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Imposing Curvature Restrictions on
Flexible Functional Forms

A. Ronald Gallant and Gene H. Golub

ABSTRACT

A general computational method for estimating the parameters of a
flexible functional form subject to convexity, quasi-convexity, concavity, or
quasi-concavity at a point, at several points, or over a region are set forth

and illustrated with an example.
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l. Introduction

The generality of parametric statistical inference is inevitably limited
by model induced augmenting hypotheses. The validity of an inference requires
that the true data generating model belongs to the assumed, parametric family
of models. In hopes of increasing the generality of implications, richer
parametric families of models called flexible functional forms are finding
increasing use in empirical economic research. The idea is to assign to a
consumer, to a firm, to an industry (or to whomever), a utility function, an
indirect utility function, a cost function, a profit function (or whatever),
that is parametrically rich enough so as not to impose-extraneous behavioral
restrictions that limit the generality of an inference. As instances one has
the Translog, generalized Leontief, Box~Cox, Almost Ideal, Laurent, and
Fourier flexible forms. Of these, only the Fourier flexible form has been
shown to be Sobelev-flexible. A form that is Sobelev-flexible asymptotically
removes all model induced augmenting hypotheses (Gallant, 1982).

Unfortunately, all of these forms are too flexible in the sense that
curvature properties that the approximated function are known to possess are
not possessed, of necessity, by the approximating flexible function form. For
example, a consumer's indirect utility function rmust be quasi-convex but a
Fourier, Box-Cox, Laurent, etc., approximation to it with parameters estimated
statistically need not be quasi-convex. As seen later, quasi-convexity 1is the
idealized forwm of the general curvature problem in that only slight
modification is required to use a solution of that problem to impose

convexity, concavity, and quasi-concavity. Therefore, we shall restrict



discussion to the quasi-convexity coanstraint and, to avoid vague generalities,
we shall specialize to the problem of imposing quasi-convexity on the
consumer's indirect utility function.

To varying degrees, depending on the particular form, one can impose
quasi-convexity on an ad hoc basis by finding explicit parametric constraints
that imply quasi-convexity (see, e.g., Jorgenson, Lau, Stoker, 1981),

Usually, it is easier to impose sufficient conditions (Gallant, 1982; Barnett,
1982). But if the conditions are sufficient, not necessary and sufficient,
then the flexibility of the form can be lost. Regarding Sobelev-flexibility
this is a critical consideration as the desirable asymptotic properties of
estimators and test statistics are thereby destroyed. At any rate, attacking
the curvature problem form by form is tedious and the parametric conditions
derived thereby are often very difficult to implement. Trying alternate forms
to look at comparative results for a given data set becomes a prohibitively
onerous task. Oﬁe should prefer a general method of imposing quasi-convexity
that works for any flexible functional form and that is easily implemented.

To this, we turn our attention.

2. Statement of the Problem

Let g(x,8) denote an approximation to the consumer's indirect utility
function where x = (x;l).x(z))' is a vector with leading elements X(1)
corresponding to income norma;ized prices X(1) = p/y and the remaining
elements X(2) of x corresponding to taste and demographic variables. The p-
dimensional parameter 6 is to be determined statistically, subject to the
constraint that g(x,9) be quasi-convex in the argument X(1) for all x in some
region C. Denote the data space by X and the parameter space by © so that

(x,9) e X x © are the admissable data/parameter value pairs.

To justify the econometric and statistical methodology employed,



g(x,8) must be twice continuously differentiable in X(1) and 6 over X x 0,

Typically, explicit formulas are avaiable to compute
Vg(x,8) = (a/ax(l))g(x,e)
Vzg(x 8) = (az/ax ax' Yg(x,8)
’ (17D

and to compute (3/391)Vg(x,9), (a/aei)vzg(x,e), for i=1,2,...,p. Under these
assumptions, a necessary and sufficient condition for the quasi-convexity of
g(x,06) in X(1y) over C at 9 is
] 2 ] ]
0 € min min {z Vig(x,8)z: z Vg(x,0) =0, =z z = 1}
xeC z
(Lau, 1973). Of the many characterizations of quasi-convexity (Diewert,
Avriel and Zang, 1977) this form seems to be most useful in the present

context, Define

h(x,9) = min {z'VZg(x,S)z: z'Vg(x,S) = 0, z'z = l}
z

whence h(x,9) is negative when the quasi-convexity constraint is violated and
zero or positive when satisfied. We shall term h(x,6) the constraint
indicator.

