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1. Introduction

Two kinds of incentive—constraints limit people's ability to reach
mutually beneficial agreements in social and economic affairs. First, when
one person has unverifiable private information that is not available to the
others, then he cannot be compelled to reveal that information honestly unless
he is given the correct incentives. Second, when a person controls some
private decision variable that others cannot control or monitor, then he
cannot be directed to choose any particular decision or action unless he is
given the incentive to do so. That is, a social contract or coordination
system may not be feasible if it gives people incentives to lie about their
information or to cheat in their actions. An organization must give its
members the correct incentives to share information 'and act appropriately. An
individual cannot be relied upon to testify against himself or to exert
efforts for which he will not be rewarded.

It is widely recognized by economists and other social scientists that
this need to give correct incentives may be quite costly for society. In the
insurance industry, for example, the inability to get individuals to reveal
unfavorable information about their chances of loss is known as adverse
selection, and the difficulty of getting fully insured individuals to exert

efforts against their insured losses is known as moral hazard. These factors

generally prevent the insurance industry from offering risk—averse individuals
the full insurance that they would like t» buy. Arrow [1970] has written a
seminal analysis of these issues and their impact on markets for risk-
bearing.

A theory of incentives must go beyend simply telling us that certain
ideal forms of social organization are infeasible because they violate

incentive constraints, and that incentive constraints cause losses in social



welfare. We also need té know how to minimize these losses. That is, given a
social welfare function, we may want to find the best contract or social
system that maximizes social welfare subject to these incentive constraints.
In this paper we will see how the theory of Bayesian equilibrium and
incentive—compatibility can be used to actually find such optimal contracts.
The basic object of analysis in this paper is a Bayesian game with
incomplete information, as defined by Harsanyi [1967-8]. 1In our notation, we
suppose that there are n players in the game, and that they are numbered
i, 2, ..., n. For each player i in {1,2,...,n}, we let D; denote the set of

possible actions or strategic decisions available to player i in the game. We

let T; denote the set of possible types for player i. Each type t; in T; is a
complete description of one possible state of player i's private information
and beliefs about any uncertain factors relevant to the game (for example,
about the preferences-and abilities of various players). That is, a player's
type is supposed to be a random variable th;t summarizes all.information that
he may have which is not available to the other players.,

Let D denote the set of possible combinations of decisions available to

the n players, and let T denote the set of possible types of the n players, so

that
(1.1) D =Dy % ... xDp,
(1.2) T=T) X e0s X T,-

Let T_; denote the set of possible combinations of types for all players other

than i, so

(1._3) T_i = Tl X ceee X Ti_l X Ti+1 X e o X Tno

Except in section 2, we will usually assume that D and T are finite sets.



We let pi(t_i|ti) denote the subjective probability that player i would
assign to the event that t_; in T_; is the combination of other players'
types, if i's actual type were tj. We let ui(d,t) denote utility payoff
(measured in some von Neumann-Morgenstern utility scale) that player i would
get if 4 = (dl, e, dn) were the combination of decisions chosen by the n

players and t = (tl, ooy tn) were the combination of the players' types.

Thus, in general, we say that T is a Bayesian game iff it is of the form

(1.4) I'=(Dy, eeey, Dy Tyy evey Tp, Pys ee+3s Pps Ups seey un)

where, for each i, Di and Ti are nonempty sets, p; is a function specifying a

and u; is a

probability distribution (pi(-,ti)) over T_; for each t; in T,

function mapping D x T into the real numbers R. In a Bayesian game, we
assume that the structure of T in (1.4) is common knowledge among all the
players, plus each player i knows his own actual type in Ti' (Following Aumann

[1976], we say that a fact is common knowledge iff everyone knows it, everyone

knows that everyone knows it, and so on, including every statement of the form
"everyone knows that everyone knows that ... everyone knows it.™)

Bayesian games are important for economic theory because they give us a
general model for situations involving moral hazard and advyerse selection.
The goal of this paper is to provide a general introduction to the analysis of
Ba?esian games. ~ In section 2, we show that Ehe Bayesian . game model is (in
principle) the appropriate model for &ny game with incomplete information,
following the work of Harsanyi [1967-8) and Mertens and Zamir [1982]. 1In
section 3 we discuss equivalence relations between Bayesian games. In
section 4, we argue that Bayesian equilibrium is the appropriate solution
concept for Bayesian games, if the players cannot communicate. For games in

which the players can communicate, we define Bayesian incentive compatibility



in section 5, to characterize the set of feasible coordination mechanisms for

the players. An incentive-efficient mechanism is one that is Pareto-

undominated within the set of incentive—compatible mechanisms. 1In sections 6,
7, and 8, we develop necessary and sufficient conditions which can be used to
actually compute incentive-efficient mechanisms. Section 6 is devoted to the
special case in which there are only informational incentive constraints (the
case of pure adverse selection); section 7 is devoted to the case in which
there are only strategic incentive constraints (pure moral hazard); and

section 8 covers the general case.

2. Modelling games with incomplete information

We say that there is incomplete information in a game if, at the time

when the players choose their strategies for playing the game, they have.
different private information about their preferences and abilities. This
term was introduced by Von Neumann and Morgenstern [1944]. (They also used

the term imperfect information, to describe games in which the players may get

different private information during the course of the game, but all players
begin the game with the same information. The distinction between the two
terms seems to depend on whether the players actually could

have planned their strategies in the game before learning their private
information.) The real understanding and analysis of games with incomplete
information began with the work of Harsanyi [1967-8], who introduced the basic
definition of a Bayesian game aqd argued that it 1is the appropriate model for
games with incomplete information. Mertens and Zamir [1982] developed a
rigorous mathematical formulation of Harsanyi's argument. In this section, we

review the ideas of these two important papers, using a formulation based on



(but slightly differeant from) that of Mertens and Zamir. Armbruster and Boge
[1979] have also.considered a related formulation.

A model of a game with incomplete information mst include variables that
describe what private information each player might have that is unavailable
to other players. In Harsanyi's Bayesian games, these variables are the
players' types. Thus, player i's type must specify everything that player i
knows that 1is not common knowledge among all players. For example, if player
i's only private information is his reservation wage rate, then we éan let his
set of possible types Ti be a subset of the real numbers, where each ty in Ti
is a possible value of player i's reservation wage. On the other hand, if
some players do not know what are i's beliefs about other players' reservation
wagés, then player i's type must be expanded to also include parameters that
specify player i's beliefs about other players' reservation wages. In this
case, Ty might have to be a set of vectors, rather than a set of numbers.

The basic question to be considered in this section is the following.

When we are trying to model some real-world situation in which players have
incomplete information, can we always find type-—sets (Tl’ ey Tn) that are
large enough to characterize all of the possible private information and
beliefs that a player might have relevant to the game? To answer this
question, we must consider what are the uncertainties that may arise in the
structure of a game, and we must show that the players' beliefs about all these
uncertainties can be specified within the type-sets of some Bayesian game.

There aré several basic issues in a game about which players might have
different information: how many players are actually in the game; what
actions or strategic decisions are available to each player; how the outcome
of the game depends on the actions chosen; and what are the players'

preferences over the set of possible outcomes. Harsanyi showed that all of



these issues can be modelled in a unified way. Uncertainty about whether a
particular player is "in the game” can be converted into uncertainty about the
set of feasible decisions, by always including the player in the game but then
giving him only one decision (= "nonparticipation”) when he is supposed to be
"out of the game.” Uncertainty about whether a particular decision is
feasible for player i1 can in turn be converted'into uncertainty about the
outcome, by saying that player i will get a very bad (negative) payoff if he
uses a decision that is supposed to be infeasible. Uncertainty about outcomes
and uncertainty about preferences can be unified by modelling each player's
utility function directly from the space of decision—combinations into utility
payoffs (representing the composition of an outcome function, that maps
decision—combinations into outcomes, and a utility function, that maps
outcomes into a vonNeumann-Morgenstern utility scale for the player).

So let {1,2,...,n} be the set of players, let Di be the set of possible
actions or strategic decisions for player i, and let D being the set of
possible combinations of decisomns, as in (1.1). To be consistent with the
preceding discussion, we might say that n is the maximal number of players,
and D; is the maximal set of feasible decisions for player 1.

To model the uncertainty in the game, we must put some unknown
parameter r) into the utility functions. Thus, we let wi(d,g) denote the
utility payoff to player i if d = (dl’ -++, d.) is the combination of actioms
chosen by the n players and if § is the value of this unknown parameter. We
let H denote the set of possible values of 3, and we refer to H as the domain
of basic uncertainty in the game. If D is finite, we can assume without 105;
of generality that H is a subset of EPIDl, because the only role of 8 is to
specify the n utility functions from D iato the real numbers IR. Furthermore,

if the players' utility functions are bounded, then we can assume that H is a



subset of the n|D|—dimensional unit cube.

