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Abstract

This paper examines the dynamics of the price of a nonrenewable resource
that results from optimal decisions under uncertainty. Toward this end we
present a general model of resource consumption and exploration decisions that
can be specialized to take into account an uncertain event of interest such as
resource exhaustion, a new stock discovery, or development of a substitute
product. Within the context of this model we provide a general
characterization of the resource price process in terms of martingales. 1In
particular, we identify necessary and sufficient conditions under which the
price is expected to rise at a rate equal to, greater than or less than the
discount rate. The expected resource price is shown to rise at the rate of
discount if and only if either the conditional distribution of the event time
does not depend upon the resource state or the event is payoff-irrelevant. We
illustrate the general model and the main result by examining the three %inds

of uncertainty indicated above.



A Martingale Characterization of the Price of a Nonrenewable Resource
with Decisions Involving Uncertainty
by
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1. Introduction

We wish to study the dynamics of the shadow price of a nonrenewable
resource resulting from optimal decisions under uncertainty. Toward this end
we develop and analyze a fairly general stochastic dynamic programming model
of the resource decisions involving a variety of possible sources of
uncertainty. Within the context of this model we provide a characterization
of the resource price process in terms of martingales. Finally, we show how
our unified approach can be specialized to obtain prices and decisions in
various cases studied in the literature.

In the deterministic case, Hotelling [1931] characterized the price
trajectory and the optimal depletion path of an exhaustible resource stock of
a fixed known size. More recently, several studies have incorporated the
crucial element of uncertainty into the analysis. These studies may be broadly
classified into three categories. Models in the first categotry consider
optimal resource depletion when the total supply of resource stock is unknown
and may be suddenly exhausted, as in Xemp [1976, 1977], Cropper [1976], Loury
[1978], and Gilbert [1978] (or it may be suddenly expropriated, as in Long
[1975]). 1In the second category, the uncertainty is regarding the
availability of new supplies as a result of ‘discoveries of additional resource
stocks through search and exploration. For example, Arrow and Chang [1980]
and Deshmukh and Pliska [1980] have studied optimal consumption, exploration
and the resource price process when exploration affects uncertain timings and
magnitudes of discoveries; see also MacQueen [1961, 1964], Heal [1978],

Pindyck [1980], Loury [1982], and Deshmukh and Pliska [1983] for other models



involving stochastic discoveries. Finally, the third category of models
involves uncertainty on the demand side, namely, about the time at which a
perfect producible substitute becomes available, thereby eliminating the
dependence of the economy on the nonrenewable resource. Dasgupta and Heal
[1974] and Dasgupta and Stiglitz [1981] analyze optimal depletion and prices
when the probability distribution of the uncertain timing of innovation of a
substitute product is specified exogenously, while Dasgupta, Heal and Majumdar
[1977] and Kamien and and Schwartz [1978] also permit the innovation process
to be controlled endogenously through R&D expenditures.

In all three categories of models, the uncertainty is about the time of
occurrence of a particular event: exhaustion, d;scovery of an additional
stock or development of a substitute product. Adopting this point of view, we
present in Section 2 a single model that can represent each of these three
kinds of uncertainty as special cases. We then analyze in Section 3 the
optimal decisions regarding resource depletion (for consumption) and
exploration (i.e., search to discover a new stock or R&D aimed at developing a
substitute product) in order to control the time of occurrence of the
uncertain event of interest. Given this analysis of optimal decisions, we
provide in Section 4 the main result of this paper, namely, a martingale
characterization oflthe resulting price process. In particular, we identify
necessary and sufficient conditions under which the discounted price process
is a martingale, so that the price 1s expected to rise at the rate of
discount, which is the stochastic analog of Hotelling's [1931] "fundamental
theorem of the economics of exhaustible resources.” This result 1is shown to
hold if and only 1if either the conditional distribution of the time of event
occurrence does not depend on the resource state or the event 1s payoff-

irrelevant. We also provide necessary and sufficient conditions under which



the resource price is expected to rise faster or slower than the discount
rate. The general model and the main result are then illustrated in the next
three sections by briefly examining the three special cases indicated above.
As a by-product of our analysis, we provide a unified survey and a synthesis
of the existing models of nonrenewable resource decisions involving

uncertainty. Finally, Section 8 concludes with some general remarks.

2. The Model

The distinguishing characteristic of a natural energy resource {(such as
oil or natural gas) is that it is nonproducible and nonrenewable, so that the
future supply of the resource cannot be determined or controlled with
certainty. In an extreme event, the resource may be suddenly exhausted,
thereby imposing a severe hardship on the economy. At the other extreme, a
producible perfect substitute may become available as a result of a major
technological breakthrough, rendering the natural resource inessential,
Between these possibilities of extremely unfavorable and favorable events,
several kinds of interesting random events of intermediate significance may
occur. One is the discovery of an additional source of supply of the same
resource and another is the emergence of a new invention (such as an electric
car) that results in a major change in (although not complete elimination of)
the demand for the resource.

