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One of the main purposes of the theory of perfectly contest-
able markete and gustainable prices, summarized in Bzumol, Panzar and
Willig (1982) is to determine the nature of sustainable prices. Prices
are sustainable if any potential entrant by charging lower prices will
suffer a loww. A central issue is then under what conditions will a
"weak invisible hand' result hold, i.e., under what conditions will
Ramsey prices be sustainable for a multiproduct monopoly? 1In fact under
the assumption of a natural (generally) multiproduct monopoly conditions
were presented, see Baumol, Bailey and Willig (1977), which lead this
firm to use efficient (or second best efficient) prices which deter entry.
Thus as in the theory of perfect competition there would be a (second
best) efficient allocation of resources without the aid of outside inter-
ference or governmental regulation. The purpose of this paper is to study
the nature of the prices which sustain a multicommodity natural monopoly.
Intuitively it is clear that prices which are cross subsidizing cannot
in general be sustainable. 1In the case of separable cost functions,
average cost prices are the only non-cross subsidizing prices. Indeed
it is shown in this case, with no restrictions on the demand functions,
that any sustainable prices must be average cost prices and thus in general
not Ramsey prices which are cross subsidizing. It is argued tnat thn
conditions of Baumol, Bailey and Willig (1977) guaranteeing that Ramsey
prices are sustainable, are very restrictive. In fact we show that these
conditions are not consistent in the separable cost case.

The paper is organized as follows. First it is argued that the
notion of partial entry sustainability (which is used by Baumol, B:iley

and Willig (19%7)) is in general not acceptable unless all goods are



weak gross substitutes. Next it is shown that in the separable cost case

{with arbitrary demand functions} the only custainable prices zare

average cost prices. Ramsey prices are then examined as candidates

for sustainable prices. As already mentioned it is argued that Ramsey

prices might be sustainable only in very restrictive cases. Finally

a necessary and sufficient condition for sustainability is extended

from the single product case to the multiproduct nonseparable case.

This condition is that the average cost curve cuts the demand curve

from below at the last point of intersection. For this purpose, average

cost prices are extended to the general multiproduct nonseparable case.
We shell now state the definitions of sustainable prices as

given by Panzar and Willig (1977) (see also Baumol, Bailey and Willig

(1977)). Consider a monopoly producing n infinitely divisible goods

and facing a vector Q(pl, ey pn) = Q(p) = (Ql(p), ey Qn(P)) of

inverse demand functions. Here‘pj € Ei is the market price of good j.

Suppose that the monopoly uses the technology expressed by a joint sub-

additive cost function C:Ei - Ei (i.e., C(y+z) < C(y) + C(z) for each

y, z € Ei) where C(y) is the minimum cost of producing the output vector

ysEi.

venote hy ¥ = {}, ..., n} the sct of all gonds and let 5 T ¥

ke a subset nf N. Ler s denote the number of goods in S (or the

S . S
cardinality of S) then, for a given S & N, ¥y (or similarly Q7 (p)) and

pS are vectors in Ei denoting quantities and prices, respectively, of goods
. S S
in S. For S = N the subscript S is omitted. Thus y~ and p~ are the

projecticns of y and p,respectively, on E.. For convenience the 2ota-

Q . 1 . 3
tion z|y® with y,z € En, will sometimes be used to denote the vector
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S W\S . .
(vy7,z ) where N\ S denotes the complement of S5 with respect to X,

. . S N\S , . )
i.e., both zIV and (ys,z ) are the vector 2z except that the coordinates

,ON\S

~

in S are replaced by yp. The convention that C(ys) = C(yS ) = C(O}ys)
will also be used.

Consider a potential entrant having access to the same technology,
expressed by -the cost function C(y), as possessed by the monopoly and
incurring zero entry and exit costs regardless of the goods and quantities
produced. The entrant may produce any vector of quantities §S of any
subset S € N of the goods at price ﬁs. Panzar and Willig (1977) con-

sidered two types of entry behavior and their corresponding sustain-

ability concepts. The first one is partial entry sustainability.