These structures (Dl’ eees Dy Hy Wy, e, wn) are not sufficient to

n?
describe the game with incomplete information, because they do not tell us
what are the players' beliefs or information about the unknown parameter 3.
The subjectivist theory of Bayesian decision-making, as developed by Savage
[1954), Raiffa [1968], aund others, emphasizes that any individual must have a
subjective probability distribution over the possible values of any parameter
that he does not know. That is, if player i does not know 5’ then he must at
least have some subjective probability distribution over H that summarizes his
beliefs about this unknown parameter 8. His subjective probability
distribution for g can be measured by asking him questions about which gambles
depending on ® he would prefer. (For example, to assess a player's subjective
probability of the event that 8 is in a set ¥, where Y C H, we would ask him,
for what objective probability of getting an increase of one utility-unit
independently of 5 would he be just barely willing to give up a prospect of
gaining one extra utility—unit if 5 is in ¥.) Our description of a player as
a rational decision—maker will be incomplete until we specify these subjective
probabilities.

We let ai represent player i's subjective probability distribution over

H. That is, for any Y C H, Ei(W) is i's subjective probability for the event

that 8 ¢ ¥. We refer to ai as the first-order beliefs of player i.

In a gawe, a player's optimal decision will generally depend on what he
expects the other players to do. And what he expects the other players to do
will depend on what he thinks they believe.' Thus we must now ask, what does
player i think are the other n-1 players' first-order beliefs? Subjectivist
decision tﬁeory implies that each player i must have a subjective probability

~ ~J

~1 ~]
distribution for these unknown first—order beliefs (ql, cees G5y G440 v qn)



as well as for 5. We let ai denote this subjective probability

distribution. We refer to ;i as the second-order beliefs of player i. But
now there are third-order beliefs (beliefs about the other players' second-
order beliefs) to be assessed, and so on. We seem to be getting into an
infinite regress.

Mertens and Zamir [1982] have shown that it is possible to keep track of
this infinite hierarchy of beliefs within a consistent mathematical model, so
that there does exist a Bayesian game with type sets that are sufficiently
large to include all of a player's possible beliefs of all orders. To see how
this is done, we must use some relatively sophisticated mathematics. Readers
with less mathematics are encouraged to skim or even omit the rest of this
section, as nothing in sections 3 through 8 will depend on it.

Given any metric space X, we let A(X) denote the set of all probability
distributions on X that are defined on the set of Borel-measurable s;bsets of
X. We give A(X) the weak topology, which is defined so that [f(x)p(dx) is a
continuous function of p in A(X) for every bounded continuous f:X + R. If X
is compact, then A(X) is also compact and metrizable. Billingsley [1968]
gives a full development of this result.

Now, let Q% denote the set of i's possible first—order beliefs

(probability distributions over H); that is

(2.1) Qi = ACH).

We can inductively define QE, the set of possible k-order beliefs of player i,

fOI‘ k= 2,‘3,4,.00, by

(2.2) Q= A(H x QE; )

k-1 k-1 k-1 k-1 k-1
where Q = Q1 X aee X Qi—l X Qi+l o



That is, a k—order belief for player i is a probability distribution over the
possible values of B and the other players' (k-1)-order beliefs. By

induction, if H is compact then every Q% is also a compact set (with the weak

topology). We let ai denote the actual k-order beliefs of player i, in Q?.

A player's k-order beliefs determine his beliefs of all orders lower than

kol QE + QE—I, which can be defined

k, through a series of functions ¢i P Qs ;

inductively. The function ¢; is defined by
1, 2 2 1 2 2 .
(2.3) (@)Y = qi(¥ x @ ), ¥qjeQ;, W H.

That is, the first-order beliefs ¢i(qi) that correspond to second-order

beliefs qi are just the wmarginal distribution of qi on H. We inductively

k-1 k
define ¢i (qi)’ for every k > 3 and every q? in Q?, by

k-2 k—l)).

28 e @M = ape(a ) L] e (el @),

j Y3t ) YD,

¥¥C H x Qli_iz.

That is, the probability-under ¢?—1(q§) of a set of (k—2)-order beliefs is the
probability under qi of the (k-1)-order beliefs that are mapped into the set
by the functions ¢§_2. By the laws of probability, each player's first-order

beliefs must be the marginal distribution of his secoand-order beliefs on H, so

~1 1~ ~11,~2
q; = ¢i(q§) for each player i. Each player i1 also knows that qj = ¢j(qj)
for every other player j (since i knows that j's beliefs satisfy the laws of

~2

. . 2~
probability), and this fact implies that q = ¢i(qi) for player i.

Continuing inductively, we conclude that

~k-1 k-1 ~k )
= 2

because it is common knowledge that every player's beliefs satisfy the laws of

probability.



We let Q; denote the set of all possible beliefs of all orders for

player i, that is

@ (1 2 “ % k-1 _ k-1, k
(2.5) Q, = {qi—<qi,qi,---)sk:10i | a5 =6 (@), ¥k}

In the terminology of Mertens and Zamir [1982], Q: is the universal belief
space for player i generated by H, the domain of basic uncertainty. Mertens
and Zawir have shown that, if H is compact, then the universal belief space
generated by H is also a compact topological space (with the product topology).

Any q; in Q: induces a probability distribution on H x Qii’ where

@
X se. X Qn’

and we let Pi(' qi) denote this prbbability’diStribution. If ¥ is any closed

subset of H x Qii, then the induced probability of V¥ is

.k k-1
(2.6) Pi(¥lap) = Lim a({Ce, (a7, 0] (8,(ay) 00 € ¥D.

ko2

(Here q: denotes the k-order component of q;, and q§—1

denotes the (k-1)-order
component of qj.) In fact, Mertens and Zamir have shown that Pi(") is a
homeomorphism between Qi and A(H x Qii). That is, player i's universal

belief space Qi includes all possible (Borel-measurable) beliefs about the

basic uncertainty in H and the other players' infinite hierarchies of beliefs

Notice now that the random variable 6 cannot directly influence any
player’s behavior in the game, except to the extent that players have
~ . ~ a4
information about 8 that is expressed in their beliefs (ql’ coey qn). So we
can integrate the basic uncertainty variable out of the probability and

utility functions without losing any structures relevant to predicting

[+-)
players' behavior. For any q9; in Qi’ we let Pi('iqi) be the marginal



probability distribution of Pi('

b —
qi) on Q_,. For any q = (dy, +oes q)
no_ N
in x Qj’ we let “i(d’q) denote the conditional expectation of wi(d,S), under
j=1

the conditional probability distribution for 5 induced by q;, given
that q_; (the vector of actual beliefs of players other than i) is equal to

the vector a_; = ((ql,...,qi_l,q That is, we may write:

i+1,...,qn).

. = i ® C ® :
(2.7) p(¥lay) = P (Hx¥[q),  ¥i, ¥qeQ,, ¥ ESQ_;

n
2.8 = | 9. = i, ¥ ¥ »
(2.8) u; (d,q) Eqi(wi(d,e)l q_; =4_;)» ¥i, ¥deD, qaj:l Qj

Thus at last we get the universal Bayesian game,

I‘m -] o0
= (Dl’ cen, Dn’ Ql’ ceay Qn’ Prs =ots Pos Ups eoes un).

For each i and each g; in Q:, pi(' qi) is a probability distribution

n
co (=]
over Q—i’ and u; is a function from D x ( x Q.) into IR; so I is indeed a
j=1

Bayesian game. By construction, Q: is large enough to include all possible
private information or beliefs that player i might have about the preferences
and beliefs of all players in the game.

At this point, however, we must admit that our model seems to have gotten

out of hand. Cowmpact or not, Q?

i 1s an extremely complex mathematical object,

by any standards of intuition. We started out to describe games in which
players have some uncertainty about each others' preferences and beliefs. We
found that, in.such games, the beliefs of each player consist of an infinite
sequence of subjective probability distributions over sets of probability
distributions. The higher-order beliefs of a player could be critical to
determining how he plays the game, so game—theoretical analysis requires that,

for each player, this whole sequence of subjective probability distributions



must be specified by a variable in our model. But the set of all such
sequences of probability distributions is too large for practical analysis,
either by game theorists or by the players in the game! Thus, for a tractable
énd relevant model, the players' beliefs must be restricted to some smaller
subsets of universal belief space.

The way to limit the explosion of uncertainty about beliefs about beliefs
is to assumé that it is common knowledge that the beliefs of each player i are
in some set T; which is a2 small subset of Q:. This idea is the key insight of
Harsanyi's classic paper. 1f each set T; is tractably small (finite, or
parameterized by a single variable in IR, for example) the result will be a
manageable model which can give useful insights.