All statistical estimation procedures that are commonly used in
econometric research can be formulted as an optimization problem of the
following type (Burquete, Gallant, and Souza, 1982):

A

0 minimizes s(8) over O



with s(8) twice continuously differentiable in 6. For example, if the
Seemingly Unrelated Nonlinear Regressions method is used to estimate 6 from
share data, s(8) has the forn

s0) = (1/m) I7_1s, - £Gx.0)1 L7 s, - £(x,,0)]

t

where, from Roy's identity,

1]
£f(x,8) = diag(x(1))Vg(x,6)/x(1)Vg(x,6)
and 2 is an estimate of the error variance. To impose quasi-convexity, the

optimization problem is modified to read as follows:
minimize s(8)

subject to min h(x,8) > 0
xeC
The motivations for imposing this inequality contraint are two. The

first is the more pressing and it is that reported results and policy
recommendations at least appear reasonable. It is common practice to choose
some representative point x in the data and report estimated price, income,
and substitution elasticities at that point. If g(x,a) is not quasi-convex at
the point x = X() then the reported substitution elasticity matrix will not be
negative semi-definite. Reported results, subsequent computations and policy
recommendations can appear nonsensical as a result. The situation is

corrected by imposing quasi-convexity at the prediction point Xg. In this



case C is a singelton set. If predictions are made at more than one point or
if the coustraint is imposed at every data point in the sample then C is a set
with a finite number of elemeuts X5 j=0,1,2,...,J. When C is a finite set

the optimization problem is of the form

minimize s(6)

subject to h(xq,8) > 0,
h(xl,e) > 0,
h(xJ.S) > 0.

We anticipate that it is this version of the problem that will arise most
often in application.

The second motivation is to gain statistical efficiency in the estimation
of 6, Since it is known a priori that g(x,0) must be quasi-convex in X(1)

every where over the region X, imposing the constraint

min h(x.,9) > 0
xeX

will, under typical regularity conditions, reduce the variance of the

~

estimator O without affecting consistency so that improved efficiency

obtains. Typically X is a rectangle whence the optimization problem becomes

minimize s(6)

subject to g(8) >0



where g(8) is the solution to
minimize h(x,9)

subject to aj < X < bj j=1,2,...,k.
We shall refer to the first problem as the outer minimization problem and the
second problem as the inner problem. The inner problem is an unconstrained
optimization problem save that the variables are bounded. That function g(9)
that equals the solution of the inner problem is then used as the constraining
function in the outer minimization problem. The outer problem has one
inequality constraint.

Whichever form of the problem arises, the efficient, stable computation
of

h(x,9) = min {z'Vzg(x,e)z: z'Vg(x,e) = 0, z'z = l}
z

is the critical issue. As the performance of optimization algorithms is
enhanced when analytic derivatives are available, it is helpful to have an
explicit formula for (3/99)h(x,9) when C is a finite set and for (3/9x)h(x,9)

when C = X. To this we turn our attention.

3. Computation of the Constraint Indicator and Its Derivatives

Let A denote an N by N symmetric matrix that depends on a real valued
parameter t. Let A denote the matrix with typical element (d/dt)aij(t) where

aij(t) denotes a typical element of A, Similarly let a denote an N-vector

that depends on t and let & denote its derivative with respect to t. Put



We seek to compute A and its derivative A.

Let Q be any N by N-1 matrix with Q'a = (0 and Q'Q = In-1° Since

where w is an (N-1) vector we have

r ] ]
A = min {w Q AQw: w w
W

1}
L}
= gmallest eigenvalue of Q AQ.