We wish to develop a general model that can capture a variety of such
random events that affect the future resource supply or demand conditions.
This 1s accomplished with a model that features a single random event of
interest, but a model that, by interpreting its components in different ways,
can be specialized to the various supply and demand uncertainties indicated
above.

Let T denote the time of occurrence of the random event of interest. The



social planner can affect the probability distribution of T through
“consumption” and "exploration” decisions, where consumption involves
depletion of the resource stock and exploration refers to any activity (such
as search or R&D) that is aimed at relaxing the constraint imposed by the
exhaustibility of the resource. For example, if T represents the moment of
exhaustion, then increased resource consumption depletes the available stock
faster and hastens the occurrence of this undesirable event. On the other
hand, if T represents the time of discovery of an additional stock or
invention of a new producible substitute, then increased exploration
corresponds to a more intense search for additional deposits or greater R & D
expenditures for developing the substitute and this would expedite the
occurrence of the desirable event. In addition to affecting the event
occurrence time, resource consumption also yields social utility, while
exploration activity involves costs. The planner's problem is to determine
the consumption and exploration decisions that optimally control the event
time T (i.e., probabilistically hasten or prolong T, depending on whether the
event is a favorable or unfavorable one) so as to maximize the expected
discounted total utility of consumption net of all exploration effort
expenditures.

To formulate this problem, let a nonnegative random variable X, denote
the state of the nonrenewable resource at time t > 0. TFor instance, X, may be
the level of proven reserves on hand at time t or it may represent the
cumulative amount of resource extracted and consumed by t. At each time ¢t,
given the resource state X,, the planner chooses a consumption rate c, € [0,c]
and an exploration rate e, e [0,e], where € and e are specified finite upper
bounds. This yields a social utility (net of extraction costs) at rate

[U(ct) - h(e.)], assuming the separable utility function. Suppose, as usual,



that the consumption utility function U(+) is concave increasing with U(0) = 0
and U'(O) = @ and the exploration disutility function h(e) is convex
increasing with h(0) = 0. Although some of these assumptions can be relaxed
at certain points in this paper, it is convenient to make them at the outset.

While Ce depletes the resource stock and advances the date of exhaustion,
the exploration effort rate e expedites the occurrence of a favorable
event. Borrowing terminology from reliability theory (see, for example,
Barlow and Proschan [1975], Ch. 3), let A(x,c,e) denote the hazard rate
(success or failure rate) associated with the event occurrence time T,

i.e., A(x,c,e) is the probabilistic rate of occurrence of the event at t,
given that T > t, X, = x, ¢ = ¢ and e, = e. Intuitively, A(x, c, e) dt is
the approximate conditional probability that the event will occur during

(t, t+dt), given that it has not yet occurred by time t, the current resource
state is Xt = x and the current consumption and exploration rate decisions are
cg = ¢ and e, = e. Various aSSuﬁptions about XA will be specified later as
needed. For example, it may be appropriate to assume that A 1s a
nondecreasing function in order to reflect the advancing of an undesirgble
event (of exhaustion) through ¢ and cumulative consumption, x, or of a
desirable event (e.g., discovery) through e.

Once the uncertain event occurs at time T, the planner's post-event
problem becomes the relatively easy one of determining the optimal consumption
pattern under certainty. Let W(x) denote the maximum total discounted utility
obtainable from the detérministic problem over [T, =), given Xp = %o For
instance, if the event refers to exhaustion, then with Xt as the cumulative
amount extracted, we have W = 0., Similarly, with Xt as the resource stock on
hand, in the event of discovery of an additional stock of size z, W(x) is the

total utility from consuming the stock (x + z) optimally over the infinite



planﬁing horizon, as in Hotelling [1931]. Finally, in the case where the
event refers to a substitute development, W(x) is the value of the optimal
program of the substitute production and resource consumption, as in Dasgupta
and Heal [1974] and Dasgupta and Stiglitz [1981]. 1In each case, W(+) turns
out to be a concave nondecreasing function of the resource state. In.any
event, in this section we shall treat W(XT) as a specified terminal utility at
time T.

‘With the discount rate a > 0, the planner's decision problem prior to the
resolution of uncertainty regarding T is to determine {(ct,et); 0<tX< T} so

as to maximize the expected total discounted net utility starting in state x:

E{gTeXP(-dt) [U(ct) - h(et)]dt + exp(—aT) W(XT)|XO=X}.
Let V(x) denote the optimal value of this program as a function of the initial
resource state Xg = x. We now present a formal derivation of the functional
equation which V must satisfy. We simultaneously address two cases: X, may
be either the stock on hand at time t or the cumulative consumption up to time
t.

