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CAPITAL ACCUMULATION GAMES OF INFINITE DURATION

1. Introduction

The main purpose of this paper is to investigate a class of games in
which each player accumulates some form of capital. The payoff of each player
depends on his own capital and the capital stocks of his rivals. Changes in
stock, however, are not instantaneous. The firm can invest in the capital
stock and it deteriorates at a certain constant proportional rate. Each
player thus chooses a path of investment and thus an induced path of capital
accumulation so as to maximize his total discounted profits.

The first issue in such a game is the problem of existence of paths which
form a Nash solution, i.e., given the paths of the rivals, the firm's strategy
is the best response for these paths.

When the existence issue is solved, the main issue is whether such
markets have a stationary equilibrium and whether the market will converge to
the stationary point. It is straightforward to show that even if a stationary
equilibrium path exists, in the finite horizon case the market will not
converge to the equilibrium point. Thus the issue of convergence necessitates
introducing infinite horizons. 1In order to clarify the economic situations of

our games, the following are examples that fall into our general class.

Example 1: Durable Good Production:
Consider a market for a durable good. The rental price p is a function
of the total stock in the market. Firm i can change its stock of durables,

Q;(t), by producing x(t) units at time t and its stock depreciates at a

constant rate of 6. Thus its equation is Qi = X5 - 6iQi' Its revenues at

time t are given by p(Q; + QZ)Qi and its cost of production is C;(x).



Example 2: Advertising and Goodwill:
Consider a market in which the firms accumulate goodwill G; according to

the Nerlove-Arrow equation Gi = a; -~ GiGi, were a; is the advertising
investment and Gi the depreciation due to forgetting and other reasons. Sales
of firm i will be some concave function of its relative market share. Price
will be determined by a Cournot type solution. Thus the revenues of firm i is
given by fi(Gi|ZGj) for some concave function f;. This example is dealt with
separately by tie authors (1982).

This work is an extension of two separate lines of research: capital
accumulation and differential games.

The capital accumulation literature began with the seminal paper of
Nerlove and Arrow (1962) where they defined the capital accumulation equation
which is used here. Arrow (1964, 1968) has generalized his original findings
by considering two extensions: the first considers a general decay which is
not necessarily exponential, and the second considered a nonstationary
economic environment. Gould (1970), by considering the model of Nerlove-Arrow
with strictly convex cost has found that for any initial value of the stock of
capital, there exists an initial investment such that the induced capital path
converges to a stationary point.

At the same time a whole stream of related research began investigating
the stability properties of capital accumulation growth models. In
particular, the interest was in finding conditions under which a capital
growth system would converge to a particular stationary point regardless of
the initial conditions. Such a system was defined as having the giobal
asymptotic stability property. See for example the special issue of JET
(February, 1976) and in particular Cass and Shell, and Brock and Scheinkman.

The common type of condition that relates these works is that more than strict



convexity (concavity) is needed.1
We are interested in extending the issue posed by Gould. His type of

stability can be denoted by conditional stability which is weaker than global

stability since the path converges just for a particular initial condition of
investment. In our game global stability is ruled out since it can be shown
that the game does not even possess local stability. We do, however,
investigate the issue of conditional local and global stability.

In terms of differential games, we choose to formulate an open loop
solution although it has known limitations; see Spence (1979) or Kydland
(1977). The closed loop solutions, however, are known to exist only with
severe limitations on the structure and duration of the game, for example,
Reinganum (1982).

For open loop differential games, Scalzo (1974) first proved existence
for any finite duration. Proofs of existence prior to this were known only
for "small” duration. Scalzo's work has been extended by Wilson (1977) and
Williams (1980) to games with incomplete information and by Scalzo and
Williams (1976) to games with nonlinear state equations. All three extensions
dealt with the finite horizon case.

Thus, in terms of contribution to differential games we first provide a
simpler proof for a setting similar to Scalzo. Then we extend this result by
proving existence to the infinite horizon case. Third, because of our method
of proof we are able to show the convergence to a stationary equilibrium

regardless of the initial stocks of capital.

