Discussion Paper No. 551

THE NUMBER OF TRADERS REQUIRED TO MAKE A MARKET COMPETITIVE:
THE BEGINNINGS OF A THEORY

by
Thomas A. Gresik
and
Mark A. Satterthwaite*

February 1983

*J. L. Kellogg Graduate School of Management, Northwestern
University, Evanston, IL 60201. We owe Roger Myerson a great debt
because without his insights we could not have written this paper. The
participants of the Economic Theory Workshop at the University of
Chicago helped this research materially by discovering a serious error
in an early version of this work. Financial support for this work has
come from several sources: the National Science Foundation under Grant
SES-7907542 AQl, the Center for Advanced Study in Managerial Economics
and Decision Sciences and the Herman Smith Research Professorship in
Health Services Administration, both at the Kellogg School, and the
Health Care Financing Administration through a grant it has awarded to
Northwestern's Center for Health Services and Policy Research.



Introduction

If the number of buyers and sellers trading within a market is
large, then the market almost surely becomes perfectly competitive and
therefore ex post Pareto efficient.’ Left open by this result is the
question of how many traders are required in a market to wmake it
"large.” For example, should a market with ten traders on each side be
considered large enough to be perfectly competitive for all practical
purposes? Evidence from controlled experiments with double auctions
that Smith (1982, Proposition 5) has summarized indicates that the
answer is yes empirically. Our goals in this theoretical paper are,
first, to develop a general technique for studying this question within
a simple market and, second, to demonstrate through application of this
technique that-—consistent with the experimental evidence-—five or six
traders on each side of the market is enough to generate essentially
competitive, ex post efficient outcomes.

The simple market we work with is one in which N sellers have one
indivisible unit each of the traded commodity, M buyers seek to purchase
a single unit each, and buyers pay sellers for their purchases with
money. Both buyers and sellers' preferences are fully described by the
reservation values they place on a unit of the commodity. Each

individual's reservation value is private and unverifiable by the other

lRoberts and Postlewaite (1976) show that as an economy is
replicated repeatedly the incentive for agents to exhibit price-taking,
competitive behavior increases except in special cases.



market participants. This means that the price observed in the market
must be based in some manner on the values the individuals report, which
may or may not be their true values. Consequently in a small market
each individual has some influence on price and may decide to exaggerate
his or her value strategically in order to manipulate the price up or
down with the hope of securing a greater share of the available gains
from trade.

It is this manipulation that <causes small markets to be
noncompetitive and ex post inefficient in their outcomes. This can be
seen most clearly by considering the case of a market with a single
seller and a single buyer. Suppose the reservation value of the seller
is 48¢ and the reservation value of the buyer is 52¢, Ex post
efficiency requires that the trade be consumated since the object 1is
more valuable to the buyer than the seller. Nevertheless, depending on
the seller's and buyer's beliefs about each other's reservation values,
the trade may fail to take place. For example, if the buyer is quite
confident that the seller's reservation value lies in the interval 25¢
to 55¢, he may hold out for a price less than 50¢. Similarly, if the
seller is quite confident that the buyer's reservation value lies in the
interval 45¢ to 75¢, then he may hold out for a price greater than
SO#. But if this happens no trade occurs and the outcome is ex post
inefficient.

How many individuals have to be involved in the market in order to
eliminate almost completely this behavior and the resulting

inefficiency? We approach this question 1in three steps. First, we



model the trading problem as a game of incomplete information where the
appropriate equilibrium concept 1is the Bayesian Nash equilibrium.z
Second, we generalize Myerson and Satterthwaite's results (1981) for
bilateral trade to the case of mltilateral trade. For the case of one
buyer and one seller they used the revelation principle to characterize
all individually rational, incentive compatible trading mechanisms and
developed a technique for calculating ex ante efficient, individually
rational, bilateral trading mechanisms. We derive parallel results for
arbitrary numbers of buyers and sellers.

An individually rational trading mechanism is a mechanism such
that, no matter what a trader's reservation value 1is, the expected
utility of participating in the mechanism and attempting to make a trade
is non—-negative. An incentive compatible mechanism is a mechanism set
up so that, given each individual's subjective prior distribution about
every other individual's reservation value, everyone has an incentive to
correctly state his or her true reservation value. The revelation
principle states that, in terms of outcomes, every allocation mechanism
is equivalent to some 1incentive compatible mechanism. Therefore in
searching for ex ante efficient mechanisms only incentive compatible
mechanisms need be considered. The revelation principle has its origins
in Gibbard's paper (1973) on straightforward mechanisms and was
developed by Myerson (1979 and 1981), Harris and Townsend (1981), and

Harris and Raviv (1981). It played an essential role in Myerson and

2Harsanyi (1967-68) introduced these concepts.



Satterthwaite (1981) and does so again in this paper.

Our third step is to apply this theory to a specific example. For
simple markets ranging up to twelve individuals on each side we
calculate the properties of the anonymous, ex ante efficient, incentive

compatible trading mechanism.3

The key assumptions of our example are
that each individual's reservation vélue is drawn from a uniform
distribution over the interval [0, 1], every individual knows only his
own reservation value, and common knowledge exists among all individuals
that every individual's reservation value is drawn uniformly from the
unit interval. This, for the case of one buyer and one seller, is
precisely the same example that Chatterjee and Samuelson (1979), Myerson
and Satterthwaite (1981), and Wilson (1982) have used in their papers.
The results that we obtain as the number of buyers and sellers
increase in tandem are étriking. For the case of one individual on each
side of the market the 1individually rational, ex ante efficient
mechanism realizes in expectation 84.36% of the expected gains from
trade that an ex post efficient mechanism would realize if one
existed. In other words, if the ex ante efficient mechanism were used
repeatedly with the reservation values of buyers and sellers being drawn

independently and uniformly from the unit interval, then the total gains

from trade realized by the participants would average out over the long

3An anonymous mechanism is a mechanism that treats all buyers and
sellers independently of their labels. Thus if buyers one and two
report identical reservation values, then the mechanism must accord them
equal probabilities of receiving an object and equal expected monetary
payment.



run to 84.36% of the value to which it would average out if, for each
draw, each individual's reservation value were common knowledge and the
traded object were always assigned to the individual with the higher
reservation wvalue. If the number of individuals on each side of the
market increases to six, then the ex ante efficient mechanism realizes
in expectation 99.31%Z of the gains from trade that an ex post efficient
mechanism -would realize. For twelve individuals on each side of the
market this number rises to 99.83%. These numerical results iandicate
that if the number of indi:viduals on each side of the market increases,
then the ex post gains from trade that the ex ante efficient mechanism
fails to capture decreases quadratically. Consequently by the time the
market reaches five or six individuals per side the degree of
inefficiency is inconsequential.

The interest of our results is increased when they are considered
in conjunction with Wilson's result (1982) that if individuals'
reservation values are uniformly distributed over the unit interval,
then the double sealed bid auction is equivalent to an anonymous, ex
ante efficient, incentive compatible and individually rational trading
mechanism. The rules of the double sealed bid auction are that each
buyer submits a sealed bid, each seller submits a sealed offer, the bids
and offers are arrayed against each other, a market clearing price is
computed, and all trades that are feasible at that market clearing price
are executed. This auction, which is not incentive compatible, 1is
equivalent to an ex ante efficient, incentive compatible mechanism in

the sense that both result in the same trades being executed and the



same gains from trade being realized. Therefore wmechanisms do exist
that are used in practice and that are ex ante efficient, at least when
buyers' and sellers' reservation values are uniformly distributed. This
suggests the following conjecture—which lies quite beyond the scope of
this paper—concerning how our and Wilson's results can be jointly
generalized: for a large class of distributions of buyer and seller
reservation values the double auction asymptotically approaches ex post
e2fficiency quadratically.

Four substantive sections follow. First we present the model,
second we characterize incentive compatible, individually rational
mechanisms, third we describe how this characterization can be exploited
to calculate ex ante efficient trading mechanisms that maximize the
expected gains from trade, and fourth we calculate examples of such
mechanisms when the number of traders on each side of the market ranges
between one and twelve. It is the fourth section that constitutes our
main contribution. The other three sections are a generalization to the
multilateral case of Myerson and Satterthwaite's results (1981) for the

bilateral case.4 This generalization requires several complicating

4Wilson (1982) also generalized Myerson and Satterthwaite's results
(1981) to the multilateral case. The main differences are as follows.
First, in our Lemmas 3 and 4 we derive the form that the payment sched-
ules for individually rational, incentive compatible mechanisms must
follow. These results have no parallel in his paper. Second, we have
written our proofs to be reasonably accessible and convincing to readers
who do not have a deep background in Bayesian games and incentive com-
patible mechanisms. Wilson sketched most of his proofs, which has the
virtue of brevity, but also has disadvantage of imposing high costs on
many readers. Finally, in our model we permit (i) the reservation value
of each buyer i to be drawn from his or her own distribution Fi and (ii)
the reservation value of each seller j to be drawn from his or her own



changes in the problem’s formulation with consequent changes in Myerson
and Satterthwaite's proofs. The proofs' modifications are significant
enough that any but the most technically skilled reader would find their
construction to be a major task. Therefore we have included complete

proofs for each proposition we present.