Given Xy = %, selection of the constant decisions (c,e) during a small
time interval [0,t] yields net utility [U(e¢) - h(e)lt, and the resource state
changes to X, = x ~ ct if X, is the stock on hand (or X = x + ct if X, is the
cumulative consumption). Also, by the definition of the hazard rate X, the
uncertain event occurs in (0,t) with probability A(x,c,e)t + o(t), (in which
case the optimal value from then on is determined by W(X,)), and with
*probability [1 - A(x,c,e)t] + o(t) the event does not occur (in which case the
optimal value from then on is V(Xt)). Hence, the expected optimal return from

t onwards is X(x,c,e)tW(Xt) + [l—k(x,c,e)t]V(Xt) + o(t), which is discounted



back to time O by the multiplicative factor exp(-ot). By the dynamic
programming principle of optimality, (c,e) should be chosen so as to maximize
the immediate utility in [O,t] plus the future expected discounted optimal
value from t onwards. In other words, for t sufficiently small and x > 0, the

optimal value function V satisfies

V(x) = gag {[U(c)—h(e)]t + exp (~at)[A(x,c,edt W(Xt) + (l—k(x,c,e)t)V(Xt) + o(t)]}.

Using exp(-at) = l-at + o(t), Xt = x - ct (or Xt = x + ct) and Taylor's
expansions of V(¢) and W(+) around x, dividing by t, and letting t + O yields

the dynamic programming optimality equétion:
(1) aV(x) = Max {uCe) - h(e) - V' (%) + A(x,c,e) [W(x)-V(x)]}, x > O.
b

Note that [U(c)-h(e)] is the net immediate utility rate, cV'(x) is the rate of
continuous reduction in the optimal value due to resource depletion at rate c,
and A(x,c,e) [W(x)-V(x)] is the expectgd jump rate of change in the optimal
value due to occurrence of the event. Thus optimal (c,e) should maximize the
net total utility rate to yield the optimal value rate aV(x). Equation (1) is
for the case where X represents the stock on hand, the case we shall primarily
use for expositional continuity. If X is the cumulative consumption, then the
same argument yields equation (1), except with V'(x) replaced by -V'(x).

To make the above heuristic dynamic programming argument precise, omne
must show that there exists a unique solution V(+) to the functional
differential equation (1), that this solution does in fact correspond to the

optimal value, and that there exists an optimal policy of consumption and



exploration that yields this optimal value. This figorous analysls requires
making suitable assumptions on functions U, X and W and on the class of
admissible consumption and exploration policies. We shall not present a
rigorous statement and derivation of these results here, since this would be a
lengthy technical deviation from the objectives of this paper. Also, the
methods involved are similar to those in the literature; see, for example,

Deshmukh and Pliska [1980].

3. Optimal Decisions

Optimal decision policies c*(~) and e*(-) specify, as functions of the
current resource state X, = x > 0 at any time t < T, those consumption and
exploration rates c*(x) and e*(x) that attain the maximum in (1). Analysis of
equation (1) then leads to characterizations of these optimal policies.
Throughout this section, we shall be dealing with the case where X represents
the stock on hand; the case where X represents the cumulative amount consumed
is similar and left to the reader. Note that under the optimal policies (and
with suitable technical conditions) the stochastic process

X = {Xt; 0<t < T} is a Markov process that terminates at T.

* *
By equation (1), the optimal policies c (+) and e (+) satisfy
* * * *
(2) aV(x) = U(c (x)) - hle (x)) ~c (V' (x) + X (D[W(x) - V(®)], x>0
where we have written, for notatlonal simplicity,
* * *
(3) A (x) = AMx,c (x), e (%)),

which is the probabilistic rate of occurrence of the event under the optimal

consumption and exploration rate decisions in the resource state x. Also, due



to the coustraiant that Xt > 0, we require c*(O) = 0. Equation (2) may also be

written in terms of the infinitesimal generator f; of the Markov process X as
follows. Define the expected rate of change in the optimal value V(x) at time

t < T when Xt = X as

‘%V(x) = lim {E[V(X

g, =% e, = ¢ (1), e, = e (0] - (0} /s,
s¥0

t+s t t

Analogous to the argumeant leading up to equation (1), we obtain

~ )V ) + AT W) - V)], x> 0
(4) §§v<x) = {.

A% (0) [W(0) - V(O)], x =0,

Equation (4) simply says that the expected rate of change in V equals rate of
continuous reduction due to consumption plus the expected rate of jump change

due to occurrence of the event. Thus, we may write equation (2) compactly as

(5) av(x) = r(x) +‘§?V(x), x>0,
where
(6) r(x) = U(c*(x)) - h(e*(x))

is the immediate net utility rate function under the optimal policies. By the
theory of Markov processes, it follows (see Dynkin [1965] or Breiman [1968]},
Ch. 13) that total expected discounted utility V(-) following the policy

* *
(c (*), e (*)) 1s the unique solution of (5).
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With these general remarks about the optimal value function V(*) we may
now study the nature of optimal consumption and exploration policies.
Asguming differentiability of the functions involved, interior optima c*(x)

and e*(x) satisfy the first order conditions:

*
(7) Vi) = e )+ 2 ) - v(o)
and
d * vk
(8) 2L 1w - vl = b ),

with obvious modifications in case of corner solutions. To interpret these
conditions, recall that, if t < T and X, = x, then X*(x) is the optimal
probabilistic rate of occurrence of the event and V(x) is the optimal expected
long run net return over [t,»), Thus, according to (7), optimal consumption
rate balances the marginal reduction in the long—run value against the
marginal instantaneous utility of consumption plus the marginal expected rate
of change in the long-run value due to possible occurrence of the event.
Similarly, according to (8), optimal exploration rate balances the latter
against the marginal cost of exploration. These conditions (7) and (8),
together with the relevant properties of functions U, A, W and V, then enable
us to characterize the structure of the optimal policies c*(') and e*(') as
functions of  the resource state x. For example, we would expect that, for
certain cases, c*(-) is nondecreasing and e*(-) is nonincreasing in the
resource stock level, implying greater consumption and less exploration in
better resource states. From equations (7) and (8) it can be seen that these

kinds of properties depend critically on the monotonicity of the function
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[W(x) - V(x)], i.e., on the relationship between V'(x) and W'(x). We shall

examine these relationships for various special cases in Sections 5 through 7.