\i
Then what is needed is a stable, efficient means to compute Q AQ. Given that,

A can be computed using any standard routine for finding the eigenvalues of a

1]
real symmetric matrix. To compute Q AQ we borrow from the ideas in Golub and

Underwood (1970).

A Householder matrix is a real, symmetric, orthogonal matrix of the form

(Golub, 1965)

where

™
Il

-u u/2.



The first column of H will be proportional to a if u 1is chosen as

a1 - fal

a

(2)

2y1/2

. _ oY _ (N
where a has been partitioned as a = (al, a(z)) and lal (zi=1 a;

With this choice, the matrix Q'AQ that we seek can be obtained by deleting the

first row and column of K = HAH. Using a device of Wilkinson (1960), put

(B—zu'Au)

R
]

w = —B— Au

whence
K=A+u + vu .

Delete the first row and column of K and let Ky, denote the N-1 by N-1 matrix
thereby obtained.

One next computes the smallest eigenvalue X of Kyy. Let ; denote the
corresponding eigenvector which has length N-1. As noted above, A is the

solution of

The optimizing value of z is obtained from w by appending a leading zero to



A Al [}

w to obtain the N-vector (0O,w and then computing
0
z = H(.)

w

0 -

_ -1,¢N
(A) + B8 (2i=2 uiwi_l)u.
w
Let

P(z,A,u) =z Az — A(z z — 1) + 2ua z

denote the Lagrangian for the problem

The first order conditions, obtained by differentiating (z,A,u) with respect

to (z,A.u), are:

Az - Az + pa

Il
o

N
N

i
-

Left-multiplying the first equation by z' we have

H H H H
z Az - Az z +yuyza=20



- 10 -

1

]
whence, using z z 1 and z a = 0,

>
il

z Az.

We see that the first Lagrange multiplier X is indeed the solution of the

problem

whence

T 1 4
W =-aAz/a a

which fact we shall use later. Arranging the first order conditions in matrix

form

A-X a 9z A-A a z 0
(.. ) () +( ) () =().
a 0 u a 0 u 0

Left-multiplying by (z',u') we have
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., A-X1 a 2 0
() ()=0)
a 0 H 0
whence
te e ! o !
z Az - Xz z + 2ua z = 0.
1] 1 1
Using = -a Az/a a and z z = 1 we have

A=z [A- 2(a a) ) Aaa ]z

To use these results to compute

h(x,0) = min {z V2g(x,0)z: z Vg(x,8) = 0, z z = 1}

VA
one puts
a = 9g(x,80),
2
A =Vg(x,0).

To compute (a/aei)h(x,e) one puts

o
il

(2/20,) Vg(x,0)

n>e
I

(3/20,) v2g(x,8)
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and to compute (a/axi)h(x,e) one puts

i
il

(2/3%;) Vg(x,0)

(3 /0%, ) V2g(x,0).

e
1l

4. An Example: TFitting the Log Fourier Cost Function to KLEM Data

We shall illustrate using data on the U.S. manufacturing sector from 1947
to 1971 from Berndt and Wood (1975) and Berndt and Khaled (1979). To these
data, Berndt and Khaled (1979) fit (a factor demand system corresponding to) a
generalized Box—Cox cost function. Using a nonhomoethetic, nonneutral
technical change specificatibn, they reported an estimated elasticity of
substitution matrix at (prices and output prevailing in) the year 1959 that
was not negative semi-definite. This implies that the concavity restriction
that a cost function must obey in theory was violated by their estimated cost
function. To these same data, Gallant (1982) fit a nonhomoethetic Fourier log
cost function with the same outcome. Here we shall re-fit the Fourier log
cost function subject to the constraint that the cost function be concave at
the year 1959,

Total input cost (C), input prices of capital (K), labor (L), energy (E),
and materials (M), and the corresponding cost shares are taken from Tables 1
and 2 of Berndt and Wood (1975). The output series (Y) is taken from Table 1
of Berndt and Khaled (1979). TFollowing the protocal set forth in Gallant
(1982), these data are transformed as shown in Table 1.