Definition Sustainability against partial (quantity) entry. The price

veztor p is PE sustainable if every triple (S,§S,§S) satisfying

- ~§ =S
(D) P <P
and
~5 S ,~S _N\s
(11) y < Q(p,p )

also satisfies,

~S~S ~S
p’y" - C(y") <0

Conditions (I) and (II) describe the behavior of a partial
(quantity) entrant. For the goods in S, prices are offered which are not
greater than these already prevailing in the marker (conditinrn I). At thesa

prices anv quantities up to those determined by the market demand func-

) ) ~S ,
tions evaluated at the new (lower) prices p", for goods in S and the pre-

\
vailing prices EN S,for the rest of the goods (condition II) may be sold.
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Thus, E_is PE sustainable if a potential entrant cannot anticipate

positive profiis by leowering some or all of the market prices and
supplying only a portion of the demand. Mirman, Tauman and Zang (1983)
have shown that any PE sustainable prices can be derived as a result of
a Bertrand-Nash equilibrium of an economy consisting of many potential
multiproduct firms.

The second sustainability concept is weaker and specifies that
entrants must supply the entire market demand generated by the lower

prices they offer.

Definition Sustainability against full (quantity) entry. The price

_ ) .S . ) )
vector p is FE sustainable if every triple (S,y ,ps) satisfying (1)

and
(i11) v? = Qplp)

also satisfies,

5555 —cE® <0

Clearly, PE sustainability implies FE sustainability. Moreover

under the following assumptions any FE sustainable o»rice vector is PE

susta_n.ble.

Assumptions

(i) The cost function C is twice differentiable on Ei\{O} and ng <0,

for any £, j€N.



(ii) TFor each jeN, Qj(-) is differentiable on Ei\{O}.
3Q.

{iii} The gnods in N ave weak gross substitutes, narely :—l-» N, for
oD —

H

=

Proposition 1 Under Assumptions (i), (ii) and (iii), an entrant

c e . . ~S
maximizing profits can select a subset S C N, of prices p~, such that

- - - N
p < pS and will produce the entire demand QS(pS,EN S).

Note that a result similar to Proposition 1 was obtained
by Panzar and Willig (1977) under a different assumption. HNamely,
assumption (iii) is replaced by declining average incremental cost
(DAIC). Proposition 1 implies the following corollary and will be

proved in the appendix.

Corollary Under Assumptions (i), (ii) and (iii) any FE sustainable

price vector is PE sustainable.

It should be mentioned that the definition of PE sustainbility
in the case in which outputs are not gross substitutes, suffers from a
severe problem. Since the entrant is not required, under PE sustainability,
to supply the entire demand resulting from the new prices, the demand might
be manipulated by announcing low prices for goods not produced. TFor
example, conusider a market consisting of two complemeniary goods, C.5-,
gasoline and cars. Suppose that the cost of producing these two goods
is separable (namely, there is no joint cost) and that the average cost
of producing cars is declining. Clearly, if an entrant announces a
near zero price for gasoline together with a minor reduction in the
price of cars a higher demand for cars will resuit. Thus, the average

cost of cars at the new demand will be lower and the entrant will make



a positive profit. Hence, as long as sustainable prices are considered,
1t seems necessary to require that an entrant be required to produce ite
entire demand of the goods offered at reduced prices.

Next we observe that in the case in which the cost function

C is separable only average cost prices can sustain a monopoly.

Proposition 2. Assume that the cost function and the demand function
are both continuous on Ei\{O}. Further assume that C(-) is separable.
Namelv,l/
n
C = z C.(y.
(¥) R yJ)
j=1

. - n . . .
Then a price vector p € E+ which is not the average cost price vector

at the corresponding demand Q(p) cannot be FE or PE sustainable.