4., The Resource Price Process

As above, let X be the Markov process representing the stock on hand
under the optimal policies. Recall that, given t < T and X = x, V(x) is the
maximum expected discounted net utility over [t,»). Therefore, V'(x), the
marginal long-term contribution of an incremental unit‘of the resource stock,
represents the economic rent or the imputed (shadow) price of the resource

stock on hand prior to the occurrence of the event. Similarly, W'(Xp) is the

resource price at time T. Thus, we may set

exp(—at)V'(Xt), t < T
e

exp(—aT)W'(XT), t>T,

and call the stochastic process P = {P_, t > 0} the discounted (shadow) price

t’

'process. For mathematical convenience, we have taken P constant on [T,®)
since we are primarily interested in the pre-event price process; the post-
even price trajectory will be indicated in specific cases.

The purpose of this section is to characterize the probabilistic
structure of the price process, V'(Xt), 5r, equivalently, the discounted price
process, P. In particular, we would like to identify conditions under which
these prices can be expected to ilncrease, decrease or remain constant through
time. In probabilistic terminology, this problem translates into
characterization of the price process as a submartingale, supermartingale or a
martingale, respectively (for definitions, see, e.g., Breiman [1968], Chs. 5
and 14). For example, if the price process P is a submartingale,

then E(P s <t) > P, for all t, u > 0, implying that E[V'(X

crul P> e %)

s < t] > exp (—au)V'(X.), so that the shadow price is expected to rise at a
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rate faster than the discount rate a. Similarly, P is a supermartingéle if -P
is a submartingale, in which case the price rises at a rate slower than a.
Finally, P is a martingale if it is both a submartingale and a super-
martingale, and in that case the price is expected to rise exactly at_the
discount rate, a. '

To obtain a martingale characterization of the price process, 1e; G
denote the operator defined on the domain of differentiable functioné

£:[0,=) + R by

) F AT () - £(x)], x>0
Gf(x) = {

AF(0) W' (0) - £(0)], x = 0.

Thus, G is the same aséin equation (4), with the only difference that W' is
now the terminal reward instead of W. Moreover, just as in equationi(S), f
satisfies af = Gf + g if and only if f is the expected discounted reward under
policies ¢* and e* when g = [af - Gf] is the reward rate function and W' is
the terminal reward. This leads to the following.
(9) Proposition. Tﬁe process Pt + ftATexp(—as)[aV'(XS)-GV'(XS)]ds is a martingale.

0

Proof: For a function f in the domain of G, consider the random variable
L}
R = [J exp(-as) [af(X)) = GE(X)lds + exp(-aTIW (X),

* %
which represents the total discounted reward under (¢ ,e ) with the continuous
reward rate function [af - Gf] and the lump-sum terminal reward W, Upon

defining the stochastic process M = {Mt;t > 0} by

E[Rlx,s<t], £ <T
M-{ S

t R, , £ > T
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it follows from probabilistic principles that M is a martingale. However,

note that for t < T one has

=
]

fg exp(—as)[af(Xs) - Gf(Xs)]ds + E{fzexp(—as)[af(xs) - Gf(Xs)]ds

+ exp(—aT)W'(XT)‘XS, s < t}

[5 exp(-as) [af(X ) - GE(X_)]ds

+

exp(-at)E{ [, exp(-a(s-t))[af(X ) - GE(X_)]ds

+

exp(-a(T - t))w'(xT)]xt}

fg exp(~as) [af (X ) —GE(X)1ds + exp(-at)£(X,),

where the two last equalities follow from the Markov property. Hence, taking

£=v yields the desired result. Q.E.D.

We remark that Proposition 9 can also be proved using Dynkin's identity
(see Dynkin [1965], Theorem 5.1 and its corollary). The application of some

additional probability theory leads to our next result.

(10) Proposition. The discounted price process P is a martingale
(respectively, supermartingale, submartingale) if and only if

av' (*) = GV () = 0 (respectively, 30, <0).

Proof. Since a martingale minus a constant (respectively, increasing,

decreasing) process is again a martingale (respectively, supermartingale,
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submartingale), the sufficiency of the indicated condition is apparent.
Conversely, if P is a martingale, then so is the process given by the integral
in Proposition (9). But by probability theory, all continuous martingales of
bounded variation are constants, so the integrand must equal zero, that is,
av' - GV' = 0., If P is a supermartingale, then the integral process is a
submartingale. By the Doob-Meyer decomposition (e.g., Elliott [1982], Ch. 8),
this submartingale equals a martingale plus a predictable, increasing

process. For the reason mentioned above the last martingale must equal the
constant zero, so the integral process is increasing, which means its

integrand [aV' - GV'] » 0. The argument for P being a submartingale is

similar. Q.E.D.