The Model

The market we study consists of N identical objects, N sellers who
each own one of the objects, M buyers who each seek to buy one of the
objects, and money. Buyver i's reservation valuation of the object,
which 1is .the maximum amount that he can pay to purchase it and not

reduce his utiliy, is Xy o He or she knows this value, but it is an

unobservable quantity to all sellers and to all other buyers. Sellers

and the other buyers regard X; as distributed with positive

b;]. Similarly seller j knows z.,

density fi(') over the interval [a;, i i

his or her own reservation value. Buyers and other sellers regard it as

] Let the

distributed with positive density hj(') over [cj,dJ

distribution functions of these densities be F,;(+) and Hj(')
respectively. We assume that a buyer i and seller j exist such that

b, > c..s All buyers and sellers consider the reservation values of

distribution H.,. Wilson requires a common F for all buyers and a common
d for all sellgrs.

5This assumption rules out’ the trivial case where trade between
buyers and sellers is never in anyone's interest. Specifically, it



other buyers and sellers to be statistically independent both of each
other and their own values. These densities and associated cumulative
distribution functions constitute the essential data of the trading
problem that we consider. We call the pair (F,H), where F = (Fpy o o o5 Fy)

and H = (Hy, . . ., HN), the trading problem because for the trading
situations we consider these M+N distribution functions are the
primitive data.

Before defining what we wmean by a trading mechanism, we must
introduce some notation. Let x = (x|, . .+ ., Xy)y 2 = (2, + « +, 2y),
X_; = (xl, « o ey Ky_]s Xj4]s o e+ e+ %Xy), and z_5 = (Zy, « « W,
Zi_1> Zi4]> + + +» 2y)s The denmsity g(x,z) = H?=lfi(xi) . H§=lhj(2j)
describes the joint distribution of all the reservation. values, the
density g(x_i, z) = g(x, z)/fi(xi) describes the distribution of
reservation values buyer i perceives himself as facing, and the density
g(x, z_j) = g(x, z)/hj(zj) describes the distribution of reservation
values seller j perceives himself as facing.

A trading mechanism consists of N+M probability schedules and N+M
payment schedules that determine the final distribution of money and
goods given the N+M declared wvaluations of the buyers and sellers. Let
the probabilities of an object being assigned to buyer i and seller j in
the final distribution of goods be p;(x,z) and qj(x,z) respectively.
Let the payments to buyer i and seller j be ri(x,z) and sj(x,z)

respectively. A negative value for £y indicates that buyer i pays

guarantees that with positive probability some buyer's reservation value
will be greater than some seller's reservation value.



negative rj units of money for receiving one unit of the traded object
with probability p;. The r; and S5 payments, which are not conditional
on whether buyer i actually receives an object or seller j actually
gives up his object, may be regarded as certainty equivalents of
payments that are made only when an individual is involved in a trade.
Let a trading mechanism be denoted by the 2M+2N vector (p, g, r, s) of
probability and payment schedules. We assume that the joint
distribution of reservation values g, the probability schedules p and q,
and the payment schedules r and s are common knowledge among all the
buyers and sellers.

The payment and probability schedules are constrained so that in
the final distribution of goods and money all N objects are assigned to

some trader and payments exactly offset receipts. Thus:

Zilpi(x,Z) + zt;zlqj (x,z) =N (1)
and
N
ZT=1 fi(X,Z) + zj=lsj(x,z) =0 (2)

for all (x, z).6 The reason for this latter constraint is that trading

6Note that (1) requires a balance of goods only in expectation.
Balance of goods can always be achieved in fact by making the assign-—
ments of the N objects to the N + M individuals correlated across indi-
viduals. Thus, for a given set of declared valuations, buyer 1 can be
assigned an object with probability p, through an independent draw of a
random number in the [0, 1] interval. Buyer 2 can next be assigned an
object with probability Py through a second independent draw, etc. This
process of assigning objects through independent draws first to the ?
buyers and then to the N sellers can be continued until either (a) all N
objects have been assigned or (b) K objects remain and exactly K buyers



connotes 1individuals freely cooperating with one and another without
intervention or aid from a third party. The trading process is initiated
when all players declare reservation values to an arbiter. Given these
submitted bids, money and the N objects are reallocated as the trading
mechanism (p, q, r, s) mandates.

Each trader is an expected utility maximizer and has a von Neumann-
Morgenstern utility function that is additively separable and linear in
money and in the reservation value of the traded object. Thus buyer i's

expected utility, given that his true reservation value is Xy and the

~ ~

vectors of declared reservation values are X and z, is

A A ~ ~ A -~

Ui(xi, X, z) = ri(x, z) + xipi(x, z). (3)

Seller j's expected utility, given that his true reservation value is zj
and the declared values are x and z, is

V.(z,, %, z) =s,(x, z) -z, +z.q,(x, z). 4

525 % 5% TR FACS (4)

~ ~

The buyers' utility functions Ui are normalized so that if (x, z) are
such that buyer i is certain not to receive an object (p; = 0) and is
not required to make a cash payment (ri = 0), then his expected utility
is zero. The sellers' utility'functions are normalized similarly. Put
another way, 1if a buyer or seller elects not to participate in the
trading mechanism, then his or her expected utility is zero.

We place two constraints on the mechanisms that we consider in our

and sellers remain to have an object assigned to them. If eventuality
(a) occurs, then the remaining buyers and sellers should be excluded
from receiving an object. If eventuality (b) occurs, then the K remain-—
ing buyers and sellers should each receive an object. This rule guaran-
tees that exactly N objects are distributed. The dependence that this
rule induces between the probability of buyer 1 being assigned an object
and seller N not being assigned an object has no effect on our results.
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search for ex ante efficiency. First 1is individual rationality. It
requires for each trader that, given any admissible reservation value,
the expected wutility of participating in the mechanism is nonnegative.
If this constraint were violated, those individuals with unfavorable
reservation values would decline to participate in the trading, thus
contradicting our assumption that they do participate. Second is
incentive compatibility. An incentive compatible mechanism never gives
any trader an incentive to declare a reservation value different than
his true reservation value, i.e., declaration of true values is always a
Bayesian Nash equilibrium if the mechanism is incentive compatible.
Imposing this constraint greatly simplifies the analytics of the
problem. We lose no generality because the revelation principle states
that for every mechanism an equivalent incentive compatible mechanism
exists.

Formalization of the individual rationality and incentive
compatibility constraints requires additional notation and

definitions.7 Let

pi(xi) = f...fpi(x,z)g(x_i,z)dx_idz, . (3)
qj(zj) = f...qu(x,z)g(x,z_j)dxdz_j, (6)
r,(x;) = I°"Iri(X’Z)g(X-i’z)dX-idz’ (7)

and

7The definitions that follow are written based on the assumption
that all traders will in fact declare their true reservation values.
This assumption is legitimate because we are considering only incentive
compatible mechanisms.
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s.(z.) = [...[s. (x, VZ_s o 8
sj(zj) / fsj(x z)g(x z_J)dxdz_J (8)

Conditional on buyer i's reservation value being Xis the quantities

Ei(xi) and ;i(xi) are respectively his expected probability of
receiving an object and  his expected money receipts. The
quantities Ej and ;j have identical meanings for seller j. The expected
utilities of buyer i and seller j conditional on their reservation

values are

U, (x;) ;i(xi) + xiEi(xi) (9)

and

1}

Vj(zj) zj(qj(zj) - 1) + sj(zj). (10)

In terms of these definitions, individual rationality requires that, for

all buyers i and all sellers j, Ui(xi) » 0 for every X; € [ai, bi]
and Vj(zj) > 0 for every 2, € [cj, dj]° Incentive compatibility is

~

defined to be that, for every buyer i and all xs and X in [ai, bi],
)- ~ + - ~
Ui(xi) r; (%) Xipi(xi) (11)
and, for every seller j and all z and z in [cj, dj]’
V.(z,) > 2,(a,(z,) - 1) +3,(z,) 12
3% 549325 ) sy lzy) (1)

If (11) is violated for some x and X then buyer i has an incentive to

~

declare Xi rather than his or her true reservation value, X The
parallel interpretation holds for (12). 1Inequalities (l1) and (l2) are
therefore a necessary and sufficient condition that the Thonest

declaration of reservation values is a Bayesian Nash equilibrium for the

trading mechanism (p, q, r, s).
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Characterization of Individually Rational

Incentive Compatible Mechanisms

Theorem | characterizes all individually rational, incentive
compatible mechanisms in a manner that is particularly convenient for
computing ex ante efficient mechanisms. The theorem exactly generalizes
Myerson and Satterthwaite's (1981) Theorem ! from the bilateral case to

the general case of arbitrary numbers of buyers and sellers.