In the notations set forth in Table 1, the Fourier log cost function is

written as



(s +0t6eg egDwr - (X)ur] Y= a = 21BYSs 31500 W = 'S
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% +(0£628°2QT/69628°99)uY _ ¢ 1 Z 1
5 + (6209L°2)wr =X 8+ (DU =" = 21eYs 3502 Y = 'S
o1 = 9 s+ (1Lew )W - Cow = 1y = (Dw = %
G- - = = =
saojoey Juileosg so1qeTaep snoauadoxy salqetaiep snoaualopuy
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g(x,0) = gK(x,G)

! 1.." yA J ™ ! NP
uytbx+ fox Cx + ~'0L=1{u0a + 22j=1 [ujacos(J k x) - vja31n(3)\kax) 1}

Vg(x,0) = (3/32)gK(x,9)

n

A2 fu akox + 253 ju. sin(ik. Ak x) 1}
c a=1 190 Ko™ + j=lJ [ujasul(J 0Lx) + vjacos(J ax)] r,

v2g(x,0) = (3%/3%0L g, (x,9)

J .2 ap o
+ 22j=13 [ujacos(J)\kax) vja51n(3)\kax)]}rara

2¢A
e zoz=l{an

where

{ka} = a sequence of elementary multi-indexes (Table 2)

6(0) =b = (c, by)
e(a) = (an’ Uy Vigreees Uy vJa),
g = (UO’ 620)’ 621)""’ BEA))'
and
= -1 jug Mk,

The restriction of linear homogeneity is imposed as a maintained hypothesis
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. i=1 "i
Ry |
0 u,=v.=01f2f’ k, # 0.
jo ja i=l ia
The set of elementary multi-indexes that satisfy zi=1 kia = 0 and have norm

Ikal* < 3 are displayed in Table 2. For this set A = 19, and we take J = 1,
whence 6 is a vector of nominal length 63. The effective number of parameters
is 53 due to the following restrictions.

The nonhomoegeneous restriction 2§=1 bi = 1 reduces the number of
effective parameters by one. The remaining restrictions are due to overpara-

neterization of the matrix C. The matrix C is a 5 x 5 symmetric matrix which

satisfies five linearly independent homogeneous restrictions

Z§=1 Cij =0 (i =1,2,3,4,5). Thus C can have at most ten free parameters
\i
and in the parameterization C = —219 u sz k , ten of the u,.  are free
a=1 "Oa o o Oa

parameters and nine must be set to zero. These nine are a = 10,11,12,14,15,
16,17,18,19 and were identified numerically as described in Gallant (1982).

To impose these restrictions, let

e e v e e

63 1 63 53

where R22 is obtained by deleting colummns 10, 11, 12, 14, 15, 16, 17, 18, 19

from the identity matrix of order 58. Then by writing
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9 = ¢(p)

with

$(p) =T + Rp

one can express the vector 0 in terms of 53 independent parameters contained

in p of length 53.

Assuming additive errors and using Shepard's lemma, the data follow the

statistical model

[¢4]
\

gK(xtle) + e

ot ] =

s;, = (9/32)) gK(xt|6) +oe
sy, = (3/32,) g (x 10) + e,
s, = (3/325) gK(xtIS) + ey

where the share equation for s,, is discarded due to the restriction that
z%_ s.. = 1. See Gallant (1982) for details.
i=]l it
The model may be written in a vector notation

Ve = f(xt|6) + e t=1,2,...,25

t

1
with y, = (SOt’Slt’SZt’S3t) and similarly for f and e, where we assume that

the errors are independently distributed each with mean zero and variance-



_18_
covariance matrix ). As f(xt|9) is linear in the parameters,

1
f(xtle) = zte

where z_ is of order 4 by 63, this is a multivariate linear model and can be

t

fitted using the Seemingly Unrelated Regressions method (Zellner, 1962).

method is as follows:

Let
s(6,L) = %—22=1 (yt - 2;6)'2—1(yt - 2;6).
First compute
p to minimize s{¢(p),1]
Let
8 =4¢(p) =t +Ro

Next, estimate I by

o>

_ l n _ | - _ | - 1
= HEt=1 (e =280, ~ 2.8 .