Thus, the nature of the price process P hinges on the sign of aV'-GV'.
To examine this function, we first look at the equation (2) which V
satisfies. Differentiating and collecting terms yields, for x > 0,

* *
@' () = S et ) - v + 282 i - v0))

+

%
X (x)
9

*
228 1" ) + 225

(W(x) - V(x))]

*
X (x)
ax

+

[W(x) - V(x)] + GV'(x).

* *
But the first two terms on the right hand side equal zero, because ¢ and e

satisfy the first order optimality conditions (7) and (8) for S (0,¢) and-

* *
dc _ de

* * *
= T = 0 when ¢ and e are extreme points. Hence

e ¢ (0,e), whereas
for x > 0, it must be that

*
X

2 e - vl

aV'(x) - GV'(x) = 5

In a similar way, one can show this same equation holds for x = 0.
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Consequently, we have derived the following main result of this section.

(11) Theorem. The discounted price process P is a martingale (respectively,

*
supermartingale, submartingale) if and only if Elséil [W(x) - V(x)] =0

(respectively, > 0, < 0), for all x > O.

We should remark that this derivation was made for the case where the
process X represents the stock on hand, but everything remains true with only
two modifications for the case where X represents the cumulative amount
consumed. The first modification is to change the sign of the term c*f' in
the expression for the infinitesimal generator G. The second is to call -P
the discounted shadow price process rather than P, since V and W will normally
be decreasing functions. Therefore, the discounted price pr;cess is a
mariingale (respectively, submartingale, supermartingale) is and only if

gﬁ—'[W(X) - V(x)] = 0 (respectively, » 0, < 0).

We remark that our main results are remeniscent of the subject of duality
theory for stochastic optimization models. Pliska [1982] and Rockafeller and
Wets [1976] show that the dual variables for certain stochastic control
problems are martingales.

In the case where P is a martingale, we have E(PtIXO =x) =
exp(—at)E[V'(Xt)|XO=x] =V'(x) = PO’ so that the expected discounted shadow
price is constant through time, or that the shadow price V'(X.) is expected to
rise at the rate of discount. This is the stochastic analog of the well-known
deterministic result of Hotelling [1931], which has a rich economic
interpretation (see Solow [1974]). Note that in our stochastic model this
result holds if and only if the event time does not depend on the resource
state (i.e. %% = 0) or the event is economically unenventful (i.é.,

W(x) = V(x)). Similarly, in the case of exhaustion the event is unfavorable
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in the sense that W(x) < V(x), and if higher resource states (e.g., cumulative
consumption) imply greater hazard rates (i.e. g%-> 0) then the resource price
(-V'(Xt)) will be expected to rise slower than the discount rate.

Finally, in the light of the comment made toward the end of Section 3, it
seems clear that the behavior of the price process at T (i.e., the
relationship between V'(x) and W'(x)) is critical in determining the structure
of optimal consumption and exploration rate policles. Thus the price process,
optimal value function, and optimal decision policies are all intimately

related. 1In the following three sections we shall explore these relationships

for the three classes of problems studied in the literature.

5. Consumption of a Fixed Uncertain Stock

In this case, studied by Kemp [1976] and others, the total resource
supply is fixed but unknown and no additional stock discoveries or substitutes
are anticipated. Exploration is unnecessary (e* = 0), and the consumption
rate depends on the cumulative consumption, X.. Suppose the stock size is a
random variable S with the distribution function F(e) and the hazard rate
function v(x) = F'(x)/[l - F(x)]. The random event corresponds to exhaustion,
so that T = inf{t > 0; Xt = S} can be seen to have the hazard rate
A(x,c,e) = cv(x) if X, =x<Sand ¢, =ce [0,c]. The terminal utility
W(XT) = 0, although it may be natural to take the terminal price
W (Xp) = U (0).

With this interpretation, the optimality equation (1) of our general

model specializes to

(12) aV(x) = Max {U(c) + cV'(x) - cv(x)V(x)}, x > 0.
c

The optimality condition (7) then yields the resource price
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(13) =V (x) = U (e (x)) - v(x)V(x),
so by substitution in (12),
(14) V(0 = [0 () - Fu (F 1/,

which is the discounted value of the current consumer surplus; it is
nonnegative, since U is concave.
*

To analyze the price process note that-%%— = c*(x)v'(x), W =0 and
V 3> 0, so by Theorem 11 one sees that the nature of the discounted price
depends on the sign of v'(x). It is therefore convenient to introduce some
terminology of reliability theory (see Barlow and Proschan [1975]). 1If
v'(x) > 0 for all x, then F(+) is said to be an increasing failure rate (IFR)
distribution. 1In this case the likelihood of (immediate) exhaustion increases
as more resource is consumed; this would be the situation if, for example, the
total stock size S is uniformly distributed. Similarly, if v'(-) < 0 then
F(+) is said to be a decreasing failure rate (DFR) distribution; this is the
case if, for example, F(*) is a Weibull distribution with certain values of
the parameters. Finally, if v,(-) = 0, then F(*) is both IFR and DFR (i.e.,
has a constant failure rate) and must, in fact, be the exponential

distribution. These notions allow us to state the following result.