For it to be common knowledge that the actual type of each player i is in

T;s

the set T;x...xT  must be a belief-closed subset of QTx...xQ:, in the
sense éhaé

(2.9) pi(T_i ti) = 1, Vi, ¥t;eTy,

where T_; is as in (1.3). That is, (2.9) asserts that every type in T; puts
probability one on the event that every other player j has beliefs
corresponding to some type in Tj-

Mertens and Zamir have shown that finite belief-closed subsets are dense
among the belief-closed subsets of QTx...xQ:, in a topology that seems natural
(the Hausdorff topology for closed sets). This result suggests that there may
be "almost” no loss of generality in assuming thét'the players' beliefs are in
such a finite belief-closed subset.

Thus, let us assume that there is such a finite belief-closed set
T = TyXe..xT, such that it is common knowledge that every player i has

beliefs that correspond to some point in Ti' Then we can refer to Ti as the

set of possible types for player i; and by restricting the functions P and uj



to the domain Té;:QTX...xQ:, we get a finite Bayesian game T as in (1.%).
In general, of course, the type-sets (Tl""’Tn) in a Bayesian game I do
not actually need to be specified as subsets of universal belief space. For
example, as remarked above, if a player's only private information is his
reservation wage rate, then we can simply let Ti be a set of the real numbers,
where each ty in.Ti is a possible value of i's reservation wage. Given any

Bayesian game I as in (l.4), for every type t; in T the corresponding

i»
infinite hierarchy of beliefs (i's beliefs about the other players' types, his
beliefs about their beliefs, etc.) can be computed.from the probability
functions (pl,...,pn); so T; is isomorphic to a subset of a universal belief
space, even if it is not identified as such. The purpose here of developing
the concept of universal belief_space was only to verify that any game
situation with incomplete information can in principle be modelled as a
Bayesian game, by letting each T; equal Q? if no smaller sets will do. On the
other hand, we must recognize'that the complexity of universal belief space
implies that the Bayesian—-game model will in practice be applicable only to
those game situations where there is enough common-knowledge structure so that

each player's private information can be described within a small and

tractable set of types.

3. Consistent beliefs, and equivalent Bayesian games

Harsanyi defined the beliefs (pl, «+s, Pp) to be consistent iff there
exists a probability distribution p* on the set T such that each players'
conditional distribution, given his own type, is identical to that which would

have been computed from p* by Bayes theorem; that is,

. * *
(3.1) pi(t—ilti) =p (t)/p; (t,), ¥t,eT,, ¥t_,eT .,



where

* *
(3.2) pi(ti) = Y op (b)), VtieTi.

(We use here the convention that, whenever t, t and t; appear in the same

_i,
th

formula, then t is the vector of types with i component t; and all other
components as in t_;.) Harsanyi has argued that we might expect that most
Bayesian games which describe real situations ought to be consistent, because
the players' types may have been jointly determined before the game by some
chance event governed by the distribution p*.

We have been careful not to speak of "i's subjective probability
distribution over T;" at any point in this discussion. This is because player
i already knows his type when the game begins. Even if there had been a time
before the game when he did not know his type (and there might not have been
any -such time, for example if the type is his or her gender), the subjective
probability distribution that he would have assessed for his own type cannot
have any decision—theoretic significance in the play of the game. However, if
there had been a time before the game when no player knew his type and if all
players had the same prior beliefs p*, then the type-conditional beliefs
(Py»+«-»P,) should be consistent with p*.

Interpersonal comparisons of utility cannot be given decision-theoretic
significance. That 1s, there is no decision-theoretic meaning for a statement
such as "a movie gives me more utility than an opera gives you”, because
neither of us could ever be forced to choose between being me at a movie or
being you at an opera. Now, for games with incomplete information, we assume
that each player already knows his own type before he makes any decisions

relevant to the game. Thus, when the game is played, intertype comparisons of

utility are also decision-theoretically meaningless. When a player already



knows his type, he cannot be asked to choose it. We cannot ask a player
“"would you prefer to be an opera fan at the opera or be a non—opera—fan at the
movies”, when he already knows whether he is an opera fan or not.

Thus, the utility scales of different types can be specified
separately. From basic decision theory, it is well known that vonNeumann-
Morgenstern utility scales can only be defined up to increasing linear
transformations. Thus we say that two Bayesian games with the same decision

sets and type sets

-
I

= (Dl, eony Dy Ty weey Ty Pys ey Pps Ups see, Uy)

and

= (Dyy wees Dy Tyy weey Ty Py wees P

—
1

e Upe v un)

are utility-equivalent iff they have the same conditional probability

distributions (so P, = Py for all i) and there exist numbers ai(ti) and

b;(t;), for each i and each tj in T such that

i
ai(ti) > 0 and ui(d,t) = ai(ti) ui(d,t) + bi(ti), ¥deD, ¥teT.

That is, utility-equivalent Bayesian games differ only in that the utility
functions of some types of some players may be linearly rescaled. The
Bayesian equilibria and incentive-compatible mechanisms (to be defined later)
of two utility-equivalent games will be the same.

Whenever a player chooses an action or decision in a Bayésian game, his
criterion for the best decision is that it should give him the highest
conditionally expected utility, given his actual type. Expected utility is
computed by multiplying utilities times probabilities and then summing over

all possible values of the unknowns. For example, if some



function ¢:T *+ D determined how the players' decisions depend on their types,

then the conditionally expected utility for type ts of player i would be
I opy(e ]t u (a(e),e).

We define z;:DxT + IR by
zi(d’t) = pi(t_ilti) ui(d,t), ¥deD,  ¥teT,

and we call z; the evaluation function for player i. (See Wilson [1968] and

Myerson [1979b] for the origins of this term.) Because only this product of
probability-times—utility matters in computing expected utilities, we say that

two Bayesian games are probability-equivalent iff they have the same decision

sets Di and type sets Ti and evaluation functions z; for all players; that is
pi(t_ilti) u, (d,t) = pi(t_ilti) ui(d,t), ¥i, ¥deD, Vth.

Probability-equivalence is important gecause it assures us that
consistency of beliefs is not an issue of basic importance in studying general
Bayesian games. In particula?, if the type sets are all finite then any
Bayesian game is probability—-equivalent to another Bayesian game with
consistent beliefs, and even with stochastically independent types for the n

players. (Simply let

A 1 ~
Lt L t) =57 and = [T t t u, (d,t).
p (t_;[t) 7] u(d,e) = |T_ | p (e [e;) u (d,0)0)
Consisténcy of beliefs can be important only when we also want to make some
restrictions on the form of the utility functions, such as when we assume that
there is transferable utility, or that one player's utility depends only on

his own type, or that utility functions are continuous in strategies and

types. (This last condition would only be relevant when infinite type sets



are considered. See Milgrom and Weber [1981] for a comprehensive analysis of
this issue.)

In fact, a more general equivalence relation can be defined among
Bayesian games. We say that two Bayesian games T and_f with the same decision

sets and type sets are evaluation—-equivalent iff, for every player i, there

exist functions ai:Ti + TR and bi:T + IR such that

a;(t;) > 0 for every t; and

p.(t__|t.) u (d,t) = a (c,) p, (¢ t.) u (d,t) + b (t), ¥deD, ¥teT.
1 -1 1 1 1 1 1 -1 1 1 1

Notice that the additive constant can depend on all players' types, while the
multiplicative constant can only depend on i's type. All our solution
concepts (Bayesian equilibrium and Bayesian incentive-compatibility) will be
invariant unde? any evaluation-equivalent transformation of the game. It can
be shown that evaluation-equivalence is the most general equivalence rel;tion
that preservés each type's preference ordering over coordination mechanisms

(which will be defined in section 5).

4. Bayesian equilibrium

The decision or action chosen by a player in a Bayesian game will
generally depend on his type. However, other players do not know player i's
actual type, so in choosing their actions they must be concerned with what
actions would be chosen by each of player i's possible types. An equilibrium
of a Bayesian game 1s a set of conjectures about how each player Qould choose
his acfion as a function of his type, such that each type of each player is
maximizing his conditiodally expected utility given his own type and the

functional conjectures about the other players. Formally, (ol,...,on) is a



Bayesian equilibrium of the Bayesian game T iff, for every player i, 03 is a

function from T; to Dy such that, for every ty in Ti»

(4.1) i ET p (t_.[t;) u; (o(e), )
-i -1
= max Yoop. (L le) u(Co L (e L),dL), t).
d.EDi t_iET_i 1 -ll 1 1 -1 =1 1

(Here o(t) = (dl(tl),...,on(tn)),

and  (o_(t_),d.) = (o,(£),eruyo_ (£, ),d (t
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i+l
Equation (4.1) asserts if player i were of type ty and he expected the other
players to select their actions according to their cj(-) rules, then the
action oi(ti) would be optimal for him, in that it maximizes his conditionally
expected utility.