Theorem l. Let p(*,*) and q(*,*) be the buyers and sellers
probability schedules respectively. Functions r(+,+) and s(e,*)

exist such that (p,q,r,s) is an incentive compatible and indivi-
dually rational mechanism if and only if Si(') is a nondecreasing
function for all buyers i, ij(~) is a nondecreasing function for

all sellers j, and

u Fi(xi) -1
iE——:lj'..j(xi + —f-l—(—X:)—')Pl (x,z)g(x,z)dxdz
(13)
H.(z,)

f...f(zj + HJTEJT)[I - q.(x,z)]g(x,z)dxdz » O.
i3 ]

Furthermore, given any individually rational, incentive compatible

mechanism, for all i and j, U;(+) 1is nondecreasing, Vj(o)

nonincreasing, and

N
min U, (x) + z min V. (z)
1 ]

M N
N U, (@) + ) Vj(d.) =
i ' J 1 xela b, ] j=1 zs[cj,dj]

i=1 j=1 i

e
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M Fi(xi) -1
= _Z f---f(xi + —-gfagfy——)pi(x,z)g(x,z)dxdz
i=1 i i
N H,(z,)
-jélj...j(zj + E?TZ?T)[I - qj(x,z)]g(x,z)dxdz.

(14)

Proof of the theorem consists of the four lemmas that follow. Lemma &

is interesting in its own right because it gives an explicit formula for

calculating the payment schedules r; and s; from any pair of probability

J

schedules p and q satisfying Theorem l's conditions.

Lemma 1. If (p, q, T, s) is an incentive compatible mechanism,

then, for all i and j, Si('); aj('), and Ui(') are nondecreasing

and Vj(') is nonincreasing,

X._
Ui(xi) = Ui(ai) + fal pi(t)dt,
and
d _
Vj(zj) = Vj(dj) + jzj (1 - qj(t)]dt.

Proof of lemma 1. Let (p, g, r, s) be incentive compatible.

definitions of U., r.

1 i
all i, and for all x,, x¢ [a., b,],
1 1 1
r

U (x) = Tk +oxgp, (k) 2 Ei<;) + xi5i<;)

and
U, (0 = T,(0 (0 2 F(x) + b, (x)

Subtracting the inequalities appropriately yields

» P and incentive compatibility imply that,

(15)

(16)

The

for
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T _ — ~ - ~ - - -~ _ A_ ~
Ji(xi) Ui(x) > ri(x) + xipi(x) ri(x) xPi(x)
= (xi - x)pi(x)
and
- < = iy - - - iy
Uy Grg) =030 <ry(xp) +xpp, () = oy () = xpy ()
= (xi - x)pi(xi).
Combining these two inequalities leaves
_ - _ -~ ) _ -~ - -~ .
(xi X) pi(xi) > Ui(xi) Ui(x) (xi X) pi(x) (17)
X

Inspection of (17) shows that if x; >

- > ~ .
i , then pi(xi) pi(x)

Thus pi(°) is a nondecreasing function. Since P, is monotonic, dividing

through by (xi - x) and taking the limit as x * X, gives the

result Ui(xi) Si(xi) almost everywhere, Also because of its
monotonicity, Ei(-) is Riemann integrable. This gives the desired
expression:
X .
= -+ R
U, (x) = U () Iai p, (t)dt
Inspection of the integral shows that Ui(') is nondecreasing as

asserted. The analogous properties of E} and Vj may be derived through

an exactly parallel argument.®

Lemma 2., If (p, g, r, s) is an individually rational and incentive

compatible mechanism, then
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M N M N
YU, (a,) + JV.(d,) =) min U (x) + min v, (z)
i=1 * 7 j=1 1 i=1 x[a,,b,] * j=1 ze[c,,d.] ]
1 1 ] ]
! Fi(xi) -1
= .é f-‘-f(xi + ——gf?;fj——)pi(x,z)g(x,z)dxdz (18)
i=l 171
N g3, (z.)
_-Zlf...f<zj + E%T;%T)[l - qj(x,z)]g(x,z)dxdz
]= J. ]
> 0.

Proof of Lemma 2. Let T be the unconditional, ex ante expected

gains from trade:

M b. N d
T =0, fazUi(x)fi(x)dx + §j=l I

jV.(z)h.(Z)dz. (19)
c. ] ]

J
Substitution of equation (2) and equations (3) through (10) into (19)

gives:
To= 0 Lo Ixge, (2) + r, (x,2) )g(x,2 ) dxdz
+ Z?=l{f...f[zjqj(x,z) + s, (x,2) ]g(x,2)dxdz - jjjzjhj<z)dz}
= T, el ey, (6,2) + r, (x,2) g (x,2 ) dxdz
# e g e) - D) s s (2D 1g0x,2)dxdz
= f...f{2?=lxipi(x,z) - §§=lzj[1—qj(x,z)]}g(x,z)dxdz. (20)

We obtain an alternative expression for T through substitution of (15)

and (16) into (19):

M bi X
T = izl,{Ui(ai) + faifai pi(t)fi(x)dtdx}
N dj dj _
+ le{vj(dj) +J’ij’z [l - q](t)] hj(Z)dtdZ}
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]
e

b, b, _
{u,a) + falftlpi(t)fi(x)dxdt}

d,
Jrt -
l{vj@j) + fcjfcj(l 2, (£, (2)dzde]

" by N d,
’ i- ) . i -
izltUi(ai) +faipi(t)[l F (o)]dt} + j2=1{vj (dj) +jcj[1 -qj(t)]ﬁj(t)dt}

{Vj(dj) + /.. - qj(x,z)]Hj(zj)g(x,z_j)dxdz}

M 1 - Fi(xi)
= Zl{ui(ai) + I"'Ipi(x’z)(—_EIT;IT__)g<X’Z)dXdz}
(21)

H.(z.)

{Vj(dj) +[..a - qj(x,z))B-;—(-iT g(x,z)dxdz}.

+
ez

Lines three and four of (21) result from changing the order of
integration and lines six and seven result from substituting in (5) and
(6).

Equating (20) and (21), which are two alternative expressions for

T, and collecting similar terms produces:

M N y
iZlUi(ai) + jélvj (dj) = i};lf.-.Ixipi(x,z)g(x’z)dxdz
N
+ 0 ez (a(x2) - Dglx,z)dxdz
j=l J ]
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! Fi(xi) -1

+ izlf'--f(——-ng;zj‘)Pi(x,Z)g(x,z)dxdz
N ", (z,)

- .Z [l - qj(x’Z)]E%T;%T g(x,z)dxdz
j=1 i3

M Fi(xi) -1

= iélf---f[xi + C———gzcgzy-)]pi(x,z)g(x,z)dxdz

N Hj(zj)

- coflz, + 131 - ¢ (x, , . 22
jzlf f{ZJ + hj(zj)}[l qJ(x z)]g(x,z)dxdz (22)

Lemma 1 showed that, for all i and j, Ui(~) is nondecreasing and

Vj(') is nonincreasing. Consequently U; and Vj attain their minimum

values at a; and dj respectively. Therefore

M N
FELACIPIESWILNCS

N
min U (x,) + ) min V.(z,) >0 (23)
1 x.,ela,,b,] * 1 j=1 z.e[e.,d,]
i i’ ] Jj° ]

n
[ FE<

i

where the individual vrationality constraints generate the final

inequality. Equations (22) and (23) together confirm equation (18).e

Lemma 3. 1f (p, q, r, s) is an 1incentive compatible wmechanism,
then, for all i and j,

- % -

= - +

ri(x) faitd[ pi(t)] C; (24)
and

—_— dj -

s.(z) = tq.(t) + D, (25)

. I 4 i
where Ci and Dj are constants of integration. Suppose;, for all i

and i, that Ei(') and aj(') are nondecreasing and that
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ri(', *) and sj(o, *) have the properties that ;i(') and ;j(.) are
respectively of the form of (24) and (25). Then the mechanism

(p, q, T, s) is incentive compatible.