(15) Proposition. The discounted shadow price process P is a supermartingale
(respectively, submartingale, martingale) if and only if the stock size
distfibution F(+) is IFR (respectively, DFR, expomnential), in which case the
optimal consumption rate function x =+ c*(x) is decreasing (respectively,

™
increasing, constant), and hence the spot price, U (c (Xt)), is increasing
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(respectively, decreasing, constant) in time.

Proof. The if and only if statement follows immediately from the discussion
above and the remark following Theorem 11. Té show that F(e) IFR implies
c*(') is decreasing, we first note that, by a standard result of reliability
theory, the quantity [l - F(slx)] = {1 - F(s + x)]/][1 - F(x)] (which is the
conditional probability that the stock 1Is at least éize (s + x) given that the
quantity X has been consumed and exhaustion has not occurred) is decreasing in
x for each fixed s.

We now claim that V(+) is decreasing. To see this, consider arbitrary X
and Xy with x; < X9, and suppose the optimal strategy starting at X9 is
employed starting at X1, that is, starting in X| one used the strategy
c*(x + Xy = xl). Thus the consumption rate as a function of time will be the
same for both cases, as long as exhaustion has not occurred. Hence the total
return as a function of the size of the remaining stock will also be the same
for both cases, and this‘function, which we will denote by v(+¢), will be an
increasing onme. This means [ v(s)F(dslxl) > | v(s)F(dslxz) since

F(slxl) < F(s|x2) for all s. Hence our claim is verified, because
V(xl) > [ v(s)F(dslxl), since the optimal strategy starting at x; will do
even better and V(xz) = f v(s)F(dslxz).

Now, rewriting (12) as

t
-V (x) - v(x)V(x) = Max{[U(c) - aV(x)]/c}
c
it is apparent that V(+) decreasing implies that the function
\
x > [-V (x) + v(x)V(x)] is increasing. Finally, from (13) and the fact that
U is concave, we conclude that c*(') is decreasing, in which case the spot

price is increasing.
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To complete this proof, observe that the case where F(+) is DFR is
similar, while if F(+) is exponential then it is both IFR and DFR, in which

*
case ¢ (*) must be constant. Q.E.D.

We conclude this section be remarking that if F(+) is the exponential
distribution with the parameter v, then the fact that c*(-) is constant
implies, by the differential equation (13), that V(+) is the constant
U(c*)/(a + vc*){ where by (12), ¢* is the constant satisfying

1% * * % LI
U (c”) =vU(c )/(a + ve"). Note that V(x) = U(c )/(a + ve ) is the expected
discounted utility from consuming the resource at a constant rate c* until the
moment of exhaustion. The resource stock uncertainty may thus be viewed as

- . *
raising the discount rate from a to (a + ve').

6. Exploration and Uncertain Discovery of Additional Stock

In the previous section, learning about the uncertain stock size was
accomplished thfough extraction alone; the probability distribution of the
stock size was then updated over time by merely using the fact that the true
stock has to be at least as large as the cumulative amount already
extracted. In this section, exploration is considered as a distinct learning
activity that involves expenditures to search for and discover the existence
of additional stocks.

Suppose X, denotes the stock on hand at time t and the random event
corresponds to the discovery of an additional stock. For simplicity and
consistency with the general model of Section 2, suppose that, unlike our
previous model in Deshmukh and Pliska [1980), only one discovery is possible
and that it will be of a fixed known size z. The random instant of discovery,
T, can be controlled by the exploration effort rate e € [0,e] through the

discovery rate A(e) which is (now independent of x and c¢) assumed to be
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increasing in e, so that greater exploration effort expedites the stock
discovery, and A(0) = 0.

If the stock just before discovery is Xp_ = x, the post-discovery
deterministic problem is that of optimally consuming the total stock
Xp = x + z over [T,»), as in Hotelling (1931). If Q(y) denotes the optimal
value for the post-discovery problem starting with stock level y > 0, then it
can be shown that G(-) is the unique concave, increasing and bounded solution

of the following functional equation, which is similar to equation (1):

- ~r
(16) av(y) = Max {U(c) - eV (9}, vy > 0.
c
(This can be proved by an argument similar to that used in the proof of
]
Proposition (15) to show that [-V (¢) + v(*)V(¢)] is decreasing, so the
details are omitted here.) The post-discovery optimal consumption rate policy

;(y) satisfies, as in equation (7),
(17) U (c(y)) =V (y)

and, by concavity, E(y) is increasing in y with 2(@) = ¢. Analysis similar to
the one leading up to Theorem (l1) yields the conclusion that the post-
discovery discounted price process, %t = exp[—a(t—T)]G'(Xt), te [T,»), is a
martingale. But this is a deterministic problem, so ﬁt must be constant on
[T,») and is given by §T = 6'(x + z). Hence 6'(Xt) = expla(t - T)]G'(x +z), i.e.,
on [T,») the post-discovery price rises at the rate of discount, as in
Hotelling [1931].