Proof. The proposition is trivial if pQ(p) < C(Q(E)). Thus
assume that E'at least covers the cost. Hence, since E is not the average

cost price vector there exists;an £€N such that,
P, — C(Q()/Q () > 0

By the continuity of both C2 and Q2 there exists a ﬁg < E@ such that

S —x A Tl -
', ~ 0, (0 (BP0 /C (BIp) > 0

e
Thus

P,Q, (Plpy) - ¢, (Q(®lp)) > 0
1/ _ . .
~'Here Cj(O) = 0, although 1lim C,(y.) can be positive.

.
YJ 0



Consequently a potential entrant, by choosing to produce just the £-th
comm~dity at the price ﬁﬁ, guarantees icself a positive profit.

To discuss the relationship between average cost prices and
Ramsey prices let L be the total labor available in the market which

is allocated to production and let R be the amount of leisure. Then
(€Y c(@Q()) +R=1.

The Ramsey problem is to maximize, over output prices, an indirect
social welfare function V(pl, e, pn,R) subject to the constraint

(1) and subject to a cost sharing (or fixed profit) constraint

m(p) = pQ(p) - C(Q(p)) = 0 .

Under the assumption of redistribution of income a Ramsey

price vector p¥* obeys, for some A > O,

* - MC.
P 3

AR, - MC,) if y% > 0
i » O, j 73

* - MC, < -A(MR, - MC,) if y* =0
P - J ] 7

Thus, if for example the labor supply has zero elasticity, namely just
a fixed quantity of labor is offered in exchange for the monopoly's
producis, then MRj = 0 and it follcwe that a Ramsey price vactor is

proportional to marginal cost prices. Namely p* satisfies

(2) a MCj(Qj (p*)) = pi

~k’ . ¥ >O’
b Qj(p)

where o is determined by the cost sharing constraint

) . aQ(p*)IMC(Q(p*)) = C(Q(p*))



In general (2) and (3) 1is a system of n+l equations in
nt+l variables o end p?, .. .. p* and yields a diffcrent solution than

the S y stem
AA ) . % = 7:: s . ( * > O

Therefore when considering the separable cost case (and general
demand) in view of Proposition 2, it is unlikely that Ramsey prices
are sustainable. In the more general case where MR + 0, Ramsey
prices depend on the demand structure even more strongly, and hence
it is even less likely that in the general case Ramsey prices will
result in average cost prices.

The above discussion is not compatible with the weak invisible
hand theorem of Baumol, Bailey and Willig (1977). They state sufficient
conditions which guarantee that Ramsey prices are sustainable. Examining
their conditions one is led to the conclusion that their assumptions
are very restrictive. Indeed\two of their conditions on the cost

structure namely, strictly decreasing ray average cost,
Clyy) < yC(y) , for y > 1,
and the transray convexity assumption
Coyt + (1-n)yd) < ach + A-0CE , 0<a <1,

are contradictory when they are assumed globally and when the loag run

2
cost function C has a zero fixed cost component (i.e., C(0) = O).:/ The

2/ . . .-
—/Slnce a monopoly which does not use the best technology available is
not sustainable, it follows that the function C must be the long run

cost functi’a and in this case C is continuous and C(0) = 0 if a
plausible requirement.
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reason is that when y2 + 0, transray convexity yields the inequality
1 1 . . . 1 1
C(Ay™) < AC(y7), 0 < x < 1, which is equivalent to C(yy~) > yC(y"), for
Yy > 1. But the last inequality contradicts the strictly decreasing ray
average cost property. Baumol, Bailey and Willig (1977) have noticed this

problem (see their foonote 14) and thus required the transray convexity

of C not on Ei but on the hyperplane,

. T i
H={y € En - 3 % L= - — *)yk}
y € E| oy (*)y 5 55, (y*)y3

where 7 is the monopoly profit as a function of the quantities y

(not prices), i.e., 7(y) = p(y)y - C(y) and y* is a Ramsey optimal

. . aT . . .
vector satisfying Sy (y*) < 0. This, together with basically two
3
other requirements:

I. 7 is strictly quasi-concave over the potentially profitable set and

5 am

-
:
7

5y

- (yF)y. < - T
yj J 3
the potentially profitable set,

II. The half space {y ¢ Eii -z (y*)yg} contains

~
[¢]

yield their result. Clearly these assumptions crucially depend on the

location of the Ramsey optimum vector y* and are thus very restrictive.