Proof of Lemma 3. As a variation we present the proof for the
seller's side of the market. The proof for the buyer's side is
analogous. Suppose (p, q, £, S) is incentive compatible.
Definitionally, for all j, Vj(z) = z(aj(z) - 1) + ;j(z). Rearranged

this becomes ;j(z) = Vj(z) + z(1 - aj(z)). Therefore

S.(2) = 5.(z) =V.(2) =V.(2) +2(1 = 3.(2)) - 2(1 = 3.(2))
] J ] J J ]

-— - N z -
= Vj(z) Vj(z) + j; dft1 qj(t)].

Since (p, q, r, s) is incentive compatible, equation (16) of Lemma !

implies that

o
Vj(z) - Vj(Z) =/a qj(t))dt.

Consequently,

A

2 - Z -
fz(l - qj(t))dt + f; dle(l - qj(t))]

A

s (z) - s.(z)
] J

[

A

[2(1 = q.(ende + [Z2 (1 = q.(e))de + [Z [~tdq.(e)]
Z ] z ] z ]

A

; -
fzcdqj(t).

This means that
d,
- 9 -
s.(z) = tdq.(t) + D_,
] IZ qJ J
which completes the proof of the Lemma's necessity part.
The sufficiency part's proof is as follows. Assume that, for all

Js aj(-) is nondecreasing and that gj(z) has the form of equation

(25). Incentive compatibility for sellers demands that, for all j and
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A

for all z,z E[cj, dj], Vj(z) b z(gj(z) - 1) + Ej(z). Use of equation
(10), the definition of Vj(-), permits us to rewrite the requirement of
incentive compatibility as
2(q.(z) = 1) +5,(z) > 2(q.(z) = 1) +5_(z)
43 ] (qJ b
or, after rearrangement,
2(q.(z) = q,(2)) +5s.(z) - s (z) > O. (26)
qJ qJ J J
Equation (25) implies that
s.(z) = s.(z) = [?tdq, (v).
J J IZ qJ
Notice that
2(3.(2) = 4.(2)) = 2[%4d . (e).
J J J

z
Addition of these last two equations gives the result:

z(qj(Z) - qj(z)) + Sj(z) - sj(z)

zZ .= Z - Z -
= Ad 03 . = ~ = - O
zfz qJ(t) + fztqu(t) fz(z t)dqj(t) >

where the first 1line 1is just the left-hand side of the incentive
compatibility requirement (26). The inequality at the end of the second
line, which is necessary for (26) to be satisfied, follows from aj(')

being nondecreasing and, consequentl&, the integrand (z-t)daj(t) being

A

nonnegative for all admissible z and z.®

Lemma 4. Suppose that the probability schedules p(-,*) and q(+,*)
satisfy Lemma 2's equation (18) and have the property
i

that Si(') and Ej(') are nondecreasing for all i-and j. Let r;

and Sj have the forms:
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%

M X _ M -
r,(x2) = Efaktd['pk(t)] + 1 J, el =F ®]dlp (0]

k=l k=1
F1i (27)
N % - 4 -
N
+= 7 {f (t)dq, (£) = [ “tdq ()} +C, i=l,...,M;
M’k=l ck&Hc k 2 k Ck
R i
s.(x,2) = ) {f Ttdp (@) + [ "tll - F (£)ldl-p, ©)]}
J k=1 akdpk N k T
(28)
LM o - ][ e o
+ tdg, (t) - (t)dq, (£) +D., j=l,ee.,N1;
= A& & kAl Cklﬂk k ]
I#j
M N-1
sy (x,2) = =[ ) r, (x,2) + } s, (x,2)]. (29)
: k=1 © ks S
where the N+M-~-1 constants Ci and Dj are set so
that Ui(ai) =0 (i=l,...,M) and Vj(dj) =0 (j=1l,...,N=1). The

resulting mechanism (p, q, r, s) 1is individually rational and

incentive compatible.

Proof of Lemma 4. The first part of the proof consists of
integrating (27), (28), and (29) to confirm that, for all i and j,
Ei(-) and Ej(') are of the forms (25) and (26) that, according to Lemma
3, are necessary for a mechanism to be incentive compatible. The second
part of the proof consists of observing that the M+N-l constants, Ci and

Dj’ can be set to guarantee satisfaction of the M+N individual

rationality constraints.

Recall the two definitions:
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ro(x) = [ (x,2)g(x_;,2)dx_ dz

and

sj(zj) = f...fsj(x,z)g(x,z_j)dxdz_j.

We begin by integrating ri(°, ) to obtain ;i(°). Integration of the
expression within the first summation of (27) gives, for k=i,
xg _
faitd[-pi(t)]-
When k # 1 it is
b
K % -
[ ], edl-p ()], (% )dx, =
k 'k
b, b ' b
Kk - kL -
fakft tf, (x ddx d[-p (t)] = fa t(l - F (£))d[-p, (£)]

k
where the second line results from changing the order of integration.

Therefore integration over the first two summations yields:

X, bk M bk -
[yrdlp, @1+ | [ e =R @Xlm®] + ] [ "t -F (0)dlp (D]
i kF1 . k=l
' ki

X. -
ltd[-pi(t)]. (30)
i )

-

a

Next we integrate the third summation term. Consider its second term:

ool e (e i

d dk
— k -
= fckfzkthk(zk)qu(t)dzk

dk t = dk -
= fckfckthk(zk)dzkqu(t) = fcktHk(t)qu(t). (31)
where on the second line we integrate out all the densities

except hk(') and on the third line we switch the order of integration.

Inspection of the summation shows that its two terms exactly offset
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each other, i.e., 1its value 1is zero. Therefore (30) plus Cj is the

result:

ri(xi) = f...Lri(x,z)f(x_i,z)dx_idz
= [ ttdl-p. (t)] +C_, i=1, ... M, (32)
a; i i
Note that ;i(-) has the form that Lemma 3 requires for incentive

compatibility. Therefore the specification of -equation (27) for
ri(x, z) is consistent with (p, q, r, s) being an incentive compatible
mechanism.

For the first N-1 sellers 1integrating sj(x,z) to obtain ;j
produces analogous results. Thus

d.
= = Jea= f=
= t + D —l v e 0 N-l
Sj (ZJ) (ZJ qu () j’ ] ’ s ’
which is consistent with Lemma 3's requirement for 1incentive
compatibility.

To complete our proof that (p, q, r, s) 1s incentive compatible we
must show that sN(-,') as specified by equation (29) implies a form
for EV(ZV) that is consistent with Lemma 3's requirement for incentive
compatibility. Recall that:

M N-1
sN(x,z) = -[ 7 ri(x,z) + 7 sj(x,z)];
i=] j=1

and

sN(zN) = J’...fsN(x,z)f(x,z_N)dxdz_N

We begin with integration of the individual riO,°) terms:

.. .fri(x,z)g(x,z_N)dxdz_N
Tk 5 o >
=) [ e@ =F (eNdlp ()] + ) t(l - F, (£))dp, (t)
k=l % k T k=l % k k

kti



N N dk W—l
w LS rﬂk<t>cn ®) -5 ZI o B (e)d (8) (33)
Y k k
N
-ngNtqu(t) +C,
s N N
- 1 - _- E. - _}i A -
= faicu Fo(e)dl-p, ()] + 3 ICNcHNu)qu(c) T IZNtqu<t> + ¢

where 1 =1, . . , M.

Integration of the individual sj(x,z) terms gives:

J-"J’Sj(X,Z)g(&Z_N)ixdzN
Tk - b -
- kzl{fakt [ -F O] () + fakt (1 - F (®)dlp, (]}

+/ tqu(t) + Z f tﬂk(t)qu(t) -kz_lfdktﬂk(t)dq, () +D,
I# ]

4 4 4
_ ] - _ h - A\ -
= | Cjt'Hj () (2 / CNdiN(t)qu(t) + | ZchqN<c> D, (34)

where j =1, « . ., N=l. Summing (33) and (34) produces:

. |
0=l {f{%[l - F (0)]dl-p, ()] + C |

tH\I(t)qu(t) + fd:tdiN(t)}

+N-f

dV
N

Z {fc tHk(t)dEk(t) +D

}
k=1 %k €

dy - 4 -
+ (N - l)UCNtH.N(t)qu(t) - fz\ltqu(t)}.

If we define
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L (o - 1
D, = - t{l - F ()]d[-p, ()] - C
Yk % K K k=1 ©
(35)
¥ d, _ N-1
- ) J e (e)dq (&) - } D,
k=l % k k=1 ©
then
sy(zyg) = [, tda (£) + D, (36)
I N - i

which fulfills Lemma 3's requirement for incentive compatibility.
Therefore (p, q, r, s) is incentive compatible because (r, s) satisfy
Lemma 3's requirements and, by assumption, (p, q) satisfy Theorem l's
requirements.