In the pre-discovery problem the terminal utility is W(x) = %(x + z) and

the terminal price is W'(x) = V'(x + z). The prediscovery optimality equation
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(1) now becomes

(18a) aV(x) = Max {U(c) - cv'<x)} + Max {-h(e) + A(e)[W(x) ~ V(x)]}, x> 0
c e
with
(18b) av(0) = Max {-h(e) + A(e)[W(0) - V(O)]}.
e

The following result shows certain important properties of V. This result

will also be applicable to the analysis of the case studied in the next

section.

(19) Proposition. The optimal value function V is concave increasing with

G(x) < V(x) <€ W(x)

V(=) = V(=) = W(=)

Vix + z), V'(x) > W'(x), for all x » 0, and

U(E)/a.

0 (so that X = 0) and Hotelling's consumption policy P

Proof. Employing e
(which is, in general non-optimal in the pre—-discovery problem) yields %(x),
so that V(x), the value obtainable with the optimal policy (c*,e*) must be at
least as large as G(x), Similarly, starting with stock x, the best we can
hope for is to obtain the additional stock z immediately without exploration
effort and then consume (x + z) optimally in the Hotelling fashion, thereby
yielding G(x + z) = W(x), which must therefore be an upper bound on V(x).

To show that V’(x) > G'(x + z), rewrite (16) in terms of the optimal

post-discovery consumption policy E(-) as

(20) Vix +2) = [U(elx + 2)) - aV(x + 2))/elx + 2)
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In the pre—discovery problem (18), choosing a non-optimal policy e = 0 and

c(x) = o(x + z) and rearranging yields
(21) V() > [U(elx + 2)) - av(x)]/e(x + 2)
From (20) and (21) we have
[V (x) -V (x +2)] 3 a[V(x + 2) - V(x)]/e(x + 2)

which is nonnegative since V(x + z) > V(x) was shown above. As a consequence,
\i ]
we have V (x) > W (x) » 0.

To show concavity of V, rewrite the optimality equation (18) as

(22) V (%) = Max {{UCc) = h(e) = aV(x) + A(e)[W(x) - V(x)1}/c}
c,e

Since V(+) is increasing and [W(e) - V(+)] is decreasing (as shown above), the
maximand in (22) is decreasing in x. Suppose x; < x,, employ c*(xl) and
e*(xl) in both states x; and X, and compare V'(xl) and V'(xz) to conclude that
Vi(x)) >V (xy).

Finally, with infinite stock on hand the stock discovery 1s immaterial,
the pre- and post-discovery problems are identical, and the maximum
consumption rate ¢ éan be sustained forever to yield the maximum discounted

utility U(¢)/a. Q.E.D.

Thus the random event of stock discovery is favorable not only in the
sense that it yields a higher value (i.e., W(x) > V(x)) but also in that the
resource price drops (i.e., W'(x) < V'(x)).

To consider the pre-discovery price process, note that %% = 0 implies by
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Thoerem (11) that the discounted price process P, = exp(—at)V'(Xt) is a
martingale. Thus, the pre-discovery price is also expected to rise at the
rate of discount just as the post—-discovery deterministic price does.
Furthermore, we have also shown that at the moment of discovery, T, the price
falls, i.e., V'(x) < W'(x) = §'(x + z)., Thus the pre-discovery price rises in
just the right way to compensate for a downward jump at T and then it again
continues to rise, but now deterministically at the discount rate.

Since U(+) is concave and [W(+) - V(+)] is decreasing, an application of
the optimality conditions (7) and (8) to equation (18) enable us to conclude
that pre-discovery optimal consumption rate c*(x) is increasing and the
exploration rate e*(x) is decreasing in the stock level x, as was shown for
our [1980] model that permits an infinite number of discoveries of random

magnitudes.

7. Consumption, R&D and Uncertain Development of a Substitute

In the preceding section, the favorable random event of stock discovery
temporarily relaxed the resource constraint by postponing the moment of
exhaustion. Now consider, as in Dasgupta and Heal [1974] and the subsequent
literature cited earlier, the possibility of an extremely favorable event of
development of a perfect producible substitute that would permanently
eliminate the resource constraint and supposé that the development process can
be expedited through R&D expenditures.

