts. The reason we cannot
use Kalai and Samet definitions and therefore their result about the existence
of a persistent equilibrium is that the strategy space of each individual
player is not restricted on our case to be compact. This, of course, makes
our existence theorem more difficult to prove in addition to preventing us
from using the persistence result, but there is no a priori reason to restrict

the strategy space in our game to a more restrictive space than Qc which is

]'_’

not compact.

7. The Possibility of Overcapitalization

In the preceding analysis we have shown the existence of two distinct
paths that might follow as a result of the game: one in which the players

collude and one at which they engage in rivalry behavior. It is of interest
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to find out at which of the two paths the overall capital invested in the
industry is larger. This issue has been given considerable attention when the
capital in question is goodwill and thus the investment is advertising. For
an exceptional summary see Comanor and Wilson (1979). From Theorem 2 and its
corollary we are assured not only of the existence of an equilibrium bhut also
of its convergence to a unique stationary point regardless of the initial
conditions. Thus we can investigate the behavior of the market at the steady
state. Continuity will guarantee that the same behavior in terms of over or
under capitalization will carry over the neighborhoods of the stationary

points. For simplicity, we deal with the duopoly case only.

Theorem 4: Let game Gc(KO) satisfy the assumption that guarantees global

asymptotic stability, {i.e.,
|82v,/8K?| > |32n /8K,8K,| for i # j;
i i i i ]

* *
Let KCi and Kri denote the level of capital of firm i at collusion and rivalry

respectively, achieved at the unique stationary point. Then

* *
8¢i/8Ki > 0 if and only if EKci > iKri

Proof: Define the current value Hamiltonian of firm i for game B as follows:

The necessary conditions for optimality are given by:

(7 OH,/3I, = -C, + X, = 0
i i i
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(8) A, - rxi = —aHi/axi =Ty + 4, - 1,6

i
where ﬂri denotes anri/aKi.
At the stationary point ii = 0, and ki = 0. Solving equation (1) for I,

substituting into (7) and substituting C: for A; into (8) yield:
i i

' * i % i x
(9 (r + 6 )C (6K ) =7 (KD +6,(K)

Similarly for game A we have

' * i x
(10) (r + Gi)Ci(GiKri ) = nri(Kr)

* *
We will prove that 8¢i/8Ki > 0 implies EiKci > EiKri' The same proof, matatis

mutandis, can be used to prove the reverse implication.

Case 1: Let 723 = 37 /3K, 2K, < 0.
—_— ri ri i ]

. * *
Assume a contrario, that Kri 2 K

ri for i=1,2. We now claim that:

1 * 1 * 1, * 1 *
(11) ﬂrl(Kr) > er(Kc) + ¢1(Kc) ? ﬂrl(Kc)

The first inequality follows from the facts that K., > K Ci' > 0 and

cl’
equations (9) and (10). The second inequality follows from the assumption
that ¢1 > o,

Using the mean value theorem we have that for some mean value of K the

following is true:

(12) 1 * 1 * * K* 11 .~ * * 12
ﬂrl(Kr) - ﬂrl(Kc) - (Krl - cl)"rl(K) + (KrZ - Kc2)“rl

(K)
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% %
Observe that the negativity of n%% and n%% and the fact that K > K imply

ri ci
that the RHS of equation (12) is nonpositive which contradicts inequality

(11).

* *
Thus it 1is not true that Kri > Kci for i=1,2, and therefore either

* * . * * ,
Kri < Kqig for i=1,2 and so ziKri < ziKci or without loss of generality
K:l > Kcl but K:Z < K:2' From inequality (11) it follows that LHS and

therefore the RHS of equation (12) is strictly positive. By assumption,

‘ 11 ' 12 * * *

(K)I we have that K - K >K ., - K and so

(K)l c2 r2 rl cl

ziK ? Z1Kr1

14
Case 2. Let "ri >0

. * *
Step l: Assume, a contrario, that Kri > Kci for i=1,2. 1In the same way that

equations (11) and (12) were constructed, one can arrive at the following

equation:

2 % 2 % * * . 22,7 * [ 21,7
(13) 12,0 =t (K) = (KL, = KooK + (K = K Ino(K)

Observe that both equations (12) and (13) are strictly positive. Since

' 22| N I 21

|mii] > |mii| we have that K7, - K&, > Ki) - Kij. Since y| v

have that K * sk -k
ave at rl Kcl Kr2 2’

* *
Thus, it is not true that K; 2 KCi for i=1,2.

These two inequalities cannot hold together.

. * * . * * X
Step 2: Either K.; < K,; for i=1,2 and so ziKri < XiKci or without loss of
* * * *
generality Krl > Kcl but Kr2 < Kc2' Following inequality (11) it follows that
the LHS and therefore the RHS of equation (12) is strictly positive. By

. gyt . * *
assumption, both terms are nonpositive since Kri - Kci > 0 and

* *

Kr2 - KC2 < 0., Thus it is not the case that K:1 > Kzl and K:Z < K:Z and so
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for 1=1,2 K3; < K& * . E.D
or i=1i, Kri Kci and so ziKri < ziKci' Q.E.D.

The theorem above states that overcapitalization depends on the sign of

8¢i/3Ki. If each firm's benefits from engaging in a collusive behavior are
increasing in capital, i.e., 8¢i/3Ki > 0 we can expect overcapitalization to
occur. Discussing the relation of advertising to competition, Telser (1964)
notes that: “There is little empirical support for an inverse association
between advertising and competition, despite some plausible theorizing to the
contrary.” What we have shown is that even theoretical support of this
inverse association is rather weak. It highly depends on the structure of

benefits that the firm achieves when engaging in the collusive agreement.

8. Concluding Comments

We have shown in this paper that the somewhat elusive notion of power in
a bargaining situation can be formalized and used to explain observed
phenomena. We feel, morever, that such an approach would be useful in other
situations as well. Consider, for example, another elusive notion of building
a reputation as a "retaliator” in a game such as the chaln store paradox. The
reputation that a firm has can be regarded as capital stock which accumulates
if the firm retaliates and deteriorates if the firm does not engage in any
predatory behavior.

In the same manner as in our game, the instantaneous game that the firm
faces changes through time as its capital changes. Applying a repeated game
analysis in which the game remains the same in all periods might not be the

appropriate tool to analyze predatory behavior.
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