2, Formulation
We consider a game G with two players where the payoff for each player is
its total discounted profits. Instantaneous profits depend on the firm's own

capital stock as well as the capital stocks of its rivals. Capital stock Kj



accumulates according to the Nerlove—Arrow capital accumulation equation

(1) ki =T, - 8.K,, K (0) = K _, i=1,2.
Where I, is the investment in the capital stock K, of firm i, éi is the
depreciation constant. The planning horizon is denoted by T.

In order to define a game we have to specify the strategy spaces S1, Sy
and the payoffs.

Player i's strategy is assumed to belong to the following set:

Si = {Ii(t): (0,T] + [O,fillIi(t) is piecewise continuous on [O,T]}

where I; is given in assumption 1.

The payoff for firm i is defined by

T -rt
(2) J. = jo e {Hi(Kl,KZ) - Ci([i)}dt
where r is the discount rate, T might be finite or infinite, and Ci(Ii) is the

cost of investing I; units.

Assumption l. The control Ii(t) takes its value in a compact set [O,Ii]. For

example, if the cost Ci(Ii) is convex and satisfies that 1lim Ci >® as I; ~»
Ti will induce a control function satisfying assumption 1.

The instantaneous profit function Hi(Kl’KZ) and cost function Ci(Ii)

satisfy

Assumption 2: Hi(Kl’KZ) € C2, is increasing and strictly concave function of

K., decreasing in Kj (for i # j, i,3 = 1,2), C,(I;) ¢ C2, increasing and



strictly convex.

It can be checked that the two examples given earlier can satisfy
assumption 2 (with respect to the revenue function). In example 2 note that
the revenue function will be increasing and concave in G; if f 1is increasing
and concave in its argument; see Fershtman (1982). Note that the condition
lim Ci(Ii)/Ii > ® as I, > = implies that Ci(Ii) is more convex than I%.

We consider an open loop differential game, i.e., the problem of player i
is to maximize (J;) subject to his capital constraint given in (1), given
Kj(t) for (j # i).

Define the game G(KIO’K2O’T) as the game with strategy spaces S;, payoff
functions as in (2), time horizon T, and at t=0, the game starts at the
initial stocks of Ki(O) = Kiq (i=1,2) and satisfies assumptions 1 and 2.

Finally, let Ky = (Kin,Kspn).
0 10°°20

A Nash Equilibrium for the game G(KO,T) (for Te [0,®)) is a pair of functions

IT(t), I;(t) such that I:(t) maximizes (2) subject to (1) given I;(t) (i # ).

%k ® %
A Stationary Nash Equlibrium for G(K;,T) is a pair of values (I},K;), (I,,K5)

* * x _%
such that I, = GiKi and the pair (I;,I,) is a Nash equlibrium for the game
x %
G(K,Ky, ®).

* %
We shall call a stationary equlibrium point (KI’KZ) conditionally locally

stable if there exists a two dimensional manifold S, containing (KT,K;,IT,I;)
such that for every (KI’KZ’II’IZ) € S the solution of the game G which starts
at (KI’KZ’II’IZ) converges to the stationary equilibrium point.

*
We shall call a stationary equilibrium point (KI,K;) conditionally

globally stable if there exists a two dimensional manifold S, containing

* k _%k _*
(KI’KZ’II’IZ) such that for every initial conditions KIO’ KZO there exists a

pair of initial investment IlO’ I, such that (KlO’KZO’Ilo’IZO) € S and the



solution of the game G(KlO,KZO,W) converges to the stationary equilibrium

* _k
point (Kj,K,).

3. Finite Time Horizon

In this section we consider the game G(KIO’KZO’T) for finite time
horizon T.
We prove that for any K , and any T, there exists a path (Il(t), I,(t)),
such that this pair of functions is a Nash equilibrium for the game G.
Define the following family of functions
B, . (10,T]) = {fec(lo,T])|0 < f(t) < fi/si}

for all t €[0,T] and [£(t) - £(s)|< T |(t = s)}

where C([0,T)) is the family of continuous, bounded function on [0,T]. Thus
the family Bri is bounded by a common bound and is equilipschitz, i.e., all

the functions of the family share the same Lipschitz constant.
Lemma 3.1: BLi([O’T]) is a convex, compact subset of C([0,T]).