Let X, denote the resource stock level at time t and T be the random time
of the availability of a substitute product. If Xp = X and the substitute can
be produced from T onwards at a known unit cost k, then the post-development
problem is to determine the substitute production rate s, ¢ [0,s] and the

resource consumption rate Ce € [0,c] for t > T so as to maximize
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IT exp(—at)[U(ct + St) —kst] subject to [ ¢ dt = x

If W(x) is the optimal value of this post—development program, the dynamic

progamming argument yields the following optimality equation that is satisfied

by W.
(23a) aH(x) - Yax [U(c + 8) - ks - W (D)}, x>0
with

(23b) aW(0) = Max {U(s) - ks}

S

With an argument similar to that used in the proof of Proposiﬁion (15) to
show that_[-V'(x) + v(x)V(x)] is increasing, it can be shown that W(e) is
concave increasing in the stock level. Hence there exists an Xq > 0 such that
W'(x) < k if and only if x > x43. From the first-order conditions for the
maximum in (23a) it follows that the optimal substitute production rate
;(x) = 0 for x > x, since the cost of substitute production exceeds the
resource price. But Xy must be zero. To see this, suppose X, > 0. The
first-order condition at x € (O,xo) yields for optimai policies E and ;,

U'(c(x) + s(x)) = W (x) = k, so that W(x) = W(0) + kx on [0,xq]. But (23a)
implies aW(x) = Max {U(c + s) -ks - ke}, a constant, yielding a

c,S
contradiction. Hence, Xy = 0, in which case (23a) reduces to

(24) W'(x) = Max {[U(c) = aW(x)]/c}, x>0
c

which is similar to (16) of the previous section; for x = 0, (23b) holds.
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Thus the post-development optimal value W(*) is concave increasing with

W'(0) =k, s(0) satisfies U (s(0)) = k, and for all x > 0, s(x) = 0 and

;(x) satisfies U'(;(x)) = W'(x) > k, so that E(x) is increasing in the stock
level x, with E(O) = 0.

The pre—-development optimal value function V() satisfies equation (18)
of the previous section, so proceeding exactly as in Proposition (19) we
conclude that V(+) is concave increasing, V(x) < W(x) and V'(x) > W'(x). Thus ;
the substitute development is a favorable event in the sense éf yielding a
higher value and a lower resource price. Again, concavity of V(e¢) and
monotonicity of [W(¢) - V(¢)] implies that optimal pre-development consumption
and R&D policies, c*(~) and e*(-), are monotone (respectively increasing and
decreasing) in the stock level, as in the previous section.

Since g% = 0, Theorem (11) again permits us to conclude that the pre-
development resource price, V'(Xt), is expected to rise at the rate of
discount. At the moment T of the subsitute availability the price drops to
W'(XT) < V'(XT). Then it continues to rise at the rate of discount until the
stock level depletes to zero and then on remains constant equal to

W (0) = k. See Dasgupta and Stiglitz [1981] for more details and

interpretations.

8. Conclusion

Hotelling's [1931] fundamental characterization of the price of an
exhaustible resource in the deterministic case has been recognized as
important in a variety of situations involving uncertainty as well. Our
objective has been to study the generality of this phenomenon within a unified
framework. Toward this end we have developed a“geﬁeral model of a
nonrenewable resource decisions involving uncertainty and provided a complete

characterization of the stochastic price process in terms of martingales. 1In
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particular, we have identified necessary and sufficient conditions under which
the resource price is expected to rise at a rate equal to, less than or more
than the rate of discount. The stochastic analog of the Hotelling rule is
shown to be valid only under very special circumstances, namely when the
distribution of the uncertain timing of the event does not depend on the
resource state or when the event is payoff-irrelevant. The first condition is
seen to hold in two classes of situations studied in the literature, namely
when discovery of additional stocks and development of a producible substitute
are uncertain events of interest. On the other hand, in the case of
exhaustion of an uncertain stock, the expected price may rise slower or faster
than the rate of discount depending upon the stock size distribution. Even in
the case of stochastic discoveries, in light of our analysis, one could
envision situations in which the resource price rises faster or slower than
the discount rate if, for example, more resource stock on hand expedites (or
slows) the discovery of an additional stock, possibly due to a positive (or
negative) externality resulting from better information about the location of
reserves or if a part of the resource stock energy is itself used in the
exploration activity; we have not examined such situations in detail.

In the process of illustrating our general model and the characterization
of the price process, we have also provided a brief review of the related
literature. In each case we have shown the price behavior prior to, at the
moment of, and after the occurrence of a particular random event. We have
also shown how the jump in the resource price at the moment of event
occurrence completely determines the monotone structure of the pre-—event
consumption and exploration policies in a meaningful way. Finally, we have
indicated for the three cases studied here how, unlike our counterexample in

Deshmukh and Pliska [1983], one can unambiguously define an event as being
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favorable or unfavorable in terms of both the optimal value and the resource
price at the moment of its occurrence.

Our general model and analysis could be extended in several directious.
First, it should simultaneously permit occurrence of several types of random
events including stock discovery, substitute development and sudden
exhaustion. Secondly, it should permit several occurrences of random events
such as multiple stock discoveries (as in Deshmukh and Pliska [1980]) and
sequential development of partial substitutes. Thirdly, the event occurrence
times should be permitted to depend not only on the current resource state and
decisions but also on the past history (such as cumulative stock discovered or
cumulative R&D expenditures) and certain environmental factors that may
expedite or delay the event occurrences (as in our model in Deshmukh and
Pliska [1983]). Unfortunately, analysis of such a comprehensive model appears

to be a formidable undertaking.
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