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That is, the bad type of seller (lb) jeopardizes the good type (la), so the 
good type's virtual utility exaggerates the difference from the bad type 
and has a virtual reservation price of $50 (instead of $40) for the com
modity. With this X. and a, virtual ex post efficiency would require only 
that all of the commodity must be sold to the buyer if it is of bad quality; 
there are no virtual gains from trade between the buyer and a good-type 
seller. Thus, this X. and a will satisfy the conditions of Theorem 1 for any 
mechanism µ, such that all the commodity is sold to the buyer if the seller's 
type is lb, and the constraint that the lb-type seller should not claimto be 
"la" is binding. For example, consider µ, such that 

µ(30, 1 I lb) = 1, µ(50/3, 1/3 I la) = 1 

(that is, the bad type sells all of his commodity for $30, and the good 
type sells one-third of his supply at a price of $50 per unit). This mecha
nism satisfies both of the preceding conditions ( check that U1 (µ I lb) = 
Ur(µ, la l lb) = 10), and so it is incentive efficient, even though the 
seller cannot sell two-thirds of his commodity if it is good. 

7 Correlated equilibria of games with complete information 

If the players have no private information (so that each has only one 
possible type) then the Bayesian game reduces a game in strategic form 
(or normal form) with complete information. That is, we get 

f = (D1, ... ,Dn, U1, ... ,un), (7.1) 

where each ul ·) is a function from D = D1 x x Dn into R For such 
games, we can derive a characterization of incentive-efficient mecha
nisms closely analogous to Theorem 1. 

For a game with complete information, a coordination mechanism µ, is 
just a probability distribution over D, satisfying 

L µ,(e) = l and µ(d) ~ 0, 
eeD 

Vd ED. 
(7.2) 

(There are no longer any alternative types for the mechanism to depend 
on.) Th·e condition of incentive compatibility, (5.4), reduces to 

(7.3) 

(Here D_i = D1 x · · · X Di-l X Di+l X • • • X Dn and d = (d-i, 
dJ.) To interpret this condition, suppose that a mediator randomly 
selected a joint action in D, selecting d with probability µ(d), and each 
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player i was then informed only as to which action di was his component 
of the mediator's selection. Then (7 .3) asserts that each player's optimal 
action is to do what the mediator has told him, if all other players are also 
e~pected to obey the mediator's recommendation. (To see this, first 
divide both sides of (7.3) by the marginal probability of di being selected; 
that is, 

Then the left-hand side and right-hand side are player i's conditionally 
expected utility from using di and ei, respectively, given that the mediator 
recommended di.) 

Conditions (7 .2) and (7 .3) are also the definition of a correlated 
equilibrium, due to Aumann [1974]. Thus, the concept of an incentive
compatible mechanism is just a generalization of Aumann's concept of 
correlated equilibrium, and the two concepts coincide for games with 
complete information. 

In this context, a mechanism µ, is incentive efficient if and only if there 
exists a vector X. = (X. 1 , .. . , X.n) such that every X.i > 0 and µ, is an 
optimal solution to the following problem. 

n 

maximize L L X.i µ,(d) uld) 
µ i=l deD (7.4) 

subject to (7.2) and (7.3). 

The following theorem, analogous to Theorem 1, is derived by a standard 
Lagrangian analysis of (7.4), letting f3l ei I dJ denote the Lagrange multi
plier for the constraint (7 .3) that says that player i should not be tempted 
to do ei when told to do di. 

Theorem 2: Suppose thatµ, is a correlated equilibrium. Then µ, is incentive 
efficient if and only if there exist vectors X. and (3 such that 

X.i > 0 and f3leil dJ ~ 0, Vi, Vdi e Di, Vei e Di; (7.5) 

[l;(e;jd;) [d_~-; µ,(d)(u;(d) - u;(d- ;, e;))] = 0, 

(7.6) 

and 

n n 

L µ,(d) L vld, X., (3) = max L vld, X., (3); 
deD i=l deD i=l (7.7) 
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where we define the virtual utility functions v/ ·) by 

v/d, 'A., f3) = "-iu/d) + L f3/ei ldJ(u/d) - u/d-i, ei)). 
€;ED; (7.8) 

Here condition (7.6) asserts that if f3/eil dj > 0 then the constraint 
that "i should not gain by doing ei when ' told to do d/' is binding. 
Condition (7 . 7) asserts that µ puts all probability weight on the joint 
actions that maximize the sum of the players' virtual utilities. 