Bayesian equilibrium is the fundamental soluéion concept for Bayesian
games with incomplete information. Our goai, as theorists analyzing a
Bayesian game, must be to predict how each player will choose his decision as
a function of his type. Without knowing his type, we cannot hope to predict
his actual decision; we can only predict how his decision functionally depends
on his type in T;. If the players themselves also understand these
predictions then, unless the predictions constitute a Bayesian equilibrium, at
least one type.of one player would expect to do better by using some
unprediéred decision. Thus, a prediction of the players' behavior can be
rationally self-fulfilling if and only if it is a Bayesian equilibrium.

For a simple two—player example, suppose that D = {x ,yl}, D2 = {x ,yz},

1 1 2

T {1} (so player 1 has only one possible type and no private information),

1

T

depend on the actions and player 2's type through the following two

{Za, 2b}, p1(2a|1) = 0.6, p1(2b|l) = 0.4, and the payoffs (ul,uz)



bimatrices.

t2 = 2a x2 _ y2 t2 = 2b X y2
X 1,2 0,1 x) 1,3 0,4 ;
4 .
Y, 0, 1,3 ¥y 0,1 1,2
TABLE 1

In this game, Xy is a dominant strategy for type 2a, and Yo is a dominant
strategy for type 2b. Player 1 wants to get either (xl,xz) or (y;,¥9), and he
thinks that type 2a is more likely than 2b. Thus, the unique Bayesian

equilibrium of this game is

o1(1) = %1, gp(2a) = x5, g9(2b) = yjp-

This example is of interest because it illustrates the danger of
analyzing each bimatrix separately, as if it were a game with complete
information, when tﬁe game is really one of incomplete information. If it
were common knowledge that 2's type was 2a, then the players would be in the
left bimatrix, where the unique equilibrium is (xl,xz). If it were common
knowledge that 2's type was 2b, then the players would be in the right
bimatrix, where the unique equilibrium is (yl,yz). Thus, if we looked only at
the full-information Nash equilibria of the two bimatrices, then we might make

the prediction "the outcome of this game will be (xl,xz) if player 2's type is

2a and ﬁ{1i75e>k;i;§éj if player 2's type is 2b.”
This prediction would be absurd, however, for the actual gaﬁé Qith
incomplete information, in which player 1 does not initially know player 2's

type. Notice first that this prediction ascribes two different actions to



player 1, depending on 2's type (x1 if 2a, and Y1 if 2b). So player 1l could
not behave as predicted unless he got some information from player 2. But
player 2 prefers (yl,yz) over (Xl’XZ) if he is 2a, and he prefers (Xl’XZ) over
(yl,yz) if he is 2b. Thus, even if we revised the game to allow communication
betwgen the players before player 1 chooses among x; and x5, player 2 would
never communicate the information needed to fulfill this prediction, because
it always gives him his less-preferred outcome. Instead, he would rather
manipulate his communications to get thé outcomes (yl,yz) if 2a, and (Xl’XZ)

if 2b.

5. Bayesian games with communication

When we defined Bayesian equilibrium as the solution concept for Bayesian
games, we assumed that each player's decision in a Bayesian game could depend
only on his own type. Let us now consider what can happen if the players are
allowed to communicate in a given Bayesian game T, as in (1.%). To simplify
our analysis, we will henceforth assume that the decision sets Di’ as well as
the type sets T;, are all finite sets.

Let us suppose first that the players communicate with the help of a
mediator, who first asks each player to report his type, and who then
recommends a strategic action to each player. The mediator’'s recommendations
may depend on the players’' reports in a deterministric or random fashion. We
let u(dl,...,dn tl,...,tn) denote the conditional probability that the
mediator would recommend to each player i that he should use action di’ if
each player j reported his type to be tj. Obviously, these numbers u(dlt)
must satisfy the following probability constraints:

(5.1) J we|t) =1 and w(d|t) > 0, ¥deD, ¥reT.
ceD



In general, any function p:DxT + R that satisfies (5.1) will be called a

mechanism (or coordination mechanism) for the Bayesian game T.

If every player reports his type honestly and obeys the recommendations
of the mediator, then the expected utility for type t; of player i from

mechanism p would be:

(5.2) Ui(ulti) = . -ET | dzD pi(t_ilti) u(d|e) u, (d,t).

We must allow, however, that each player could choose to lie about his
type or disobey the mediator's recommendation. That is, we assume that the
players’' types cannot be verified by the mediator, and each selection of an
action di in D; can ultimately be controlled only by player i. Thus, the

-

coordination mechanism p induces a communication game T in which each
" H

player must select his type report and his plan for choosing an action in Dj

as a function of the mediator's recommendation. Formally, Fu is itself a

Bayesian game, of the form

- - -

= (Dl,...,Dn, Tl,...,Tn, PysecesP s ul,...,un)

>

lar |
|

where

D. = {(Si’si)i siETi and Gi:Di > Di}, and

0, (((5),8))5 05 (5,8 )), € =

t ET dzD Py (gt U(dlsl"'°’sn) u, ((8,(d}),...,8 (d D), ©).
1501

A strategy (si,Gi) in Di represents a plan by player i to report s; to the

mediator, and to then choose his action in D; as a function of the mediator's



recommendation according to Gi, so that he would do Si(di) if the mediator
recommended d;. We assume that each player communicates with the mediator
separately and confidentially, so that player i's action cannot depend on the
recommendations to the other players.

Suppose, for example, that the true type of player i were s but that he
chose to use the strategy (si,Si) in the communication game %U' If all
other players were expected to report their types honestly and choose their
actions obediently to the mediator, then i's expected utility would be

(5.3)  Ulu6,,s e = T T (e e w|e_,s.) u ((d_ .6, (d,0),5).
1 1 1 1 t .eT . deD 1 =1 1 =1 1 1 -1 1 1

(Here (d .,86.(d.)) = (d. ,e0e,d. ,8.(d.),d. _,ee0e,d )
-i" i i 1 i-1" 1 1 i+ n

1

and t .,8.) = (£ ,ee0e,t. s_,t, seesyt ).
( ~-i’ ;) ( 1’ PTi-17710 il ’ n) )
Bayesian equilibrium is still the appropriate solution concept for a

Bayesian game with communication, except that we must now consider the

Bayesian equilibria of the induced communication game Fu, rather than just the

Bayesian equilibria of T'. We say that a mechanism p is (Bayesian) incentive

compatible iff it is a Bayesian equilibrium for all players to report their
types honestly and to obey the mediator's recommendations when he uses the

mechanism p. (Hurwicz [1972] introduced the phrase incentive compatible in a

non-Bayesian context, with a somewhat different meaning. Bayesian incentive
compatibility was first defined by D'Aspremont and Gerard-Varet {1979]. 1In
this paper, we will always use this term in the Bayesian sense.) Thus, u is

incentive compatible iff

. . *
(5.4) U (uft) > UL(,8 ,s |t.), Wi, $r eT., ¥s eT., ¥§_:D.+D .. —
1 1 1 1 1 1 1 1 1 1 1 1

i

If the mediator uses an incentive~compatible mechanism and each player

communicates independently and confidentially with the mediator, then no



player could ever gain by being the first one to lie to the mediator or
disobey his recommendations. Conversely, we cannot expect all the players to
participate honestly and obediently in a coordination mechanism unless it is
incentive compatible.

In general, there may be many different Bayesian equilibria of a
communication game fu, even if u is incentive compatible. Furthermore, we
could consider more general classes of coordination mechanisms, in which the
messages sent and received by each player i are not necessarily in the sets Ti
and D;. However, for any given coordination mechanism and for any given
Bayesian equilibrium of the induced communication game, there exists an
equivalent incentive—compatible mechanism, in which every type of every player
gets the same expected utility (when all players are honest and obedient) as
in the given Bayesién equiliBriuﬁ of the given mechanism. 1In this sense,
there is no loss of generality in assuming that the players communicate with
each other through a mediator who first asks each player to reveal all of his
private information (his "type”), and who then gives each player only the
minimal information needed to guide his action, in such a way that no player
has any incentive to lie or cheat. This result has been observed by many

writers independently and it is known as the revelation principle. (See

Dasgupta, Hammond, and Maskin [1979]), Harris and Townsend [1981], Holmstrom
[1977], Myerson [1979;] and [1982a], Rosenthal [1978), Forges [i982] and, in a
non—-Bayesian context, Gibbard [1973].) '

F;r any given equilibrium of any given mechanism, the mediator can
construct such an equivalent incentive-—compatible mechanism as follows.
First, he asks each player to (simultaneously and confidentially) reveal his
type; Next, the mediator computes what reports would have been sent by the

players, with these revealed types, in the given equilibrium. Then, he



computes what recommendations or messages would have been received by the
players, as a function of these reports, in the given mechanism. Then, he
computes what actions would have been carried out by the players, as a
function of these recommendations (and the revealed types) in the given
equilibrium. Finally, the mediator tells each player to do the action
computed for him in this last step. Thus, the constructed wmechanism simulates
the given equilibrium of the given mechanism. To check that this constructed
mechanism is incentive compatible, notice that any player who could gain by
disobeying the mediator in the constructed mechanism could also gain by
similarly disobeying his equilibrium strategy in the given mechanism, which is
impossible (by definition of equilibrium).