Proof: We make use of Arzela Ascoli theorem (see Dunford and Schwartz, ch. 4)
that states that if M is compact then a set in C(M) is conditionally compact
if and only if it is bounded and equicontinuous.

Let M = [0,T] and let C(M) be B; ;- Since equilipschitz implies

equicontinuity of BLi’ Arzela Ascoli theorem can be applied and so BL is

i
conditionally compact for i=1,2.
Furthermore, by applying the triangle inequality it is clear that Bi 1is

closed since a converging sequence of equilLipschitz functions converges to a

Lipschitz function with the same constant. Convexity can be shown in the same



fashion.

For each strategy Ii(t) € S; define the induced capital path as Ki(t)
which is the solution of equation (l1). Assumption (1) guarantees that Ii(t)
is bounded by Ti' Equation (1) guarantees that Ki(t) is continuous and
bounded by K; = I;/8; and that its Lipschitz coefficient is I;. Thus every
induced capital path Ki(t) is a member of BLi([O’T])‘ For every Kj(t) € BLj
([0,T]) consider the problem of maximizing (2) subject to (1) as a regular
control problem for player i. Under assumptions 1 and 2 (which guarantee
sufficiency) there exists a unique ii(t) that solves this control problem
(see, for example, Lee and Markus, ch., 4 (1967) for finite time horizon and

Baum (1976) for the infinite case). Clearly I, induces a unique path of X; €

By; (10,T]).

Assumption 3: ni = ani/aKi is bounded, i.e., |ﬂ;l< L for some L > O.

Lemma 3.2: Consider a function ¢.: BLj([O,T]) > BLi([O,T]) such

that ¢i(Kj(t)) = Ei(t). Under assumptions 1, 2, and 3, the functions are

continuous with respect to the supremum metric If - gl = sup|f(t) - g(t)
t

Proof: Consider the maximization problems for firm 1! in which the stock of
player 2 is given by K,(t). The problem can be solved by using standard
control theory.

Define the current value Hamiltonian to be

H, = - + A, I, - § K
P T T KRR =0 @) AT = A 8K,

Under assumptions 1 and 2 the necessary conditions for optimality are
sufficient as well since the Hamiltonian is concave in Kl and Il‘ The

necessary conditions are



(3) A, - rh, = —3H1/3K1 = —Bnl/aKl + del

(4) BHl/BIl =0 = —Cl(Il) — A

Solving equation (3) for A, (4) for I;(t), substituting into (1) and solving
for Kl(t) yields

-5, (t=s)

. —(r+61)(r—s)
(5) K () =g+ [ e (c,

) HJ 5w (K ()R, (1))e dr }ds
where § = Kige

We need to show that given a converging sequence Kg(t) *> Kg(t), the
corresponding sequence K?(t) = ¢1(Kg(t)) satisfies K?(t) > K?(t) where
kP(t) = o (xJ(e)).

Assume a contrario that KT(t) does not tend to K?(t). Without loss of
generality (taking subsequence if necessary), we can assume that KT(t) + J(t)
but J(t) # K?(t). From the fact that By; is equilipschitz, it follows that
the convergence of Kg is uniform and thus this and the continuity of Ci and n%

imply that J(t) satisfies

—(r+61)(r—s)

-5 (t-s) ,
1 U: TT}(J(T), K(Z)(T))e dt}ds

t -1
= £ +
() =g+ [ e )
Since the solution of (5) is unique, it follows that J(t) = K?(t). The fact
that every converging sequence of KT converges to K? implies that KT tends to
0
Kl'
Note that the functions ¢; are not reaction functions since they are not

defined on the strategy space but rather on the state path space. If firm 2



chooses a path of investment Iz(t) which induces a path of capital K,(t) then
the optimal response of firm 1 will be to choose a path of investment such

that the induced path of capital is ¢i(K2(t)).