For every seller 1 and every buyer j, individual rationality
requires Ui(x) > 0 for all xe [ai, bi] and Vj(Z) > 0 for all zce [cj, dj].
Since the mechanism is incentive compatible, Lemma 1! implies that both
U; and Vj are monotonic; therefore we need only to set the M+N-1
constants C; and Dj so that, for all i and j, Ui(ai) = 0 and Vi(di) = 0.

From equations (9) and (10) we know that:

U.(a,) =rt.(a,) + a,p.(a,), i=l,...,M;
1 1 1 1 11 1

and

V.(d.) =d.(q.(d,) - 1) +5s.(d.), j=1,...,N.
i3 R R i3

From the first part of this Lemma's proof we also know that:

a.
T = 1 _-° = {= .
r,(a;) = faitd[ P ()] + ¢y =Cp, =l
and
- dJ -
s.(d,) = tdq.(t) + D, = D, j=1,...,N=1,
j o] Idj 3 b i

For the M buyers and the first N-1 sellers the constants Ci and Dj are.

arbitrary constants of integration. Therefore let Ci = —aipi(ai), for
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i=1, « . M, and let D, =d.(l - q.(d,)), for § = 1, . . ., N-l.
J J J ]

This convention guarantees that, for the M buyers, U(ai) = 0 and, for

the first N-1 sellers, V(d;) = 0.

This set of M#N-1 constants determines the wvalue of Dy through
equation (35). The hypothesis of this Lemma states that the probability
schedules (p, q) satisfy equation (18) of Lemma 2:

M N
+ ) > 0. 7
Lo U(a) zj=lv<dj) 0 (37)
The value of V(dN) mst be nonnegative since the value of every other
term in (37) is zero. Therefore the mechanism is individually rational

for all buyers and sellers.®

Lemmas 1, 2, and 4 together imply Theorem 1.

Constructing an Ex Ante Efficient, Individually Rational,

Incentive Compatible Trading Mechanism

A trader's ex ante expected utility from participating in trade is
his expected utility evaluated before he learns his reservation value
for the object. Thus U, = fU, ()£, (t)dt and Vj = JV, (£ (£)de are
respectively buyer i and seller j's ex ante expected utilities. An
individually ratiomnal trading mechanism is ex ante Pareto optimal if no
trader's ex ante expected utility can be increased without decreasing
some other trader's ex ante expected utility. As we discussed in the
paper's first two sections, individual rationality is necessary for a

trading mechanism to be feasible in the sense of securing the traders'
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voluntary participation. We restrict ourselves to incentive compatible
mechanisms because, according to the ravelation principle, we lose no
generality by doing so.

Within our particular model a mechanism is ex ante Pareto optimal
only if it maximizes the sum of the traders' ex ante expected utilities
or, equivalently, maximizes the sum of their expected gains £from
trade.8 This is a direct consequence of our assumption of transferable
utility, i.e. each trader's utility function is additively seperable in
money and the traded object's reservation value. An ex post optimal
trading wmechanism is one that assigns the N traded objects to the N
traders who have the highest reservation values. Clearly (for
transferable wutility) an ex post optimal mechanism is also ex ante
Optimal.9

Theorem | in the preceding section characterizes all probability
schedules (p, q) that can be the basis of an individually rational,
incentive compatible trading mechanism for the trading problem (F, H).
In this section we develop a technique for selecting from among that set
of probability schedules the pair of schedules that maximizes the
expected gains from trade and is therefore ex ante efficient. To

accomplish this, we generalize the technique Myerson and Satterthwaite

8Recall that every trader's expected utility is normalized to be
zero for the case where trade is impossible. Therefore maximizing the
expected gains from trade is equivalent to maximizing the sum of all
traders ex ante expected utilities.

9See Holmstrom and Myerson (1981) for further discussion of ex ante
optimality, ex post optimality, and a third optimality concept, interim
optimality. R
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(1981) used for the bilateral case. Our results are summarized in two
theorems. Theorem 2 states sufficient conditions for a particular
trading mechanism——-the a* mechanism——to be ex ante efficient. Theorem 3
states sufficient conditions for the a* mechanism to exist and be ex
ante efficient.

Two functions play a crucial role in our construction:

B (Fi(xi) -1
Wi(xi,d) = x; +a kw), i=1,...,M, (38)
: i7i
and
3 H.(z.)
¥i(z,,a) =z, +a « ==l j=1,...,N, (39)
B ] hj(zj)

where o is a nonnegative scalar. In the terminology of Myerson (1982),
for a given o and a given x;, the quantity W? is buyer i's "virtual”
reservation value for the traded object. Similarly, w? is seller j's
virtual reservation value. Let y(x, z, a) = {W?(xl A)y . e e, WS(ZN, a)}l; it
is the M#N vector of the traders' virtual reservation values.

Define Ri(x, z, a) to be the rank of the element W?(xi, a)
within . Similarly, let Rj(x, z, a) is the rank of the element

W§(zj, a) within Y. For example, if M = N =1 and ¢ = (.2, .4), then

R;

i=1l = 2 and Rj=l = l. Given this notation, we can define a class of

buyer and seller probability schedules that a parameterizes:lo

lOIf several elements of Y have the same value so that it is ambi-
guous which buyers and sellers should be classified as having virtual
reservation prices as ranking within the top N, then the probability
schedules should randomize among the several candidates so as to guar-—
antee that exactly N traders are assigned an object. Thus if seller 2
and buyer 3 are tied for rank N, then each should be given a nonindepen-
dent probability of .5 of receiving an object in the final allocation.



1 if R.(x, z, a) < N
t 1, ee.,M; (40)

oy
]

a
pi(x,z) = |
0 if R (x, z, a) >N

1 if R.(x, z, a) € N

C(x,z) = | J i=1,...,N. (41)
J 0 if Rj(x, z, &) >N

Let pa = (p?, . e p;) and qa = (q?, . e e, qg). These probability

schedules assign the N available objects to those N traders for whom the

objects have the highest virtual reservation values. Given (pa, qa),

let ¥ = (ra, e ey r2) and ¥ = (sa, o e ey s2) be the payment
1 M 1 N

schedules that equations (27), (28), and (29) of Lemma 4 specifies. We

a a a )
, T, s )an a-mechanism. 1f

call the trading mechanism (pa, q
(pa’ qa) satisfy Theorem l's requirements, then Lemma 4 implies that
the associated a-mechanism is individually raﬁional and 1incentive
compatible.
Central to Theorem l's requirements is inequality (13), the

incentive compatibility and individual rationality constraint. For the

case of a-mechanisms, substitution of (38) and (39) into (13) yields:

M N
6@ = [ f{ ] B, 0 x2) -] ¥z, D1 (x,2)]} g(x 2 Mixdz
=1 i1 1 =1 1] J
(42)
) O.
Let an a-mechanism be called an a*-mechanism only if (i) G(a*) = O for

some a* € [0, 1] or (ii) G(0) > O.
Theorem 2 states conditions under which an a*-mechanism—if such a

mechanism exists-=-is ex ante efficient, incentive compatible, and
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individually rational. Theorem 3 specifies conditions sufficient for
the existence of an a*-mechanism that is ex ante efficient, incentive
compatible, and individually rational. These two theorems, together
with Lemma &4, provide a straightforward, recipe of four steps for

constructing an ex ante trading mechanism for a trading problem, (F,

H). The steps are : (i) Verify that the distributions (F, H) satisfy

the requirements of Theorem 3. (ii) Calculate a* by solving the

equation G(a) = 0. (iii) Construct the probability schedules
ax  a* '

(p, 9 ). (iv) Construct the expected payment schedules (r, s) using

Lemma 4's formulae.

Theorem 2. Let (F, H) describe a trading problem for which an a*-

mechanism exists. Suppose that the distributions (F, H) have the

-

properties that, for every buyer 1 and seller j , P, (xi)
—a*
and q? (zj) are nondecreasing over the intervals [a;, b.,] and [cj,
) ] ) a* a*x ax g%
dj] respectively. The a*-trading mechanism (p~ , q , ©r , s

is ex ante efficient, individually rational, and 1incentive

compatible for (F, H). 1Its expected gains from trade are positive.

Lemma 5, which derives monotonicity properties for G(a), lays the

groundwork for the Theorem 2's proof.

Lemma 5. For a € [0, 1], G(a) is nondecreasing and, for a > 1,

G(a) is nonincreasing.
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Proof of Lemma 5. Let v,B € [0, 1) and 8 > Y. Fix the value of
(x, z) at any point within G(a)'s region of integration. The integrand
of G is

N

M A
K(a,x,2) = (3 v3(x.,00p%(x,2) =1 vz, 1)[1=q%(x,2)])g(x,2).(43)
421 1% i 321 373 j

As a increases the value of w?(xi, @) decreases linearly for all buyers
i and the wvalue of w?(zj, @) increases linearly for all sellers j.
These changes in values affect the values of the probability schedules

p?(x, z) and q?(x, z) and therefore cause K(a¢, x, z) to change in
value.