If f3/ ei I dJ > 0 then we may say that action ei jeopardizes action di for 
player i. Then i's virtual utility v/d, 'A., f3) is a positive multiple of his real 
utility u/ d) minus a positive linear combination of what he would get if he 
changed to some other action that jeopardizes di. Thus, player i's virtual 
utility when he does di differs from his real utility in that it exaggerates the 
difference from wr.at he would get from other actions that jeopardize di. 

To understand these results, let us consider an example based on one 
of Aumann [1974]. There are two players, D 1 = {x1, y1}, D2 = {x2 , y2}, 

and the utility payoffs ( u1 , u2 ) are as follows: 

5, 1 0, 0 

4, 4 1, 5 

There are three Nash equilibria of this game: (x 1 , x2), (y 1, y2 ), and a 
randomized Nash equilibrium in which each player gives equal probabil
ity to his two strategies. In the randomized equilibrium, all four outcomes 
have equal probability, and each player gets expected utility 2.5. 

The best symmetric payoff in this example is ( 4, 4), but the players 
cannot achieve this because (y 1 , x2 ) is not an equilibrium. Player 1 would 
choose x1 if he expected player 2 to choose x2 . However, with com
munication, the players can make self-enforcing plans of action that give 
them both higher expected utility than 2.5. For example, they could agree 
to toss a coin and then choose (x1, x2 ) if it is heads and (y1 , y2 ) if it is tails. 
This plan of action is self-enforcing, even though the coin toss has no 
binding impact on the players. (Player 1 could not gain by choosing x 1 

after tails, since player 2 is then expected to choose y2). Thus, this plan is 
a correlated equilibrium, and it gives each player an expected utility of 3. 

With the help of a mediator, the players can achieve even higher 
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expected utility in a correlated equilibrium. Suppose that the mediator 
randomizes among outcomes according to µ, where 

µ(x1, x2) = µ(y1, x2) = µ(y1, Y2) = -¼, µ(x1, Y2) =0. 

When the mediator tells each player separately which of his actions was in 
the randomly selected pair, then it is self-enforcing for both players to use 
the action designated by the mediator. For example, if player 1 is told 
"y1", then he thinks that it is equally likely that player 2 has been told 
"x2" or "y2"; so y1 would be as good as x1 for player 1 (both give 
expected utility 2.5) if he expects that player 2 will also do as he is told. 
Thus, µ is a correlated equilibrium, and it gives each player an overall 
expected utility of 3.33. 

In fact, this mechanism µ is incentive efficient, so that (3.33, 3.33) is 
the highest symmetric expected-utility allocation that the players can 
achieve in any correlated equilibrium. To check that µ is incentive 
efficient, let 

"-1 = "-2 = 1, f31(x1 IY1) = f3iY2lx2) = i, f31(Y1 lx1) = f3ix2IY2) = 0. 

Then the virtual utility functions ( v1 , v2) are 

5.00, 1.66 0, 0 

3.33, 3.33 1.66, 5.00 

and µ puts all weight on the outcomes that maximize v1 + v2 • Further
more, as required by (7.6), µ satisfies without slack the two incentive 
constraints that have positive Lagrange multipliers. 

8 General conditions for incentive efficiency 

In Myerson [1982], a class of Bayesian incentive problems were defined in 
a way which includes strategic-form games, Bayesian collective-choice 
problems, and Bayesian games, all as special cases. Formally, a Bayesian 
incentive problem is any r of the form 

f = (Do, D1, · · · , Dn, T1, · · · , Tn, P1, · · · , Pn, U1, · · · , Un) 
(8.1) 

where D0 is a set of enforceable or public actions, and, for each i in 
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