Theorem l: The differential game G(KIO’KZO’T) associated with equation (1)
and (2), and satisfies assumptions 1, 2, and 3 has a Nash equilibrium solution

for any initial conditions K;5 and K,,.

Proof: Define the function ¥ from BLl % Bio into itself as follows: For

every X € BLI’ y € BL2 let
(6) vix,y) = (@, (), ¢,(x))

We make use of the Schauder-Tychonoff theorem which states that if A is a
compact convex subset of a locally convex linear topological space then every
continuous mapping from A into itself has a fixed point.

Since C([0,T]) is a Banach space, from Lemma 2, By X Bpo is a compact
convex subset of a locally convex space, from Lemma 1l the function ¥y is a
continuous mapping and thus ¢y has a fixed point. This fixed point is a Nash

equilibrium solution for the game G(K,,T). Q.E.D.

The economic interpretation of Theorem 1 is that for every initial
* *
conditions K;; and K,,, there exists a pair of strategies (I;(t), I;(t)) such
* *
that: first, Il(t) is the best response for Ij(t) and second, the induced

*
capital paths K;(t) start at Ko, for i=1,2.
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4, Infinite Time Horizon

In this section we prove the existence of a Nash solution to the game
G(KlO,Kzo,w) for every K o and Kyn. Replication of the finite time horizon
proof is not possible. To see this note that we have defined a family of
Lischitz functions BLi([O’T])' Then we defined mappings ¢, which, we were
able to show, were continuous. Using this continuity and the compactness of
BLi([O’T]) we were able to make use of the Tychonov theorem. In the infinite
case, BLi([O,w)) is not compact. We therefore modify B;; in a way to achieve

compactness.

Define the following family of functions
-rt
QLi([O,w)) = {fe C([0,#))|f =e g and g ¢ BLi([O’ ))}

where C([0,®)) is the family of continuous, bounded functions on {0,®).
Lemma 4.1: QLi([O,w)) is a convex, compact subset of C([0,®)).

Proof: We make of an extension of the Arzela Ascoli theorem which states the
following.

Let M be an arbitrary topological space and A a bounded subset of C(M).
Then A is conditionally compact if and only if for every € > 0 there is a
finite collection E = {El,...,En} of sets with union M and points m; € Ei
i=l,...n such that for i=l,...,n, %g ig |f(mi) - f(m)l <& (see Dunford and
Schwartz, chapter 4.) '

From the definition of By ;([0,T]) (see Section 3) it is evident that due
to the fact that B;; is equilipschitz, for every finite T there exists a

collection E as required. Since the functions in By;([0,®)) are bounded by

K;, for every given € > 0, Let T be such that e_rTZKi < e. For this T define



1
the collection E as {E ,...,En,E where En+1 = [T,»). It is clear that,

1 n+l}

for i=l,...,n*l, and my € E;,

Sup Sup |f(m,) -~ f(m)| e
i
feQd. . mE,
Li i

and thus {;; is conditionally compact. It is cumbersome but straightforward

to check that {y; is closed and thus it is compact.

Define a function ¢i: BLj([O,m)) > BLi([O,w)) as the best induced

capital path of player i for a given capital path of j as in section 3.

Define a function Si: QLi > QLi such that for every f ¢ QLj

-Tt rt

(7) Si(f) = e ¢i(e £)

The function Si is well defined since by definition of QLj’ eftf ¢ BLj' In

order to prove its continuity we need the following definition and lemma.