For example, one possibility is that, for some buyer k,
Rk(x, z, Y) < N and Rk(x, z, 8) > N, which has the dimplication that
p;(x, z) = 1 and pi(x, z) = 0. This can happen because, as a

increased, wi(xk, @) decreases in value, may fall in rank, and be
replaced in the top N by some buyer i or seller j. Suppose, as the
first of the three possible cases we must consider, buyer k is replaced
by buyer 2. Suppose further, without any loss of generality, as a
increases from Y to 8 this is the only change that occurs in K(a, x, z).

Buyer £ replacing buyer k in the top N implies four additional
facts: pl(x, z) =0, pi(X,Z) =1, WE(Xk, Y) > WE(Xl, Y), and

B B B B

wk(xk, 8) < wl(xl’ 3). Therefore wk(xk, 1) < wl(xl’ 1) because
Yy < B <1 and the ¢ functions are linear in a. By assumption the only
change that occurs in K(a, x, z) at point (x, z) as a increases from

Y to B involves the buyer k term and the buyer & term. Specifically,
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when a =7,

wi(xk,l)pl(x,z) + wi(xl,l)p;(x,z)

=i Gx, D LRy, 1D s 0 = u(x, D) (44)
and, when o = 3,

Wi(xk,l)pi(x,z) + ¢§(xl,l)pi(x,2)

=3, D0+ B, e 1 =Bk, ). (45)

K % AR A

Therefore, at the point (x, z), K(y) < X(B), which means that K is
increasing, provided that one buyer replacing another buyer in the top N
is the cause of the change in value.

In addition to one buyer replacing another buyer in the top N of
virtual reservation values, K(a) can change in value two other ways as a
increases. They are: one seller can replace another seller in.the top
N and one seller can replace one buyer in the top N. A buyer cannot
replace a seller because, with respect to &, w? is decreasing and w$ is
increasing. Our demonstration for the buyer replaces buyer case can be
repeated for the two additional cases to show that K necessarily
increases as a increases, provided @« < 1. Since K is the integrand of G
and since K can only increase as o increases, G(a) 1is necessarily
nondecreasing for a < 1.

For @« > 1 the arguments reverse. JInspection of our demonstration
for the buyer replaces buyer case shows that the linearity of
ﬁhe ¢y functions implies that K(Y) > K(B) whenever 1 <Y < 8. The same
is true for the other two cases. Therefore, for a > 1, G(a) is
nonincreasing.®

Proof of Theorem 2. Our optimization problem is:
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M N
mx  [.ef[] xp.(x,2) - ] z,(1 -q,(x,2))]g(x,2)dxdz (46)
R i L i
Psq i=1 j=1
M B N S
sete Jooof/ 1] ¥ &, ,Dp. (x,2) = ) ¥ (z.,1)(1 - q,(x,2))]g(x,z)dxdz > 0 47)
i=1 1 1 1 j'—‘l J ] ]
M N
L p.(x,2) + ] q.(x,2) =N (48)
i=1 * =17

' We originally derived expression (46), the objective function, as
equation (20) in Lemma 2's proof. It represents the sum of the traders'
ex ante expected utilities. The first constraint, inequality (47), is
Theorem 1's individual rationality and incentive compatibility
constraint, inequality (13), rewritten in the ¥ notation. It and the
‘ - * — *
asspmptions Theorem 2's hypothesis makes concerning the p and q
probability schedules guarantees that the solution to (46-48) satisfies
Theorem l's necessary and sufficient conditions for a mechanism to be
individually rational and incentive compatible. The second constraint
is equation (1), the balance of goods constraint. Problem (46-48) does
not show the balance of payments constraint, equation (2), explicitly
because it was incorporated into the derivation of (46) and is therefore

always satisfied.

The problem's Lagrangian is:

M N
L= oo T b, Db (e2) = 1 [z 305, DIC - 0,020 )aln2 Yinde
i=l J:l
M N
+u{ L p.(x2) + [ q.(x2) - N
i=l l le J

where A and u are the mltipliers and similar terms 1in the objective

function and the first constraint have been collected. Additional
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simplification is possible if we notice that

F.(x,) -1
Ax, + A (—=

3
R S i £ (x,)

)

]
"
+

(1 +2)[x, +=2 (Fi(xi) — l)]
£.(x.)
1 1

i 1+

(1 + X)W§(x ).

i’ 1+

Analogously,

S S A
zj + ij(zj,l) (1 + k)wj(zj,T:r).

Thus,
T3 Y5
L=(l+X\) !"'f{iélwi(xi’iziopi(x’Z) - jzle(zj,i:iﬁ(l - qj(x,z))}
(49)
M N
o g(x,2)dxdz +u{ } p, (x,2) + | a.(x,2) = N}.
i=l * =11

Précise interpretation of (49) is crucial. If for some A > 0 and some u
a pair of probability schedules (p, q) is found that (i) maximizes (49)
and (ii) satisfies constraints (47) and (48), then (p, q) are the
schedules that maximize the gains from trade. Moreover, if (p, q) are
such that constraint (47) is slack, then A must be set equal to zero.
For any given A » O the oprobability schedules (pa, qa) maximize
(49) if o is set equal to A/(l+\). This is seen in two steps. First,
for any a, pi(x,z) = pi(x,z) and qj(x,z) = q?(x,z) guarantee that the
balance of goods constraint is satisfied. Dropping that constraint,

. R . Q a . .. .
substituting in (p , q ), and rearranging the remaining terms gives:
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M N
_ B Ao S A a
L= (1) ...f{izlwi(xi,——lﬂ)pi(x,z) +jz=le<zj,—-m>q 50 2)} gl 2 Xixdz

(50)
N
=@+ J1Y ws.(x,L)g(x,z)}dxdz.
=1 IR

Second, for any fixed, nonnegative A and at every point (x, z) within
the region of integration, the integrand of (49) is maximized when o =
A/(1+A). This is because sétting a = A/(l+X) means that the N available
objects are allocated to those N traders who have the N highest virtual
reservation wvalues for the object. Therefore the N largest ¥ vaiues
receive weight one and all other ¥ values receive a weight of =zero on
the first line of (50). This clearly maximizes the first line of L; the
second line of L is of no consequence because with A fixed, its value is
fixed. Since, conditional on the value of A, the integrand is maximized
at every point, the integral itself is maximized.ll

By assumption an a* € [0, 1] exists such that G(a*) =0 or G(0) >
0. Set A = A* =qa*/(l-a*) and note that A* so defined satisfies the
equation a* = A*/(l+\ %), Since the probability schedules (pa*, qa*)
maximize the value of the Lagrangian (conditional on A = X*) and satisfy
the constraint G(a*) > 0, they are a solutiqn to our optimization
problem provided that no other solutions to the equation G(a) = 0 exist
that dominate the a*-mechanism in terms of expected gains from trade.

Other solutions to G do exist, but none of them dominate, Lemma 5

implies that on the nonnegative line G(a) is a unimodal function with

its mode at one. Since the result is stated in terms of G being

11This argument is valid both for A > 0O when the constraint is
binding and A = 0 when the constraint is nonbinding.
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nondecreasing and nonincreasing, intervals may occur over which G is

constant. These flats have an important property: If an

a.], Gla) = 0,

a,] exists such that, for all a € [Gl, )

interval [al, 5

then each of these a-mechanisms has the same expected gains from
trade. The reason 1is this. Lemma 5's proof makes clear that G
increases as a increases because, at particular points (x, y) within the
region of integration, the probability schedules (pa, qa) switch the
traders to which they assign the objects. Let T denote that subset of
G's region of integration where, as a increases from al to az, changes
occur in how the mechanism assigns objects to traders. Given, as the
proof of Lemma 5 showed, the monotonicity of G with respect to any
reassignment of objects, the only way in which G can be constant as o
increases from al to a2 is for T to have measure zero with respect to
the density g(x,y). But this means that, except over a region that has
zero probability of being realized, the al—mechanism and the Ay=
mechanism, assign the objects identically. Therefore, as asserted, they
must have identical expected gains from trade.

If o is made sufficiently large, then pz(x, z) = 0 and
q?(x, z) =1 for all (%, z) in G's region of integration, G(a) = 0
necessarily, and no trade ever takes place. This happens because a very
large a guarantees that buyers' virtual reservation values are less than
sellers' virtual reservation values. Thus some @ > l exists such that
G(z) = 0 for all a > a. These G-mechanisms are incentive compatible

and individually rational, but uninteresting because their expected

gains from trade are zero.
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The unimodality of the G function implies that only two intervals
can exist for which G(a) = O: one to the left of unity on the
nonnegative line and one to the right of unity. The interval to the
right of unity is without interest since' it involves no trade with
certainty. By assumption the interval to the left of unity exists and
contains at least the point a* e [0, 1]. Any additional points it
contains are equivalent because, as shown above, they result in
identical gains from trade. Consequently, all that remains to be shown
is that the a*-mechanism has positive expected gains from trade and
therefore dominates the no—trade mechanisms.