The set of all incentive-—compatible mechanisms is a closed convex set,
characterized by a system of inequalities (5.1) and (5.4), which are linear in
u- On the other hand, it is generally a difficult problem to characterize the
set of all Bayesian equilibria of any given Bayesian game. Thus, by the
revelation principle, it may be easier to characterize the set of all Bayesian
equilibria of all communication games induced from T', than it is to compute
the set of Bayesian equilibria of T, or of any one communication game ;u.

This observation explains why the revelation principle can be so useful.

For example, let us reconsider the game shown in Table 1, in the
preceding section. Suppose now that ghe players can communicate, either
directly or through a mediator or through some tatonnement process, befofe
they choose their acti;ns in D; and Dj. In the induced communication game,
could there ever be a Bayesian equilibrium giving the outcomes (xl,xz) if
player 2 is type 2a, and (yl,yz) if player 2 is type 2b, as naive analysis of
the two bimatrices séparately might suggest? The answer is No, by the

revelation principle. If there were such a communication game, then there



would be an incentive-compatible mechanism achieving the same results. But
this would be the mechanism satisfying

u(xl,lel,Za) =1, U(Yl,Yzll,Zb) =1;
and it is not incentive compatible, since player 2 could gain by lying about
his type. In fact, there is only one incentive-compatible mechanism for this
example and this mechanism is u*, defined by

* *

u (xl,xzil,za) =1, w(x,y,[1,2) = 1.
Of course, u* is equivalent to the unique Bayesian equilibrium of this game
without communication.

In general, it maybe possible for all players to increase their expected
utility with effective communication. Suppose that there is some given social
welfare function which we want to maximize. By the revelation principle, the
maximum value that can be achieved by an incentive—compatible mechanism is
also the maximum that can be achieved among all Bayesian equilibria of all
communication gémes that can be induced from T.

We say that a mechanim p is incentive—efficient iff y is incentive

A

compatible and there does not exist any other incentive-compatible mechanism p

such that
(5.5) U, (ue,) » U, (u]e,), ¥ie{l,...,n}, ¥r_eT,,
1 1 1 1 1 1

with at least one strict inequality. That is, if p is incentive-efficient,
then there is no Bayesian equilibrium of any communication game that gives
higher expected utility to some types of some players without giving lower
expected utility to at least one type of some player. Conversely, if p is not
incdentive-efficient then it is common knowledge that all players would prefer
to use some incentive-compatible coordination mechanism. Incentive-efficiency

is thus the basic normative concept for welfare analysis of coordination



mechanisms. See Holmwstrom and Myerson [1983] for a more detailed discussion
of this concept.

The main goal of the rest of this paper will be to develop more useful
conditions for characterizing the incentive—efficient mechanisms. In the next
two sections, we will do this for two special cases. First, we will consider
Bayesian collective-choice problems, which are situations in which the
incentive constraints are purely informational (pure adverse selection
problems). Then we will consider games with complete information, in which

the incentive constraints are purely strategic (pure moral hazard problems).

6. Bayesian collective-choice problems

A Bayesian collective—-choice problem differs from a Bayesian game in that
we are given a set of possible outcomes that are jointly feasible for all the
players together, rather than a set of strategic decisions or actions for each

player separately. That is, a Bayesian collective-choice problem is any r°

such that
o)
(6.1) r- = (c, Tl,...,Tn, PpoceesP s ul...,un)

where C is the set of possible outcomes or social choices; each Ti is the set

of possible types for player i; each p; is a function specifying i's

conditional probability distribution over T_.

i for each ti in T,

i’ and each u;
is a function specifying i's utility payoff ui(c,t) for every ¢ in C and every
t in T = Tyx..oxT.

When we discussed Bayesian games with communication in the preceding
section, we assumed that the choice of an action in D; was inalienably

controlled by player i. That is, we assumed that player i could not commit

himself to choosing some particular di when some other di in D; would give him



higher expected utility. (For example, this assumption would be appropriate
if D; were a set of unobservable effort levels that i must choose among when
he performs some task, as in a principal-agent problem.) Now, if we assume
instead that the players can cooperatively determine their actions in
Dyx...xD, with jointly binding agreements, then the Bayesian game f becomes a
Bayesian collective-choice problem r’ with C = DIX...XDn.

For another example, to model an exchange economy as a Bayesian
collective—choice problem, we could let C be the set of all possible net
trades among the players.

In any Bayesian collective-—choice problem as in (6.1), the problem is to
find efficient or optimal mechanisms for determining the chosen outcome in C
as a function of the players' types. We shall assume that C is a finite set,
but that random mechanisms are allowed. Thus a mechanism for I'° can be

defined as any function y:CxT » IR  such that

(6.2) Z u(elt) =1, u(c|t) > 0, ¥ceC, VteT,

ecC
where U(Clt) is interpreted as the probability that c¢ will be the chosen
outcome if t = (tl,...,tn) is a vector of types reported by n players. As in
(5.2) and (5.3), the expected utility for type t; from mechanism p if all

players report their types honestly is

(6.3) Ui(ulti) = ) ZT czc pi(t_ilti) ule|t) u, (e, t);

and the expected utility for ts if he reports S while the other players are



honest 1is

*
(6.4) U, (u,s, ) = i ) Dop (e fe) utele_,s;) u (e,0).

_ieT_i ceC

The mechanism p is incentive compatible iff honest reporting by all players is

a2 Bayesian equilibrium of the game induced by u,'that is
* N
(6.5) U, (uft.) > U (u,s |t.), ¥ie{l,..,n}, ¥t €T, ¥s €T, .
i i i it i i i i i

These definitions (6.3)-(6.5) are the same as (5.2)-(5.4) except that
there is no longer any question of players disobeying recommended actions. In
fact, one can easily construct a Bayesian game with ntl players that is
equivalent to the collective choice problem I'°, in the sense of generating the
same set of incentive-compatible mechanisms. (Let Di = {O} for every i in
{1,...,n}, Dpyy = Cy Ty = {O}, and u_,;(d,t) = 0 for every d and t.) The
fevelation principle holds for Bayesian collective-choice problems, just as
for Bayesian games with communication. We say that u is an incentive-—
efficient mechanism for T° iff u is incentive compatible and is not dominated
by any other incentive-compatible mechanism, in the sense of (5.5).

To simplify our formulas, we will henceforth assume that the players'
beliefs are consistent with a common prior p*, as in (3.1). Furthermore, we
will assume that the players' types are independent random variables in the

common prior; that is

=3

*
pi(ti), ¥teT,

*
p () =
i=1

1

. .
where pi(ti) is the marginal probability that player i is type By (As was

remarked in Section 3, any Bayesian collective-choice problem is probability-



equivalent to another Bayesian collective-choice problem in which beliefs are
consistent with such an independent common prior.)

Suppose now that XA and a are vectors of the form

_ n B n
A= ((li(ti))t.eT,)i=1’ = ((ai(silti))s.eT., t.eT,)i=l
i i i i i 71
(read "I" here as "given") such that
(6.6) A.(t.) > 0 and a,(s,lt,) > 0, Vie{l,...,n}, ¥s eT,, ¥t eT,.
i1 7l i i i~ 71

Then let us define v;(c,t,A,a) by the following formula:

(6.7) v.(c,tyha) = (A (e) + T a (s |t)) u (c,b)
1 1 1 s.eT. 1 1 1 1
1 1

*
) s ET ai(tilsi) FUNCERNACHE
it |

We shall refer to vi(c,t,l,a) as player i's virtual utility for outcome c¢ in
state t, with respect to the parameters A and a. This definition (6.7) may
seem obscure at first, but it is important because it permits us to state the

following characterization of incentive—efficient mechanisms.

Theorem l: Suppose that p is an incentive-compatible mechanism for T°.
Then p is incentive—efficient if and only if there exist vectors A and «

satisfying (6.6), such that

(6.8) a.(s.lt.)(U.(u[t.) - U’.‘(u,S.lt.)) =0, ¥i, ¥s eT,, ¥t eT,,
iTiti i i i il i 71 i i
and
n n
(6.9) Z u(clt) Z vi(c;t,l,a) = max Z vi(c,t,l,a), ¥teT.

ceC i=1 ceC i=]



To prove this theorem, observe first that the set of all incentive-
compatible mechanisms satisfying (6.2) and (6.5) is a compact convex
polyhedron. Thus, by the supporting hyperplane theorem of convex analysis, a
mechanism p is incentive-efficient if and only if there exists a positive

vector A such that u is an optimal solution to the following problem

0
(6.10) maximize ) YA (t) U.(u]t.)
. i’ i i
i i=] tit—:Ti

subject to (6.2) and (6.5).