*
Definition: Let x,, %3, € By ;([0,%)). x, * xq iff for every finite T

%gglxn(t) - xo(t)l + 0 as n > o,

-rt -rt *
Lerma 4.2: e X > e X iff x » x

Proof: Clearly if e—rtxn > e"rtxo then for every finite T

rt -Tt

suple_ x e XO[ + 0 and thus sup {xn(t) - XO(t)l + (0. Conversely,

t<T n>e 0<t<T nr®

since x, are bounded for every given € > 0, there is Ty sufficiently large

such that sup ]e—rtxn - e—rtx0|< e/2. For sufficiently large n
t>T1
Sup [e-rtx - e—rtx0[< €/2. Therefore for every € > 0, there is T1 and
n

<
t T1

sufficiently large N such that for every n > N Sup‘e—rtx

—e_rtx0|< €
t<e

n



. . + T
Assumption 4: ﬂij is bounded, i.e., H}J < L; for some L, > 0 and C; is

> . for some €5 > 0.

bounded from below, i.e., C; i

Lemma 4.33 Under assumptions 1, 2, 3, and 4 the functions §; as defined in

(7) are continuous with respect to the metric If - gl = Sup|f(t) - g(t)
t

Proof: Using Lemma 4.2 we need to show that given a converging sequence

K5 3 Kg, the corresponding sequence K} = ertel(e—rtKg) satisfies K{ 3 k9,

where K? = ertsl(e_rtKO).

Without loss of generality, taking subsequences if necessary, we can

*
assume that K? > J. We wish to show that J = K?.

The solution of K?(t) following the procedure outlined in Lemma 2 is:
_dl(t_S) ]

ct) € (Cl)_l U: "i(K

0 —(r+5 ) (1-s)

(9 K () =€ + f 1

(T),Kg(T))e dt}ds

Step 1: Observe the following expressions:

-5, (t-s) —(r+8.)(1-58)
1 Vo=l 1 1
(10) [ e I RSB R EICOR GICOPE dr}ds
S5 (e-1) . o (148, ) (1-8)
(10a) fEe ! ) ST 7 LK (E)e ! ar}ds

For a given t, the difference between (10) and (10a) tends to zero as n * <,

This is true since, by assumption 4, [(Ci)—l]' and ﬂ{z are bounded and so

as n > °

w | 1 1 0 —(r+51)(T~s)
IDLNCICON SYCOPIER SCICON S COMI dr > 0

Step 2: Define the following expressions:
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-6 (t-s) -(r+8 ) (1~-s)

(11) 1-0Ee CHTHIT 1 0@, K @)e ! at }ds

-5, (t-s) ,

1
(11a) Kl -5 e )OS

1 o —(r+61)(r—s)
) (K (1), K, (1))e dt }ds

s
The difference between (11) and (lla) tends to zero as n > ©®, This is true

% -
since K? > J and by assumption 4, [(Cy) 1]' and ﬂ%l are bounded. Since (lla)
is identically zero, for a given t, by definition of KT, it follows that

expression (11) tends to zero when n > <,

Step 3: The second term in expression (l1) tends to J and to expression (10a)

as n > ©, Thus

—(r+61)(r—s)

-5 (t-s) , _, o
: ) 1{18 ﬂi(J(T),Kg(T))e dr}ds

J=[ e (¢,

since the solution of (9) is unique, it follows that J = K?.

Theorem 2: The differential game G(KIO’KZO’w) satisfying assumptions 3 and 4

has a Nash equilibrium solution for any initial conditions Kyy and KZO'

Proof: The proof follows the proof of Theorem 1, where QLi’ Lemmas 4.1 and

4.3 replace By;, Lemma 3.1 and 3.2 respectively. Q.E.D,

5. Stationary Equilibrium and its Properties

In this section we show the existence of a stationary equilibrium,
discuss the concept of a Nash equilibrium manifold and investigate the

properties of the stationary equilibrium.

Proposition 5.1 (existence): Under assumptions ! and 2 there exists a




* %
stationary Nash equilibrium point (KI’KZ)'

Proof: Consider the maximization problem for firm in which the stock Kj of

firm j is constant, i.e., Kj(t) = Kj. This problem can be solved using
standard control theory, as follows.