Furthermore, in the separable cost case (i.e., C(y) = I C.(v.) with
j N
C(0) = 0) even if the transray convevity is Iimposed locally. namely, just
on H, a contradiction results. Indecd, define
om 3
(y*)-y*
C €N 3y . j
= J J .
Y. = s JEN s
J i (y%)
3y.
yJ
and let 23 = yjej where 2, is the {7 -th unit vector »f z. Cl=arly
i 1

z3€H and thus 3 I zIE€H. By the transray convexity of C,
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ek oz o2 <L s o
) O U —no,
1EN j¢N

By the strictly decreasing ray average cCOSt

. 1 . .
C(% z zJ) > E»C( rozd)
jeN jeN
Hence
%) oc(zd) > c(z zd)
JEN JjeN

But by the definition of zJ and since C is separable,
iy = - e 3
I C(z”) = I C,(y,)=¢C(Z z)
JEN JEN J 7 JEN

contradicting (4).

Finally Brock and Scheinkman (1983) introduce the notion
of quantity sustainability. They show that under a well behaved
demand function, price sustainability implies quantity sustain-
ability. Moreover, it is possible that a quantity sustainable
price vector yields positive profits to the monopoly. Hence even
in the separable cost case quantity sustainable prices are not in
general sverage cost prices 2s 1s the case for price suscaznabilicy.
Thus it is more likely for a weak invisible hand result to held when
the notion of price sustainability is replaced by the notion of

quantity sustainability.
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Returning to average cost prices, the following is a necessary

and sufficient condition fcr an average cost price vector to be sustainable
C.(y)
if costs are separable. Let ACj(y) = —4§——-be the average cost of produc-

ing the quantity y of good j.

n
Proposition 3 Let C(y) = L Cj(yj) be a separable cost function
j=1
such that for each jeN, ACj( ¢ ) is nonincreasing and Cj(-) is centinuous

QE_Ei\{O}. Let B-be a cost sharing price vector (i.e., EQ(B) = C(Q(E))).

Then the condition

(5) Pigépj

| A

A%(Qj(P)) s JEN,

is necessary and sufficient for p to be PE sustainable. Moreover,

if outputs are weak gross substitutes then (5) is also necessary

and sufficient for p to be FE sustainable.

Proof Sufficiency Since p is a cost sharing price vector, condition

(5) implies that

Py = AC, (Q (p))

It will be shown that B.is PE sustainable (and hence also FE sustainable).

~S ~5, . - -S
Suppose an entrant chooses a triple (S,ys.p ) sucn thez 5 C© N, ps < p
N -8 =N\
and yS f'QS(pS,pN S). Then by (5) and by the separability of C,
~SAS ~S ~S —N\S., =~ ~
Py -Cl) < T [ACj(Qj(p P )) Yy - Cj(yj)]

je€s
. . 1
Thus, since ACj(yj) is nonincreasing on E+}{O},

~5-5 ~S
py" - C(y) =<0
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Necessity. It will be shown that if ﬁ 2 5 and if for some R¢X,

(6) P, > ACQ(QZ(P)) )

then E cannot be PE sustainable. 1Indeed if an entrant chooses S = N,
the price vector p and y such that §j = 0 for j+2 and §2 = Qﬂ(ﬁ) then,

py - C(y) =
j

e 3

l[pjyj - Cj(yj)J = szz(p) - Cz(Ql(p))

Thus by (&),
py - C(¥) > 0,

and E is not PE sustainable. If the goods are weak gross substitutes

then Corollary 6 implies that 5>is not FE sustainable.