We interpret ai(si ti) as the dual variable or Lagrange multiplier for
the incentive constraint (6.5) that asserts that player i should not expect to
gain by reporting type s; if his true type is L. Then the Lagrangian

1

function for problem (6.10) is

a *
(6.11) _gl ET (A DU _(ufe ) + ZT a (s [e 00 e ) - vl e, ))
1= tiE i siE 1

n
= Ep*(t) Eu(clt) Evi(c,t,x,a).
teT ceC i=1

That is, the Lagrangian for (6.10) equals the expected sum of the players'
virtual utilities. The virtual utility functions were defined in (6.7)
precisely so that this equation (6.11) would hold, as may be verified by
straightforward algebra. Taze Myerson [1982b] and [1982c¢} for an introduction
to the role of virtual utility in the theory of bérgaining under incomplete
information.)

Condition (6.8) in Theorem 1 asserts that, if the dual variable ai(si ti)

is positive then the associated incentive coustraint must be binding.



Condition (6.9) asserts that u(-'t) maximizes the sum of the players' virtual
utilities in each state t, subject only to the probability constraint (6.2).
Thus, the conditions in Theorem 1 assert that p and o form a saddlepoint of
the Lagraﬁgian function, and so p must be an optimal solution to (6.10). This
completes the proof of Theorem 1.

An incentive-efficient mechanism may be inefficient ex post (after the
players have revealed their types) because of the cost of satisfying incentive
constraints. However, an incentive—efficient mechanism must maximize ex post
the sum of the players' virtual utilities (with respect to some X and a), so
the mechanism will be ex post efficient in terms of these virtual utility
functions. Thus, the key to understanding ex post inefficiency in incentive-
efficient mechanisms is to understand how virtual utility differs from real
utilit?.

If X and a satisfy the conditions of Theorem ] for an incentive-—efficient
mechanism p and if ai(silti) > 0, then we say that type t; jeopardizes type
s; in the mechanism p. That is, £ jeopardizes S; iff the constraint that £
should not be tempted to claim to be s; is binding and has a positive Lagrange
multiplier. Notice that, in (6.7), a player's virtual utility is a positive
multiple of his real utility minus a positive linear combination of the
utilities of the types that jeopardize his actual type. That is, the virtual
utility of a type t; differs from the real utility in that it exaggerates the
difference from the other types that jeopardize t;. So to understand how the
costs of incentive—compatibility should be borne in an incentive-efficient
mechanism, we‘need to recognize which types are jeopardized by which.

There are many situations in which a player's types can be naturally

ranked in some order, say from "best” to "worst.” In such situations, we can

often guess that the better types are jeopardized by the worse types, but not



visa versa, so that the worst type is not jeopardized by any other. In fact,
it often happens that each type is jeopardized only by the next-worse type.
Optimal auctions in Harris and Raviv [1981] have this structure, where the
unjeopardized type of bidder is the one with the highest reservation price.

To illustrate these ideas, suppose that a firm is negotiating with a
potential employee, who may either be a "good"” type of worker or a "bad”
type. We may expect that the bad type jeopardizes the good type; that is, the
firm may have difficulty preventing a bad worker from claiming to be good. So
the virtual utility of the good type will exaggerate the difference from the
bad type. 1If there is some useless educational process which would be
slightly unpleasant for a good worker, but would be intolerably painful for a
bad worker, then the good worker may get ﬁositive virtual utility from this
education, so as to exaggerate his difference from the bad type. As in
Spence's [1973] labor-market equilibria, an incentive—efficient mechanism may
force a good worker to ;o through this costly and unproducti;é-educational
process (as if he enjoyed it), before he is hired. On the other hand, it
seems unlikely that a good worker would be tempted to claim that he is bad in
such negotiations. So the bad type of worker is not jeopardized, and the bad
type's virtual utility is just a positive multiple of his reél utility. Thus,
if the worker is bad, the incentive—efficient mechanism should be ex post
efficient (in terms of both real and virtual utility), and the bad worker
should not suffer through any unproductive educational process.

For another simple example, consider a bargaining problem between omne
seller of a commodity (player 1) and one buyer (player 2) in a bilateral
monopoly situation. The seller has one unit available, and he knows whether
it is good quality (type "la") or bad quality (type "1b"). If it is good

qualify, then it is worth $40 per unit to the seller and $50 per unit to the



buyer. 1If it is bad quality, then it is worth $20 per unit to the seller and
$30 per unit to the buyer. The buyer thinks that the probability of good
quality is 0.2.
To formulate this example, we let T1 = {la,lb}, T2 = {2} (so that the
variable t, can be ignored, since it has only one possible value), and
C = {(x,y)l 0<y<1, xe]R}
Here, for each (x,y) in C, we interpret x as the amount of money paid by the

buyer to the seller, and y as the amount of the commodity delivered by the

seller to the buyer. The probability and utility functions are:

* *
pl(la) = ,2, pl(lb) = .8,

ul((x,y),la) x - 40y, uz((x,y),la) 50y - x,

Ul((x,}’),lb) X - zoy, uz((x,Y),lb) 30y - X.

(C is an infinite set in this example, but all of our results will still
apply.)

In this example, ex post efficiency would require that the seller should
always sell his unit of the commodity, no matter what his type is, since the
commodity is always worth $10 more to the buyer. However, it can be easily
shown that there is no incentive—compatible mechanism that is ex post
efficient and gives nonnegative expected utility to the buyer and to both
types of Fhe seller (i.e.; such that Uz(u) > 0, Ul(u'la) > 0, Ul(u,lb) > 0).

For this example, let X and a be

A (la) = .3, A (b)) =7, A, =1, al(lallb) = .1, al(lb,la) = 0.

By (6.7), the virtual utility functions for these parameters are



v, ((6,y),1a,%,0) = (30 ((x,),18) = .1 u ((x,5),10)]/.2 = x ~ 50y,
v, ((5,y),1a,3,a) = u ((x,y),1a) = 50y - x,

v ((659),1b,3,0) = (27+.1) u ((x,y),1b)/.8 = x - 20y,

v, ((5,y),1b,0,a) = u ((x,y),1b) = 30y - x.

That is, the bad type of seller (lb) jeopardizes the good type (la), so the
good type's virtual utility exaggerates the difference from the bad type and
has a virtual reservation price of $50 (instead of $40) for the commodity.
With this X and a, virtual ex post efficiency would require only that all of
the commodity must be sold to the buyer if it is of bad quality; there are no
virtual gains from trade between the buyer and a good-type seller. Thus, this
A and a will satisfy the conditions of Theorem 1 for any mechanism p such that
all the commodity is sold to the buyer if the seller's type is lb, and the
constraint that the 1lb-type seller should not claim to be "la” is binding.
For example, consider u such that

u(30,1] 1b) =1, u(50/3, 1/3 | la) =1
(that is, the bad type sells ;ll of his commodity for $30, and the good type
sells 1/3 of his supply at a price of $50 per unit). This mechanism satisfieg
both of the above conditions (check that U, (u|1b) = U:(u,lallb) = 10), and so

it is incentive-efficient, even though the seller cannot sell two—thirds of

his commodity if it is good.

7. Correlated equilibria of games with complete information

If the players have no private information (so that each has only one

possible type) then the Bayesian game reduces to a game in strategic form (or




normal form) with complete information. That is, we get
(7.1) r = (Dl,...,Dn, ul,...,un) ,
where each ui(-) is a function from D = Dlx"'an into IR. For such games,
we can derive a characterization of incentive—-efficient mechanisms closely
analogous to Theorem 1.

For a game with complete information, a coordination mechanism u is just

a probability distribution over D, satisfying

(7.2) Y u(e) =1 and u(d) > 0, ¥deD.
eeD
(There are no longer any altermative types for the mechanism to depend on.)

The condition of incentive-compatibility (5.4) reduces to

(7.3) . Z- u(d) u,(d) > z u(d) u.{d .,e.), ¥i, ¥d.eD,, ¥e.eD..
4 ep | i d ep i -1’71 i i i i

(Here D_;, = DXe.uxD XD, XeeuXD and d = (d_;,d;)-)

To interpret this condition, suppose that a mediator randomly selected a joint
action in D, selecting d with probability u(d), and each player i was then
informed only as to which action di was his component of the mediator's
selection. Then (7.3) asserts that each player's optimal action is to do what
the mediator has told him, if all other players are also expected to obey the
mediator's recommendation. (To see this, first divide both sides of (7.3) by
the marginal probability of di being selected, that is,

1 u(d).

d .eD .
-i ~i

Then the left-hand side and right-hand side are player i's conditionally

expected utility from using di'and e; respectively, given that the mediator
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we define the virtual utility
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1
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Y v.(d,X,8);
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(7.8) v.(d,\,8) = A u (d) + ] B, (e |d )u, (@) - u (d,e)).
1 1 1 e.eD. 1 1 1 1 1 -1 1
1 1

Here condition (7.6) asserts that if Bi(ei,di) > 0 then the constr:
that "i should not gain by doing e; when told to do di" is binding. Cor
(7.7) asserts that u puts all probability-weight on the joint actions tl
maximize the sum of the players’' virtual utilities.