The necessary conditions are
(12) A, - rA, = —OH, /3K, = -3m_ /0K, + A.5,
i i i i i ii
1
(13) OH, /31, = 0= —C_(I.) + X,
i i i1 i

Differentiating equation (13) with respect to time, and substituting A; and Ag

from (12) and (13) yields the following equation
. ! i ~

(14) C. I,=(r+8)C, -n. (K ,K,)
i i’ ivi’

i
where n, denotes 9w, /3K, .
i i i

)

The solution to equations (14) and (1) can be depicted on the (Ki,Ii

phase diagram. It is straightforward to check that the phase diagram is as in

Figure 1.

Lemma 5.1: There exists a unique intersection point bemeen.Ki =0 and I, = 0,

and this interesection is a saddle point.

Proof: The proof is straightforward. See, for example, Gould (1970).

It follows that given Kj(t) = Kj for any initial point Ki(O) there exists

~ ~

a unique optimal path for firm i which converges to K;. K; is thus the

stationary optimal stock for firm i given Kj(t) = Kj.

The point at which both equations (1) and (l4) vanish yield an implicit
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equation for Ki as a function of Kj. This equation is given by

A

. i
(15) (r + 6i)ci(éiKi) = ﬂi(Ki,Kj)

= ~ 2
Figure 1 depicts a case in which K, > Kj and niz =9 n_/aKlaKz > 0, or the
i i
case where both inequalities are reversed.

Assumption 1 and equation (1) guarantee that Ki(t) is bounded from above
Define a function ¢;: [O,Kj] -+ [O,Ki] (for i#j, i,j=1,2) such that

16 X.) =

(16) ¢i(kj) K,

where ¢; is the solution of equation (15). Thus ¢; assigns for each constant
level of Kj the stationary solution of firm i. The continuity of C and ni

implies the continuity of the functions ¢;. Define a function ¥ from

[O,Kl] x [O,KZ] to itself such that
(17) W(KI,KZ) = (¢1(K2), ¢2(Kl))

y is a continuous function from a compact convex set into itself, thus using

Brouwer fixed point theorem there exists KT, K; such that
* % % % % %

* *
Thus K = (Kl,Kg) satisfies the condition for a stationary Nash equilibrium

point for the game G. Q.E.D.



~>

_lj_

Figure 1

5 =0 ic oi _
i 0 is given by Ii SiKi

. . . 1 _‘i
1,=0 is given by (r+6i)Ci(Ii) = Hi(Ki,Kj)
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Note that ¢, is not a best response or “reaction function.” ¢; is not
defined on the strategy space but rather on the state space. If firm 1 is at
KT for the rest of the game, only then the best strategy for player 2 is to
converge to ¢2(K1).

Let 71 denote BZH/BKiBKj. The following assumption, in addition to
assumptions 1 and 2, are sufficient for uniqueness of the stationary

equilibrium.

Assumption 5: ﬂi(Kl,KZ) satisfy the following inequality for all K; and K,:

# 0 for i=1,2 and all K, and K,. Note that in the symmetric case when

T =Ty =7, the assumption is a concavity assumption on m.

Proposition 5.2 (uniqueness): Under assumptions 1, 2, and 5 the stationary

equilibrium point is unique.

Y 1
il < 0, the sign of ¢; is the same as the sign of ﬂ%z. 1f ﬂ%z

Proof: Since 7
and n%z have opposite signs, the equilibrium point whose existence is
guaranteed by proposition 2 is necessarily unique.

If niz > 0 for i=1,2, then it is sufficient to prove that at any

_ ' '
equilibrium point (¢11) > ¢9. Since ¢ is the solution of (15), this last

condition is equivalent to the following condition:

11 ' 22 12 12
- T )(62(r + 62)0 -1, ) >mn. T

(18) (6l(r + 61)01 5 ’ 1 ™o

I1f, however, n%z < 0 for i=1,2, then it suffices to show that (¢Il)' < ¢é. As

before, this is equivalent to condition (18). Since assumption 3 holds, then
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necessary (18) holds and the equilibrium point is unique. Q.E.D.

It should be noted that when 6, =6, = 0, assumption (5) is necessary as

well as sufficient.