Remark. It follows as an immeidate consequence of Proposition 2 that the
average cost price vector of any linear cost function is always sustainable.
To illustrate Proeposition 2 consider the one dimensional case.

Consider a monopoly producing one good with a decreasing average cost
production technology expressed by the cost function C(y), and facing

a negatively sloped demand curve P(y). Figures 1-4 describe four

typical situations. In Figures 1 and 2 there is only one equilibrium

cost sharing price Py and Pys respectively. However, while Py is sustain-

able p, 1s nct, since one can seiect & price p < p Froduce y and. since

1°
the average cost curve lies below the demand curve for p < Py, make po~itive
profits. If, however, the situation is as described in Figure 2 then, since
AC is above P(y) for p < p2, any price reduction will encounter losses. In
Figure 3 there are two equilibrium cost sharing prices of which one, P>

is sustainable while the other, p3, 18 not. A diffeient situarien is
depicted in Fi.;ure 4. Here neither Pg NOT P, are sustainable. While

this is a clear cbservation for Pg>s note that p5 is locally sustainable

against price reductions that keep prices above Pg- However, if the



Price

F(y)

\ AC

-13-

Price

\ P(v)

2"——-_
Quantity T Quantity
v Y
Figure 1 Figure
Price
P Price
P (y) F Py
AC
AC
e . P —
P3 )
!
L - — P
P4 6
) Quantity vy T Quantity
Figure -: Figure & ¥



monopoly sets Pg as its operating price an entrant can cut its price
below D¢ mekirg positive profits.

Our next goal is to extend Proposition 3 to the general
case in which the cost function is not separable. First the
average cost notion is extended to the multiproduct case so that
average cost is defined for each output produced by a multiproduct
firm. The axiomatic approach to cost sharing prices due to Mirman and
Tauman (1982) is extended to this case.g/ This approach uses some-simple
properties of the average cost for the single produce case as a basis for
generalizing the notion of average cost to the multiproduct case.

Denote by AC(C,y) the average cost of producing y units of

a single output with the technology expressed by the cost function C(-).

Clearly AC(C,y) = E%;lg y # 0, and has the following four properties.

I. Cost Sharing. yAC(C,v) = C(y) for each y € Ei.

ITI. Additivity. Suppose that the cost function C can be broken into
two components say CP the cost of production and C2, the cost of
marketing (i.e., C = Cl + C2). Then, for a given guantity, the average
cost is the sum of the average production cost and the average mar-

1
keting cost. Thus, for each y € E+,

AC(C,y) = AC(Cy,y) + AC(Cy,y).

ITI. Positivity. If increasing precduction results in higher costs then
the average cost is nonnegative. Namely if C is a nondecreasing

function then for each y € Ei,

AC(C,y) > O

3
—/A similar axiomatic approach was independently suggested by Billera and
Heath (1982).



IV. Rescaling. The average cost is independent of the units of measure-
ment. Suppose that C is a cost function of producing an outpur

measured in kilograms. Let F be the cost of the same product but

measured now in tons. Clearly
F(y) = C(1000y)

Then the average cost per ton AC(F,y) is 1000 times the average
cost per kilogram, AC(C,1000y). In general if X > 0 and F(y) = C(iy)

then
AC(F,y) = MAC(C,xy)

These four properties of the average cost for the single product

case can be used as the basis of an extension of the notion of average
costs in the multiproduct case. Indeed, it seems natural to require that
these properties be satisfied for any multiproduct extensions of average
cost prices. Let C be the cost function of a multiproduct firm, i.e.,