If Bi(ei]di) > 0 then we may say that action e; jeopardizes action
player i. Then i's virtual utility vi(d,k,B) is a positive multiple of
real utility ui(d) minus a positive linear combination of what he would
he changed to some other action that jeopardizes dj. Thus, player i's
utility when he does d; differs from his real utility in that it exagge
the difference from what he would get from other actions that jeopardiz

To understand these results, let us consider an example based on o
Aumann [1974]. There are two players, D1 = {Xl’yl}’ 02 = {xz,yz}, and

utility payoffs (ul,uz) are as in the following table:

- * 72
Xy 5,1 0,0
y1 4)4 1)5
TABLE 2

There are three Nash equilibria of this game: (xl,xz), (yl,yz), and a
randomized Nash equilibrium in which each player gives equal probabilit

his two strategies. In the randomized equilibrium, all four outcomes
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equal probability, and each player gets expected utility 2.5.

The best symmetric payoff in this example is (4,4), but the players
cannot achieve this because (yl’XZ) is not an equilibrium. Player 1 would
choose x; if he expected player 2 to choose X9+ However, with communication,
the players can make self-enforcing plans of action that give them both higher
expected utility than 2.5. For example, they could agree to toss a coin and
Fhen choose (XI’XZ) if it is heads and (yl?yz) if it is tails. This plan of
action is self enforcing, even though the coin-toss has no binding impact on
the players. (Player 1 could not gain by choosing X, after tails,.since
player 2 is then expected to choose y2.) Thus, this plan is a correlated
equilibrium, and it gives each player an expected utility of 3.

With the help of a mediator, the players can achieve even higher expected
utility in a correlated equilibrium. Suppose that thg mediator randomizes
among outcomes according to p, where

b(xprxy) = Wy ) = ulyy,) =3 blxp,y,) = O,
When the mediator tells each player separately which of his actions was in the
randomly selected pair, then it is self-enforcing for both players to use the
action designated by the mediator. TFor example, if player 1 is told "yl",
then he thinks that it is equally likely that player 2 has been told "x2" or
"y2"; so y, would be as good as x; for player 1 (both give expected utility
2.5) if he expects that player 2 will also do as he is told. Thus, u is a
correlated equilibrium, and it gives each player an overall expected utility
of 3.33.

In fact, this mechanism p is incentive-efficient, so that (3.33, 3.33) is
the highesg symmetric expected~utility allocation that the players can achieve
in.any correlated equilibrium. To check that y is incentive—efficient, let

= = = = 2 = =
Al = AZ =1, Bl(xllyl) Bz(yzlxz) 3’ Bl(yllxl) BZ(XZ’yz) = 0.
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Then the virtual utility functions (vl’VZ) are

X 5.00, 1.66 0, O
yy - 3.33, 3.33 1.66, 5.00
TABLE 3

and p puts all weight on the outcomes that maximize vyt vy Furthermore, as
required by (7.6), u satisfies without slack the two incentive constraints

that have positive Lagrange multipliers.

8. General conditions for incentive-efficiency

In Myerson [1982a], a class of Bayesian incentive problems were defined
in a way which includes strategic-form games, Bayesian collective-choice
problems, and Bayesian games, all as special cases. Formally, a Bayesian

incentive problem is any T of the form

. T' = (D, D yeee,D 5 T yeeeyT 5 PoyecesD 5 U, sesey
(8.1) ( 0 1 n 1 n p1 pn u1 un)

where Dy is a set of enforceable or public actions, and, for each i

in {l,...,n}, Di’ Ti’ pi, and ui are as 1ln a Bayesian game, except that now

the domain of the utility function u; is
DxT = (DO X Dy X aou X Dn) x (T1 X ses X Tn).
That is, a general Bayesian incentive problem differs from a Bayesian game in

that there may be some publicly controllable actiouns, as well as. the privately

controlled actions in Dy, Dg,-..,D,. For example, suppose that the players
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are managers of different divisions in a firm. For each player i, his type in
T; may represent his private information about the production function in his
division, and his private action in Di may be his level of effort in carrying
out his management responsibilities. The public actions in DO may be
specifications of how the firm's capital resources are to be allocated to the
divisions, and how each manager is to be paid as a function of output.

In general, all decision variables that the players can control
cooperatively, or about which they can make binding promises, should be
components of the "public actions” in Dy. Any decision variables that player
i controls inalienably, or about which he cannot make any promises that
conflict with his own utility-maximizing behavior, must be components of the
“private actions” in D;.

Thus, a Bayesian collective-choice problem is just a Bayesian incentive
problem in which each player i has only one possible private action ("doing
nothing"”), so that |Di' = 1 and the variable di can be ignored. On the other
hand, a Bayesian game is just a Bayesian incentive problem in which
IDOI = 1. (Actually, any Bayesian incentive problem could be reduced to a
Bayesian game, by introducing an n+lth player "0" who controls the action in
Dy as his private action, has no private information, and has uo(d,t) =0
for all d and t.)

The definitions of incentive—compatible and incentive—efficient
mechanisms for a Bayesian incentive problem are the same as for a Bayesian
game, except that now in equations (5.1)-(5.4) we let
D = DO x Dl X eee X Dn’ d = (dO’dl""’dn)’ and
(d_i,éi(di)) = (do,dl,...,di_l,Gi(di),di+1,...,dn).

The following theorem generalizes Theorems i and 2 to the general case of

the Bayesian incentive problem. We assume that D and T are finite sets, and
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. . . . *
that the players' beliefs are consistent with an independent common prior p ,

as in Theorem 1.

Theorem 3: Suppose that u is an incentive-compatible mechanism for the

Bayesian incentive problem I'; as above. Then p is incentive—-efficient if and

only if there exist vectors A, a, and Y such tHat

(8.2)

(8.3)

(8.4)

(8.5)

(8.6)

- where

(8.7)

A, (e) >0, ads |t.)>0, v (e ]d ,s ,t) >0
i i i ili itiri7it 1
¥ie{l,...,n}, ¥t eT , ¥s eT,, ¥d eD,, Ve eD,;
1 1 1 1 1 1 1 1
I ov.(e|d.,s.,t.) =1, ¥i, ¥d eD_, ¥s eT,, ¥t eT,;
1 1 1 1 1 1 1 1 1 1 1
) g g Pi(t_ilti) u(dlt_i,si) Yi(eildi,si,ti) u, ((d_; ,e.),t)

*

= i § i ¥t .eT,.;

za?;mig Ui(u, i’silti)’ ¥i, VsieTi, ;67,5
i°71 71

*
0 = o (s;ft,) (U;Gufe)) - nax UG8 s e )],
i

¥i, ¥s, eT,, ¥t eT.; and
i i i i
n

n
Z u(dlt) Z vi(d,t,k,a,Y) = max Z vi(d,t,k,a,Y), ¥teT,
deD i=1 deD i=l

v, (d,e,0,a,7) = (3 (e)) +§ ai(silti)]ui(d,t)

i

*
- g ai(tilsi)z vi(egldgtiis ) v (W g e ), (e ,50)) /oy (E))e

1 1
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As before, these conditions are derived from the Lagrangian conditions

for an optimization problem, to maximize

IoI ) Gle)
it eT,
i77i
subject to the probability constraints (5.1) and the incentive constraints
(5.4). Let ag(éi,silti) denote the Lagrange multiplier of the incentive
constraint that type t; of player i should not be tempted to claim that he is
type s; and to then disobey his recommended action according to Gi(-). Let us

choose a and vy so that they satisfy (8.2), (8.3),

(8.8) a.(s.lt.) = z a?(&,,s_lt,), ¥i, ¥s eT., ¥t eT,,
) 1 1 1 (s_:D.'*D. 1 1 1 1 1 1 1 1
and 1 1 1
(8.9) v.(e |d. s .t ) a (s |t) = ) aX(8_,s |t.),
1 1 1 1 1 1 1 1 1 1 1 1

{GiIGi(di)=ei}

¥i, ¥d eD,, ¥e . eD., ¥t €T , ¥s eT..
1 1 1 1 1 1 1 1

(1f ai(silti) = 0 then we can choose Y(*

-,si,ti) so that it also satisfies
(8.4).) Then the Lagrangian function of this optimization problem can be
written

*
g z HCRRACILINED) af (8,5 [t (U, ule DU (8,8 [e )
i

D)
it, s. 6,
i 7i "1

n
*
=7 p (£) ) @) I v.(d,t,x,a,v).
. 1
t d i=1
The conditions of Theorem 3 follow directly from this equation and the
saddlepoint conditions of Lagrangian analysis.