Proposition 5.3 (conditional local stability): Under assumption 1, 2, and 4

the stationary equilibrium point is conditionally locally stable.

Proof: What we need to show is that the Jacobian matrix of the following
system has two positive and two negative (real parts of the) eigenvalues at

the equilibrium point.

(19) K =1 - GlKl
(19a) K, =1, - GZKZ
1, ' 1
(19b) Cl Il = (r + cSl)C1 - nl(Kl,Kz)
9 e, ' 2
(19c¢) C, I, = (r + GZ)C2 - NZ(KI,KZ)

If A is an eigenvalue, it is straightforward to check that A has to satisfy
the following condition:
12 12, ' "

i

/c, ¢,

(20) £(Q) =

Where f(4) = fl(A)fz(A) where fi(A) is given by:

(21) £ (A) = (r +6, -B)6, +8) ~nit/c.
1 1 1 1 1

It is clear that lim f.(A) = == and thus lim f(A) ==, In addition f(A)
Argoo 1 A+t



achieves a local maximum at A = r/2, and the equation fi(A) = 0 has two real
roots, one positive and one negative. f(A) has one maximum at positive A and
two minima, one at postive A and another negative. A necessary and sufficient
condition for equation (20) to have two positive and two negative roots is
12 12, "', "" . A . . .

that £(0) > L] /Cl Cy . This condition is exactly equation (18) which
holds if assumption 5 is wvalid.

From a well-known theorem of differential equations there exists a two-
dimensional manifold S such that the solution of equation (1) and (14)
starting on the manifold, converges to the equilibrium point. See, for

example, Coddington and Levinson (1955, Chapter 13). Q.E.D.

Define the set of K(S) as the following projection of S, i.e.,

k(s) = {Ke {[o,il] x [o,iz]}lThere exists I = (I,,I,) such that (X,I) ¢ s}

We now have the following corollary: For every initial condition Ky € K(S),
the game G(Ko,w) has a solution which converges to the staticnary equilibrium
point. To see this, note that by definition of K(S), for Ky there exists a
pair I = (11(0)’12(0)) such that (KO,IO) € S and therefore there exists a
unique path which starts at (Kj,I5) and ends at (K*,I*). Since along this
path conditions (1) and (l4) are satisfied for i=1,2 we only have to show that
the tranversality conditions are satisfied. It will then follow that I;(t) is
the best response for Ij(t) since assumptions 1 and 2 guarantee the
sufficiency of the necessary conditions.

The transversality condition for control problems with infinite horizons
that were proven by Michel (1982) are that the discounted Hamiltonian vanishes
as t approaches infinity. This is satisfied in our case since the

instantaneous profit function is bounded and at the stationary equilibrium



_ZO_

*

* .
Ii = éiKi and A is bounded.

Thus the manifold S can be described as a Nash equilibrium manifold since

for any initial condition KO in its projection there exist Iy such that there
exists a Nash solution to the game that lies on the manifold and converges to
a steady state.

In the next section, we investigate the spanning range of the manifold

(or its continuation).

6. Characterization and Convergence of the Nash Solution

In this section we investigate the properties of the Nash solution. In
particular we examine its convergence and monotonicity properties.

The analysis involves phase diagrams where the boundaries are
nonstationary. For the pioneering work on this subject see Kamien and
Schwartz (1977). For further work on this subject see Muller (1983).

Consider Figure 1 which depicts the (Ki’Ii) phase diagram. Define the

movement of I, = 0 from Kj to ij as "up."” Whether the I, = 0 boundary moves

up or its reverse (down) depends on the cross partial derivative of the
revenue function, and on the sign of K..

Lemma 6.1: Consider paths of K (t) and K,(t) which are a Nash solution for
the game G(KIO’KZO’w)' The extremal points of Kl(t) and Kz(t), which are

achieved at any finite time, interlace.