C:Ei > ET

4 Our purpose is to define the average cost price of each out-

put in the general case where C is not separable. Namely, to define

n .
for each y € E+ a price vector,
AC(C,7) = (aC (C,y), +vvy A0 (7,3))

where AC, (C,y) measures the average cost of producing the
N

j-th output. This task is accomplished by using the above four properties

as axioms:
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. A n 1 N Il
Axiom 1. Cost Sharing Let C:E_ ~ Ej. Then for each v € £

n
T . AC,{(C,v) = Ci
t Y5 AL, v) y)

Axiom 2. Additivity If C, Cl and C2 are three real valued functions

n
on E+ such that C = Cl + C2 then

AC(C,y) = AC(C,,y) + AC(C,,y)
Namely for each j, 1 < j < n,

AC.(C,y) = AC. s + AC. (C,,y
5(Coy) = AC (Cpy) + AC;(S5,y)

Axiom 3. Positivity If C:Ei -> Ei, y € Ei, and C is nondecreasing
for all x < y then,
AC(C,y) > O
Axiom 4. Rescaling Let C:Ei > Ei and let X = (kl, ey, Xn) be a vec-

tor of n positive numbers. Define F:Ei - Ei by

F(yl, ceey yn) = C(Alyl’ sy Xnyn)
Then for each jeN,
AC, (F,y) = &, AC.(C,\*y)
AC (Foy) = ay acy( ’
where A%y = (Alyl, A2y2, cees Xnyn).

For the multiproduct case another natural requirement is needed

to connect the single product case with the multiproduct one.

It is required that two (or more) commudities which are “tho same" should
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have the same average cost. Since average cost prices depend only on

the cost functicn it is clcar that being "ths same commcditv' means
playing the same role in the cost function. As an illustration consider
the production of green and vellow cars. One can represent the cost of
producing ¥, 8reen cars and Yo yvellow cars as a two variable function
F(yl,yz). But, in fact, the cost of producing a green car is the same

as the cost of producing a vellow car. This can be formulated as follows.
There is one variable function C for which C(y) is the cost of producing

a total of v cars (green ones, yellow ones or both) and

F(Yl,}’2) = C(yl + >72)

In this case we require that the average cost ACl(F,(yl,y2)) of a green
car is the same as the average cost ACO(F,(yl,yz)) of a vellow car which

is the average cost AC(C,y) of car, where y = Yy + Yoo In general,

) 1 .
Axiom 5. Consistency Let C be a function on E. Let F be defined

I
on E+ by
F(yl, ey, V) = C(
n
Then for each y = (yl’ chey Yn) € E+
AC (F,y) = AC,(s,y) = ... = AC_(F y) = aCiC, T y.)

Having in mind that the above five requirements should be
satisfied for any average cost pricing mechanism, it is quite natural

to look for one satisfying the axioms universally for a wide family

cost functions. It turns out that tnese five axioms characterize such

a mechanism uniquely for many families of cos: functions.
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Theorem 4 (Mirman-Tauman (1982)) Consider the class of all continuously
. . . - n . - . ,
differentizble cost functiors C cn E, with C(0) = 0. Then there exists

a unique average cost pricing mechanism AC(+,-) satisfving the above

five axioms, and given byv

1.
AC.(C,y) = ( g%i-(ty)dt , 3 =1, ..., n
J Jo }j

This pricing rule is called the Aumann-Shapley (hereafter AS) price
mechanism. It can easily be shown that the AS prices coincide with
the average costs if C(y) is separable and coincide with the marginal
costs if C{(y) is homogeneous of degree one. For an extensive study of
this pricing rule and its extension to even larger families of cost
functions see Mirman, Samet and Tauman (1983), Samet and Tauman (1982)
and Samet, Tauman and Zang (1983).