Myerson and Satterthwaite (1983, Theorem 2) show for the two trader
case (M =N = 1) that if (F, H) is a trading problem and if an a* exists
such that G(a*) = 0, then the a*-mechanism's ex ante expected gains from

trade 1is strictly positive.12

This implies that the a*-mechanism's ex
ante expected gains for the general case of many traders must also be
positive. This can be seen by picking a buyer i and seller j pair for

whom bi > ¢ constructing the Myerson and Satterthwaite two trader

js
optimal mechanism for them alone, and not letting any other buyers and

sellers trade. This special mechanism, which probably fails to maximize

lZThey assume that the interiors of ey, d;]
overlap. This rules out solutions of the form G(&) > 6 Our definition
of what constitutes a trading problem (F, H) includes the weaker

assumption that, for some i and some j, by > c. This latter assumption
is consistent with buyers' reservatlon vaiues being greater than
sellers' reservation values with certainty. In such cases the a*-

mechanism is ex post efficient as well as ex ante efficient, the
individual rationality and incentive compatibility constraint is not
binding, and the sum of traders' ex ante expected utilities is positive.



the total gains from trade, 1is individually rational, incentive
compatible, and has positive total expected gains from trade since it
gives that one pair positive ex ante gains from trade. The a*-mechanism
mist do at least as well; it thereforg mist also have positive expected

gains from trade.®

Theorem 3. Let (F, H) be a trading problem. If, for all buyers i
and sellers i, the functions W§(-, 1) and w?(o, 1) are
nondecreasing in Xq and zj, then an a*-mechanism exists that is ex
ante efficient, individually rational, and incentive compatible for

(F, H). Moreover, the sum of the traders' ex ante expected

utilities is positive.

If the conditions on the functions W? and W§ are not satisfied, then
possibly, for some i or j, Sz*(°) or ii*(~) is decreasing. If so,
Theorem 1 no longer applies and the a*-mechanism 1is not incentive
compatible. Therefore, for trading problems that do not satisfy Theorem
3's conditions, we do not know (1) 4if 1incentive <compatible and
individually rational mechanisms exist that result in some trades being
realized and (ii), if they do exist, what form the ex ante efficient
mechanisms then assume.

Proof of Theorem 3. By hypothesis, for all buyers i and sellers
i, W?(‘, 1) and W§(°, 1) are nondecreasing. This implies that, for
every & in the unit interval, w?(-, a) and wi(-, a) are nondecreasing.

. . . . a . ; .
This then implies that, for every i, pi(x, z) is nondecreasing in xy
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and, for every j, q?(x, z) is nondecreasing 1in zj. Therefore

E:(-) and a?(') are nondecreasing as Theorem ! requires.

If G(0) » 0, then the conditions of Theorem 2 are met and the proof
is done. If G(0) < 0, then we must show that an a* £ (0, 1) exists such
that G(a*) = 0. We do this by showing that G(*) is continuous and G(1l)
> 0. These two facts, together with G(0) < 0, imply that an a*

€ [0, 1] exists such that G(a*) = 0. Theorem 2 then applies.

G(a) may be rewritten as follows:

\q

M h
G =/...J{ } wB(xi,l)pai(X,z) -7 1lJS.(z.,l)[l—qc.l(x,z)]}g(X,z)dxdz
i=] =13 ] J
(51)

" bi B - Ay dj S -
=i2=l jai UHCIRPCHIICIL N —j;l jcj IACRDICUHCRIL LS

where each term has been integrated M+N-—-l times. G 1s continuous if
each of 1its terms 1is continuous. Each of them are continuous 1if
every pi and qj is continuous. Define the function A to be:

A (x ,,z, @) = {minimal x, € [a,,b.] | R, (x, 2z, @) < N }.
1 -1 1 1 1 1 .

Thus, given x_ z, and @, A is the smallest value of X that results in

i’
i's virtual reservation value ranking in the top N. Define Aj(x, Z—j’

@) analogously. All the A functions are continuous because the
B )
underlying wi and V¥ ; are continuous. Without loss of generality,

consider ET(XI):
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g ) = be. . de-l de a

pl(x,z)g(x_l,z)dx_ldz
2 SN-1 S

b d d
2 N-1 N

= f e e f {fALhN(zN)dzN} g(x_l,z_N)dx_ldz_N
) SN-1 N

(52)

where AV = AN(x,z ,2). It is continuous because of the continuity of
3 -

N
both A and the density functions hy and g. Exactly parallel arguments
follow for every other i and j.

The argument that G(l1) > O is this. Suppose that G(l1) = 0. Lemma
5 showed that G(a) is unimodal with its mode at one. Incidental to its
main thrust, the proof of Theorem 2 established the existence of an a
such that, for all a > 5, G(a) = 0, The trading mechanisms associated
with these roots of G are mechanisms that never permit any trades to be
realized and thus have zero expected gains from trade. The unimodality
of G therefore implies that G(l) > 0. The unimodality of G then
further implies that a <1 and no @ < a exists such that G(a) = 0. This
means a* = a and the no trade mechanism maximizes the gains from
trade. Therefore no mechanism exists that gives positive expected gains
from trade. But Myerson and Satterthwaite's theorem applies; therefore
for at least one buyer—seller pair a trading mechanism exists that gives
positive expected gains from trade. This contradicts the conclusion

that no mechanism exists that has positive expected gains from trade.®



An Example

In this section we construct ex ante efficient, incentive
compatible, and individually rational trading mechanisms for the special
class of trading problems (F, H) where the number of buyers equals the
number of sellers (N = M) and all traders' reservation values are
identically and wuniformly distributed on the wunit interval. The
distribution from which traders' reservation values are drawn satisfy
Theorem 3's requirements for existence of ex ante efficient a*—
mechanisms. We use numerical methods to calculate efficient mechanisms
for varying numbers of traders and observe that, relative to the ex post
efficient mechanism, the expected gains from trade the ex ante ;fficient
mechanism fails to realize decreases in a quadratic manner.

Theorems 2 and 3 establish that ex ante efficient mechanisms are
a*-mechanisms. Therefore the key problem in constructing an optimal
mechanism for a given number of traders is to calculate the solution to
G(a) = 0 that lies within the unit interval. Given that N = M and

traders' reservation values are uniformly distributed over (0, 1],

p(x,0) = (L +adx, - o

and

w§<zj,a> (A +ak..

Since N =M the equation G = 0 reduces to

6(a) = N { [5 ¥* 0o DF @EGax - [§ 7 (2, 1.3 () In(2)dz |

N { [g(x = D% Gddx = [ 2200 - (2))dz | = 0.
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where the first line is the form of G found in equation (51) and all i
and j subscripts have been supressed because all traders are symmetric
with each other. It may be rewritten as:

jé {12x = 113%x) - 2x[1 - )]} dx = o. (53)
This is the key equation that we must solve for a in order to construct
ex ante efficient mechanisms.

Calculation of the marginal probabilities Ea(x) and Ea(z) is messy

and requires some new notation and preliminary calculations. Let

B
and
S
w, =v.(z,, a).
5705y
That Yi and Wj are functions of o and, respectively, Xy and zj is

important and should not be forgotten, even though we suppress their

arguments. Given that every X4 and zj is uniformly distributed over

(0,11, y; and W have densities:

1/1+a  if y,& (=, 1]

]
——

f(yi)
1
and
1/1+a  if we[0,l+a]
]

1]
——

hiw.)
J 0 if wjd[O,l+<1].

Whether fi and hj denote the densities of Y3 and wj or xy and zj is
generally obvious from the context and should not create confusion. If
s is a given scalar within the interval [—a, 1], then

P(y, <s) =fial/(l+a)dt = (s+a)/(l+a)

and
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P(yi >s) =1- (s+a)/(l+a) = (1-s)/(1l+a)
where P(y; < s) is the probability (conditional on the value of &) that

y; is less than s. Similarly, if s ¢ [0, 1+a], then

P(w, <8) = [o Tdt = s/(1+)
and
P(wj >sg) =1 = s/(l+) = (1+ a=-s)/(l+a).