Proof: What we have to show is that between any two zeros of Kl there exists

one zero of Kj. The proof will be done for v%j < 0. The proof for N%j > 0 is

the same, mutatis mutandis. Consider Figure 2 on which the path is in region

2. For the path to cross over the K; = 0 line, it first has to be in region 3

because no cross over is possible from region 2 to 1. Thus the I; = 0 line is



K.=0
i
3
I 4
1 Ii=0 at tl
path JZ
Figure 2
K,=0
i
3
2 N4
1
_____ path
2 Ii=O at t,

Figure 3
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moving “"down," and is catching up with the path. Once it crosses it, the path
enters region 3 and it can cross, so at the crossing time there is a zero of

K;. We have to show that before it can have another zero, Kj has to change

sign. The path can now be depicted in Figure 3.

The path cannot cross over to region 4, and therefore the Ii = 0
boundary, which has moved down has to change its direction, catch up with the
path so that the path will again be in region 1 and the intersection will take

place. The boundary I; = O is given by

) .
(r +38.)C, (1) =7, (K ,K,)
i1 itij
It can change direction only if Kj changes sign, which is what we set out to

prove.

Lemma 6.2: Consider the game G(KlO,KZO,m) satisfying assumptions 3, 4, and 5

*
and the function ¢i as defined in section 4. If 1im K _(t) = Kj and
J
e

*
¢i(Kj(t)) = Ki(t) then lim Ki(t) = Ki where (KT,K;) is the unique stationary
t>>

equilibrium point.

Proof: What we have to show is that if one player converges to the stationary
equilibrium point then the induced capital path of the best response of the
second player will converge as well.

1f Kj(t) converges monotonically, then according to Lemma 6.1 the induced
capital path of player i is either monotonic or single peaked. By standard
arguments (see, for example, Gould) the path Ky does not tend to zero or to
infinity. Thus it converges to a stationary equilibrium point. Its

*
uniqueness guarantees that Ki(t) will converge to K;. If Kj(t) does not
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converge nonmonotonically, the frequency of the extremal points of Kj(t) is
bounded since Kj is Lipschitz. Lemma 6.1 implies that the frequency of the
extremal points of K,(t) is bounded as well. Since Kj(t) converge to K;, the
amplitude of its cycles, i.e., the value of each extremal point, tends to zero
as time tends to infinity. From Figure 3 it is clear that the variation in
K;(t) is smaller than the variation of the }i = 0 boundary (observe that
necessarily Ki' < Ki and the reverse will be true in the next extremal point
of Ki')

Assumption 5 guarantees that as the amplitude of Kj(t) tends to zero so
does the amplitude of the ii = 0 boundary and therefore the amplitude of Ki(t)

tends to zero as well. The uniqueness of the stationary point guarantees that

*
Ki(t) tends to Kj.

Theorem 3: The differential game G(KIO,KZO,w) satisfying assumptions 3, 4,
and 5, has a Nash equilibrium solution that converges to the stationary

equilibrium point for every initial condition Kjo and Koge

Proof: Let

* *
= € -} i =
B, . {f 8, . (10, M| 1im £(t) Ki}
£t
*
Lemma 6.2 assures us that the range of the function by is By ;- In the same
*

fashion we can define Qi (as in section 4). It can be verified that Q: is
conditionally compact (since it is a subset of a conditionally compact set) is

closed and convex. Thus we can make use of the Schauder Tychonov fixed point

theorem. Q.E.D.

The existence of the stationary manifold S guarantees that the only

* *
convergence to Ky and Ky is through the manifold. Thus a corollary of theorem



] 1
3 is that if S is the continuation of S on the (KI’KZ) plane, S spans the

entire (Kl,Kz) plane. We thus have the following corollary.

*
Corollary: The stationary equilibrium point (KI,K;) is conditionally globally

stable.
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NOTES

lA function f is more convex than g if f - g 1is convex. The functions
that are needed in these cases are functions which are more convex than

quadratic function.
Z3ince A(T) = 0 = C (1(T)), it follows that I(T) = O and thus K(T) < O.

3We are thankful to Dov Samet for pointing out this method of proof

to us.
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