Next, it is shown that Aumann-Shapley average cost prices
can be used to derive a sufiicient condition for sustainabilitv in the

multiproduct case.é/

Proposition 5 Suppose that the cost function C satisfies assumption

(iii) (di.e., Cij < 0). Let g.be a cost sharing price vector (i.e.,

PGPy = C{QG)). If

1
- . 5C ,
(7) p < p implies P j_J g; (tQp))dt , 3 =1, ..., n,
0 73

then E-is PE sustainable. Moreover

— B —
(8) p. = J 5y (£Q{ps)dt
0

J

4/

—' The existence of Aumann-Shaplev average cost prices as sustainable prices
is studied by Mirman, Tauman and Zang (1983a) and by Spulber (1983).
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Clearly condition (7) 1s the extension of the single
commodity condition (53) requiring thet demancd be balow averace cost
whenever prices are below p (a point where the demand curve intersects

the average cost curve).

Proof. Equation (8) follows by (7) and by pQ(p) = C(Q(p)). Let us

prove that condition (7) is sufficient for E to be PE sustainable. Con-

~S -~ ~S5  — . . \
sider a triple (S,ys,ps) such that ps i»ps and yS i}QS(pS,BN S). Then
the entrant's profit is
1
~§+S ~S ~S~S - 3C ~S
py -Cy)y=py ~-I vy, f §L—-(ty Ydt
jes I o Y5
Since C,. < O,
lJ—
1
~S-S ~S ~S~8 ~ [+ 5c S, ~S —N\s
poy. - C(y?) <py - I y. J 5; (tQ7(p7,p" T))dt
jes I 0 5
S-S 1 3C ~§ -N\S
~Gn A 3 .
<Py - < Y. J 5 (eQ(p~,p" 7))dt
jes I o Y5
-§ —N\sS — "
Now since (p~,p ) < p, by (22),
~S~S ~S ~S+~S ~ A
py - CH™) <py - I p.y.=0
jes 373

Thus p is PE (and hence FE) sustainable.

It should be mentioned that while condition (7} 1s sufficient
for sustainability it is not, in general, necessary. Notice however that
the following weaker condition is necessary for a price vector E_to be

sustainable

lf\ .
(9 p<p =y 5jo -« ende 5=,

I
dc

{3}
J

Indeed, if for some j, pj > J



-20-
1

3¢ ('3 pyrar = c@tI oy
0 ;3

Pij(P) > Qj(p) J
This means that an entrant can make a posiclve profit when prouducing the
j-th good for the price pj below 55. Note that conditions (7) and (9)
coincide for separable cost functions. Hence these two conditions which
are respectively sufficient and necessary for E_to be sustainable are
extensions of the necessary and sufficient condition (5) to the general
nonseparable cost function. Finally, it should be mentioned that the
sufficient condition (7) which generalizes Proposition 3 cannot be applied
to cases where the demands are separable. However, it can be applied in
the nonseparable demand Case,éj Furthermore any generalization of Proposition
3 obtained using any extension of the average cost prices to the nonseparable
cost case will not be applicable to cases where demands are separable.

This means that the following generalization of Proposition 2 will be

applicable only to those markets possessing nonseparable demand functions.

Proposition 5* Let AC(C,y) be an arbitrary extension of the average cost

pricing rule to any cost function C (not necessarily separable). Assume

that Cij < 0 and that ACj(C,y), j=1, ..., n, are decreasing functions

of y. Let E_be a cost sharing price vector (i.e., pQ(p) = c@(p))).

Then the ccndition

(7%) p < p implies P, j_ACj(C,Q(P)) » L<j<n,

is sufficient for E_to be PE sustainable.

The proof of Proposition 5% is carried out along the same lines

as the proor of Prcpositioun 5

5/

~"We would like to thank D. Spulber for pointing this out to us.