Given this notation and results, calculation of Ea(°) and aa(.) divides
into four cases.
Case 1l: Ea(xi) when X, e [0, a/(l+a)). If buyer i's reservation

value, x falls in this interval, then 1its associated wvirtual

i
reservation value, yi(xi), falls in the interval [—a, 0). A necessary
condition for p?(x, z) =1 is that y; must have rank no greater than N
relative to all buyers' and sellers' virtual reservation values. This
is 1impossible because the N sellers' wvirtual reservation values are
distributed over the interval [0, l+a}; therefore all N of the sellers'
virtual reservation values outrank y; and p?(x, z) =0, This means

—

p (%) = 0.

Case 2: Ea(xi) when x; € [@/(l+a), 1}]. If buyer i's reservation
value, X4 falls in this interval, then its associated virtual
reservation value, yi(xi) falls in the interval {0, 1]. The marginal
probability Ea(xi) is the probability that the virtual reservation value
yi(xi) has rank no greater than N relative to all buyers' and sellers'
virtual reservation values. Equivalently, since there are N buyers and
N sellers, it is the probability that at least N buyers and sellers have

virtual reservation values that have greater rank than Yi- Thus:
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p.(xi) = P{R[yi(xi)] <N | y; =s &se (0, 1]}
N-1
= Lpoo PGy, <s) =k & Flay <s) > (=)

where (i) R(yi(xi)) is read as the rank of the virtual reservation value

Yy relative to all other buyers' and sellers' virtual reservation values

and (ii) #(y2< s) = k is read as the number of buyers
2 (2 =1, « « «, N3y 2 # 1) whose virtual reservation values, y,, are
less than s 1is equal to k. Given these probabilities and the

independence of the traders' reservation values, calculation of the
probability is straightforward using the binomial formula:

1
;%ﬁ)=ﬁ;P{M%<®=k&M%<Q>(MH}

N-1 N
=iﬁi”ﬁ?§§%%:§fﬂ*- ] Bt =™ (54)
k RNk
2N-1 N-1 N
= <T£;> kZO ) k(Nkl)(i)(S+ﬁ)k(l—S)N_k_lsm(l+ ams)' "

Case 3: aa(zj) when zj = (1/(l+a)]. This case parallels case 1.
Given the interval from which seller's reservation value Z; is drawn,
the virtual reservation yalue wj(zj) must lie in the interval (1, l+a].
Consequently, it is greater than every buyer's virtual reservation value
and has a rank no greater than N. Therefore aa(zj) =1,

Case 4: aa(zj) when zj e [0, 1/(l+a)]. This case parallels
case 2.

3 (z.) =P{RIw,(z,)] <N | w, =s &sc [0, 1]}
] N ]

= [hog PG, < 8) = k & H(y < s) > (N=K))
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N-1 N
_ N-1 s kl+a-=-sNl%k Ny,s +am, 1 = s\Nm
.-Eﬂ(k)(l+a)< l +a ) 21(J<l+a)(l+a)
N~-1 N
- 2T T MG e - 0¥ ) - o
k=0 N~k

- - .

When these parameterizations for p and q are substituted into form
(53) of the equation G(a) = 0, the result is intractible. We therefore
utilized a numerical integration routine and a numerical nonlinear
equation solver in tandem to find its zeros.

Table | presents the results of the calculations when the number of
traders on each side of the market varies from one to twelve.13 For this
special case of uniformly distributed reservation values, the calculated
values of a* have the following interpretation. If buyer 1 has
reservation value Xy and seller j has reservation value Zj’ then a necessary

. Q* a*
condition for both i and j to trade (pi (x, z) =0 and qj (x, z) = 1) 1is that
i's virtual reservation value be greater than j's virtual reservation
value, i.e wB(x a*) = y.(x;) > w.(z,) = ws(z a*), Manipulation of

’ ey i i’ i i J J j j)
this inequality shows that it can only be satisfied if the buyer's
reservation value, X, exceeds the seller's reservation value, Zj’ by at
least a*/(l+a*). 1In other words, a necessary condition for both buyer i

and seller j to trade is

a*
xi = zj > T+ ar

This required, positive difference in reservation values is the wedge

that results from imperfect information whenever the number of traders

l3The Table's a* entry for N = M = 1 agrees with the value that
Myerson and Satterthwaite (1981) calculated analytically.



is small. Its presence is what makes the achievement of ex post
efficiency impossible. Note that as a* becomes small the size of this
wedge becomes essentially equal to the value of a* itself. The fourth
column displays l/a* and shows that a* is apparently bounded from below
by 1/2N. Therefore in the limit as the number of traders becomes large
the wedge vanishes at the same rate 1/2N approaches zero.14

The column labeled "Gains(a*)" contains for each size market the
expected gains from trade for the ex ante efficient, a*-mechanism. As
was stated in the introduction,'by expected gains from trade we mean the
average gains from trade that the N+M traders would realize if (i) they
trade repeatedly using the a*-mechanism a large number of times and (ii)
for each repitition their reservation values are freshly and
independently drawn. The column ‘labeled "Gains(0)" contains the
expected gains from trade that an ex post efficient mechanism would

generate, if such a mechanism were to exist.15

The "Efficiency” column
is column five divided by column six. It represents the proportion of
the expected gains from trade that the ex ante efficient mechanism

achieves relative to the expected gains from trade that an ex post

efficient mechanism would achieve.

14This statement 1is conditional on the validity of extrapolating to
large N on the basis of numerical results contained in Table 1.

15The gains from trade for both the ex ante and the ex post
efficient mechanisms are calculated using the probability schedules
(p%, qa) substituted into equation (20). As the labeling of the columms
suggests, & 1is set equal to a* for the ex ante case and to zero for the

exX post case.
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Table 1: Properties of the a*-Mechanism as the Number of Buyers and
Sellers Varies.

N=M a* a*/(l+a*) 1/a* Gains{a*) Gains(0) Efficiency
1 .3333 .2500 3.00 . 14060 .16667 8436

2 . 2256 .1841 4,43 37746 .39999 . 9437

3 .1603 .1382 6.24 .62572 .64286 .9733

4 .1225 .1091 8.17 .87527 . 38887 .9847

6 .0827 .0764 12.09 1.37507 1.38462 .9931

8 .0622 .0586 16.08 1.87504 1.88235 .9961
10 .0499 L0475 20.04 2.37501 2.38095 .9975
12 L0416 .0399 24,04 2.87501 2,88000 .9983

These calculations demonstrate that-——for this particular example of
a simple market—~the inefficiency of 1imperfectly competitive trade
disappears in an approximately quadratic manner as the number of buyers

and sellers increases. Thus when the number of buyers and sellers total

twelve the inefficiency of the a*-mechanism is 1.0000 - 0.,9931 =
0.0069. When the number of traders doubles to twenty-four the
inefficiency is cut to 1.0000 - 0.9983 = 0.0017, almost exactly one-

quarter that of the six buyer and six seller case. Moreover, by the
tiﬁe the market reaches ten or twelve traders, the inefficiency is down
to the negligible level of about lZ%Z. .

That the inefficiency disappears quadratically with the number of
traders is not surprising given that a* decreases at the rate of 1/2N.
This latter fact means that as the number of traders doubles, the wedge
is approximately cut in half. Therefore, in expected value terms, the

proportion of trades that (i) would be realized if the mechanism were ex



post efficient and (ii) are excluded by the ex ante efficient mechanism
is also cut in half as the number of traders doubles. Additionally,
those trades that the ex ante efficient mechanism with the doubled
number of traders excludes are trades that possess only half the
expected gains as do the trades the ex ante efficient mechanism excludes
when the number of traders is undoubled. This 1is because excluded
trades have at most gains from trade equal to the size of the wedge.
Therefore doubling the number of traders has two, sequential effects on
the inefficiency of the a*-mechanism: (i) it cuts in half the
proportion of desirable trades that are excluded from being realized and
(ii) it cuts in half the average size of the gains from trade lost from
each excluded trade. The two effects are mltiplicative; therefore a
doubling of the number of traders cuts the a*-mechanism's inefficiency

by a factor of four.
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Conclusions

In this paper we have developed a general technique for computing
the ex ante efficient trading mechanism when the number of traders on
each side of the market is arbitrary and each grader’s reservation value
is independent of the other traders' reservation values. Using our
technique we computed the ex ante efficient mechanism for markets where
(i) traders' reservation values are uniformly, independently, and
identically distributed and (ii) the number of traders on each side of
the market ranged from one to twelve. These calculations showed that
the efficiency of the ex ante optimal mechanism approaches ex post
efficiency in a quadratic manner. Thus by the time each side of the
market contains six traders the ex ante efficient mechanism 1is
essentially ex post efficient. Our conjecture is that these numerical
results are robust asymptotically with respect to how the reservation
values are distributed. Specifically, we conjecture that if reservation
values are drawn independently and identically from a differentiable and
positive density function defined over a closed interval, then
asymptotically the ex ante efficient 'mechanism converges to ex post

efficiency in a quadratic manner.
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