To interpret the conditions in Theorem 3, think of Yi(eildi,si,ti) as the
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probability that player i1 would choose action ey if he were cheating when his
type was t;, he reported s;» and he was told to do di' Condition (8.4)
asserts that using Yi(-'-,si,ti) should be an optimal plan for type t; after
reporting s;. Condition (8.5) asserts that ai(si|ti) can be positive only if
type t; would be willing to report type s;. (We may have ai(ti|ti) > 0, if
type t. would be willing to disobey the mediator's recommended actionms after
reporting honestly.) Formula (8.7) extends the virtual utility formula (6.7)
for Bayesian collective-choice problems. The virtual utility of type £y
differs from the real utility in that it exaggerates the difference from the
types that jeopardize £ when they use their optimal disobedience plans Yi'
By (8.6) an incentive-efficient mechanism must maximize the sum of the
players' virtual utilities, in every state t. Thus, the counditions

of Theorem 3 can give us some intuition as to the qualitative‘nature of
incentive—efficient mechanisms, even though these conditions may be too

complex to apply numerically in many problems.
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That is, the bad type of seller (1b) jeopardizes the good type (1a), so the
good type’s virtual utility exaggerates the difference from the bad type
and has a virtual reservation price of $50 (instead of $40) for the com-
modity. With this A and «, virtual ex post efficiency would require only
that all of the commodity must be sold to the buyer if it is of bad quality;
there are no virtual gains from trade between the buyer and a good-type
seller. Thus, this A and o will satisfy the conditions of Theorem 1 for any
mechanism p such that all the commodity is sold to the buyer if the seller’s
type is 1b, and the constraint that the 1b-type seller should not claim-to be
“la” is binding. For example, consider . such that

w(30,1|1b) = 1, w(50/3,1/3 | 1a) =

(that is, the bad type sells all of his commodity for $30, and the good
type sells one-third of his supply at a price of $50 per unit). This mecha-
nism satisfies both of the preceding conditions (check that U;(p|1b) =
Ui(w, 1a]1b) = 10), and so it is incentive efficient, even though the
seller cannot sell two-thirds of his commodity if it is good.

g Correlated equilibria of games with complete information

If the players have no private information (so that each has only one
possible type) then the Bayesian game reduces a game in strategic form
(or normal form) with complete information. That is, we get

I'= (D], Y Dn; Uiy « « 0 Lln), (71)

where each y,(+)isafunctionfromD = D; X - - + X D, into R. For such
games, we can derive a characterization of incentive-efficient mecha-
nisms closely analogous to Theorem 1.

For a game with complete information, a coordination mechanism . is
just a probability distribution over D, satisfying

=1 and w(d) =0, VdeD.
g,) w(e) and p(d) € 12

(There are no longer any alternative types for the mechanism to depend
on.) The condition of incentive compatibility, (5.4), reduces to

> wdufd) = D wd) uld- e,

d_eD_, d_eD_,

Vi, Vd, € D,’, Ve,- € D,’.
(7.3)

(Here D—i = D1 X ® K Di—l X D,'+1 X wre @ XK D” and d = (d_i,
d;).) To interpret this condition, suppose that a mediator randomly
selected a joint action in D, selecting d with probability p(d), and each

Bayesian equilibrium and incentive-compatibility 253

player i was then informed only as to which action d; was his component
of the mediator’s selection. Then (7.3) asserts that each player’s optimal
action is to do what the mediator has told him, if all other players are also
expected to obey the mediator’s recommendation. (To see this, first
divide both sides of (7.3) by the marginal probability of d; being selected;
that is,
> wa).
d_eD_;

Then the left-hand side and right-hand side are player i’s conditionally
expected utility from using d; and e;, respectively, given that the mediator
recommended d;.)

Conditions (7.2) and (7.3) are also the definition of a correlated
equilibrium, due to Aumann [1974]. Thus, the concept of an incentive-
compatible mechanism is just a generalization of Aumann’s concept of
correlated equilibrium, and the two concepts coincide for games with
complete information.

In this context, a mechanism . is incentive efficient if and only if there
exists a vector A = (Aq, . . ., \,,) such that every \; > 0 and p is an
optimal solution to the following problem.

n

maximize Z] ;1:) N w(d) ui(d) (7.4)

subject to (7.2) and (7.3).

The following theorem, analogous to Theorem 1, is derived by a standard
Lagrangian analysis of (7.4), letting B,(e;|d;) denote the Lagrange multi-
plier for the constraint (7.3) that says that player i should not be tempted
to do e; when told to do d;.

Theorem 2: Suppose that . is a correlated equilibrium. Then . is incentive
efficient if and only if there exist vectors \ and B such that

}\,' > (0 and [3,~(e,-|d,-) =0 Vl, Vd, € D,‘, Ve,' € D,; (75)

Bi(eildi) Z w(d)(uld) — uld-;, e;))
d_,eD_;
Vi, Vd, € Di’ Ve,~ € Dl, (76)

and

3w z u(d; N, B) = max ; v(d, N, B); g
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where we define the virtual utility functions vi(+) by

vi(d, N, B) = Nuy(d) + > Bile;]d)(ud) — u(d_,, e)).
eeD; (78)

Here condition (7.6) asserts that if B;(¢;|d;) > 0 then the constraint
that ““/ should not gain by doing e; when told to do d,” is binding.
Condition (7.7) asserts that p puts all probability weight on the joint
actions that maximize the sum of the players’ virtual utilities.

If B,(e;|d;) > 0 then we may say that action e, jeopardizes action d; for
player i. Then i’s virtual utility v;(d, N, B) is a positive multiple of his real
utility u,(d) minus a positive linear combination of what he would get if he
changed to some other action that jeopardizes d,. Thus, player i’s virtual
utility when he does d; differs from his real utility in that it exaggerates the
difference from what he would get from other actions that jeopardize d;.

To understand these results, let us consider an example based on one
of Aumann [1974]. There are two players, D; = {x, yi}, D> = {x,, y,},
and the utility payoffs (1, u,) are as follows:

X2 ¥2

X 9y 1 0,0

n| 44 1,5

There are three Nash equilibria of this game: (x;, x»), (1, y»), and a
randomized Nash equilibrium in which each player gives equal probabil-
ity to his two strategies. In the randomized equilibrium, all four outcomes
have equal probability, and each player gets expected utility 2.5.

The best symmetric payoff in this example is (4, 4), but the players
cannot achieve this because (y;, x,) is not an equilibrium. Player 1 would
choose x; if he expected player 2 to choose x,. However, with com-
munication, the players can make self-enforcing plans of action that give
them both higher expected utility than 2.5. For example, they could agree
to toss a coin and then choose (x;, x,) if it is heads and (y,, y,) if it is tails.
This plan of action is self-enforcing, even though the coin toss has no
binding impact on the players. (Player 1 could not gain by choosing x;
after tails, since player 2 is then expected to choose y,). Thus, this plan is
a correlated equilibrium, and it gives each player an expected utility of 3.

With the help of a mediator, the players can achieve even higher

Bayesian equilibrium and incentive-compatibility 255

expected utility in a correlated equilibrium. Suppose that the mediator
randomizes among outcomes according to ., where

p(x, x2) = w1, x2) = w1, y2) =3 wlxg, y2) =0.

When the mediator tells each player separately which of his actions was in
the randomly selected pair, then it is self-enforcing for both players to use
the action designated by the mediator. For example, if player 1 is told
“y,”, then he thinks that it is equally likely that player 2 has been told
“xy” or “y,”’; so y; would be as good as x; for player 1 (both give
expected utility 2.5) if he expects that player 2 will also do as he is told.
Thus, p is a correlated equilibrium, and it gives each player an overall
expected utility of 3.33.

In fact, this mechanism w is incentive efficient, so that (3.33, 3.33) is
the highest symmetric expected-utility allocation that the players can
achieve in any correlated equilibrium. To check that p is incentive
efficient, let

M= =1, Bi(x]yr) = Bayalx) =3 Bi(ilxy) = Ba(x2y2) = 0.

Then the virtual utility functions (vy, v,) are

X2 Y

x| 5.00, 1.66 0,0

Y1 3:33,3:33 1.66, 5.00

and w puts all weight on the outcomes that maximize v, + v,. Further-
more, as required by (7.6), u satisfies without slack the two incentive

constraints that have positive Lagrange multipliers.

8 General conditions for incentive efficiency

In Myerson [1982], a class of Bayesian incentive problems were defined in
a way which includes strategic-form games, Bayesian collective-choice
problems, and Bayesian games, all as special cases. Formally, a Bayesian
incentive problem is any I' of the form

F:(DO’ Dl"*"Dny Tla'*'anapl’-~‘7pna ul,--'vun)
(8.1)

where D, is a set of enforceable or public actions, and, for each / in
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