-21-

Let us show that condition (7%) is never satisfied by any
separable demand function. Iadeed if G{p} = (Ql(pl?, e, Qn(p“)) then
tl

for each k, j

0AC 8AC 9Q,

k _ k
op. 3y 3p.
PJ Y3 PJ
JAC an BACk - .
Since < 0 and < 0, then > 0. Now let p = (p cee, P p)
. 9p. > 3p. 1’ > -1
ayJ PJ B PJ IAC n-1 n
have the property that P < p_- The inequality 3D < 0, Condition (7%) and
J

the fact that E_is a cost sharing price vector imply that

p; < AC,(C,Q(p)) < AC (C,Q(p)) = Py

which is a contradiction, establishing our claim.

Finally note that when demand 1s nonseparable it is likely that

3AC -
(10) = (C0G) <0
J
Indeed
BACk . n aACk an
. L. 5y, @p
3 i=1 i 3
aACk 30,
and < 0. However, if goods are gross substitutes - = 0 for each
9y, - N 3p.
i n SALR 0Q. i
i # j. Hence the sanmaticn T . " 3 = cousisce of n-1 negative sumnands
=1 %4 P 5AC,
and one which is positive, thus it is possible that (C,Q(p)) < 0.
3Q, N
In the case of separable demand functions 553-= 0, 1 + j. Hence the cross
]

effects do not make any contributions--only the own effects are present.

Thus in the separable demand case the inequality in (10) is reversed.



Appendix

This appendix contains the pioof of Pronosition 1.

Proof A maximizing entrant will selve, for each S € N and each
S . s =S .
p,with p° < p, the following problem,
S S S
(A.1) max y p - C(y") ,
S

subject to,

ys >0,
and
S, S —N\s S
Q(P,P )—y>o

. —S
The result is the maximization of profit over S € N and over ps <p .

Assume that an optimal sclution of the entrants prcblem is a set S C N
. ~S =S . ~S —
and a price vector p~ < p . Then, for the given € and p”, the Karush-

Kuhn-Tucker necessary optimality conditions for the maximization

problem (A.1) are

fs 9SeySy e S-S -0
S8 = 0
(A.2) g, 5,~5 —N\S S
vI(@Q (pT,pm ) - y) =0
S S



. . ~S —N\S
Now, if for some j€S, 0 < yj < Qj(p D ), then by(A.Z),uj = vj =0
, . 3C .S . . e
2nd hence p. = = (7). In this cese by shifting Tron 7. to
3 o). N -]
N\ J : .
Q (p P ) the entrant cannot make less profit. Indeed in this case

the profit of the entrant changes from ﬁsys - C(ys) to

. 55 Su\s S| S —\S
L Ly
e Pa Yt - (5P )Q; (37,97 7Y -~ CGTIQ (TR )
&7] ¢

Thus the change A& in the profit is

~§ —N\S 3C
A=——(y)Q(p,p ) " 5y —<c<y1Q<p, ) - ey
7 h|
§ —N\s aC S
=i<>[Q<p, ) -y, P )-y))[Q(p, >—y]
3y. J 5y .
J J
for some #, 0 < a < 1. Therefore by Assumption 1), & > 0. This
proves that for each j€S, the optimal yj is either zero or
~S w\s . t
Q (p7,p ). Suppose now that S can be broken to Sl and S, such
J Z
that the optimal solution of (A.1) is
S S S
1 1,~8 —N\s 2
y > =Q " (php ) and y " =0
Now, by Assumption (iii)
S, S, N\s S, S, S
1,~71 ~— 1 1,-71 .°2 —N\s
(4.3) Q “(p 7,p > >0 7 T,p T )
AS1
Hence the entrant b/ selecting Sl, instead of &, and p © will make at least
S S
as much profit as with S and ﬁs, since by (A.3)y Lo Q l(ﬁs o S) may

still be selected and with ;S the same profit made. On the other

. . ~S . S .
hand since S together with p~ 1is optimal it is not possible to make
SL S S, =
mere profit under S, and p ©. Hence by selecting Sl, P and U " {p

the entrant m:ximizes profit, as claimed. Finally, notice that S, might be

1

empty in which cases the prices p are PE sustainable.

b
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