Finally, compute

P P

p to minimize s{¢$(p), C].

The
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As shown in Gallant (1982), a twice continuously differentiable cost
function is concave at a point if and only if its corresponding log cost

function satisfies:

]
RS5. Concavity. V2g + VgV g - diag(Vg) is a negative semi-definite matrix of

rank N-l1 with 1 being the eigenvector of root zero.

%
Then at the value x of x obtaining in the year 1959, the constraint to be

imposed on the Fourier log cost function is

1 2 % * ' * . * .
Rg. Concavity. Viglx ,6(0)] + Vglx ,¢(p) IV glx ,0(p)] - diag{Vglx ,4(p)1} is
a negative semi-definite matrix of rank N-1 with ‘1 being the eigenvector

of root zero.

Using the methods of the previous sections, we propose to impose
concavity at the year 1959 on the Fourier log cost function by modifying the

last step of the Seemingly Unrelated Regressions estimator to read: Compute

~

p to miminize s[¢(p),Z] subject to R

\

5°

To do this, let

2 % * ' * *

~A(p) = Voglx ,(p)] + Vglx ,0(p)IV glx ,6(p)) ~ diag{Vglx ,¢(p) ]}
~ h
1

1

and set
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The problem becomes
minimize s[¢(p),L]
*
subject to: h(x ,p) 2 0

which can be solved directly using the methods of the previous sections

provided that
A = (3/3p, )A(p)

can be easily computed; note a = 0. We turn our attention to this task.
A first partial derivative in x of the Fourier log cost function

evaluated at the year 1959 is a linear function of the form

\J

(3/3%, g (X 0) = g9

as seen by inspecting the formula for Vg(x,0) set forth above. Similarly, a

second order partial derivative is a linear function of the form

2 £
(9 /Bxiaxj)gK(x ,0) = nije

where g;, h and © are vectors of length 63, Then

iy’
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% ! '
(3/3x)g [x ,0(0)] = g.1 + g.Ro,
2 * ' '
¢ /axiaxj)gK[x »9(p)] = hijr + hinp.
A diagonal element a;;(p) of A(p) is computed as
' ' ' ! 2 ! '
-a () = (h,r +h Ro) + (g;r +g.Ro)" - (g;r + g,Ro)
whence, at sight,
' ! ' ' ' '
-(3/3p Jay;(p) = hy R + 2(g;r + g;Rp)g.R - g,R.

1
The desired (B/Bpk)aii(p) is the k-th element of (3/3p )aii(p). An off-

diagonal element aij(p) with i # j is computed as
1 t 1 1 ] ]
-aij(p) = (hijr + hinp) + (g;r + giRp)(gjr + ijp)
whence, again at sight
] ] 1 ] 1 t 1 ]
-(3/3p )aij(p) = hin + (ggr + giRp)ij + (gjr + ijp)giR-

Using SUBROUTINE SALQDR of the NPL Library (NPL, 1980)--a quasi-Newton

method (Gill, Murray and Wright, 1981)--to solve
minimize s[¢(p),Z]

*
subject to: h(x ,p) > O,
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and using SUBROUTINE EIGRS of the IMSL library (IMSL, 1981) for eigenvector/
eigenvalue determination we obtain the solution 6 = ¢(;) reported in Table

3. Shown also is the Seemingly Unrelated Regressions estimate 5 = ¢(;) as
computed in Gallant (1982). In both instances E is that obtained from
residuals from p minimizing s{¢(p),I] as described earlier so that the values
of s[¢(;),§] and s[¢(;).§] shown in the last line of the table are strictly
comparable,

Using formulae set forth in Gallant (1982) the Allen partial elasticities
of substitution and price elasticities at the year 1959 were computed from the
estimates shown in Table 3 and are reported in Table 4.

A readily available source of high quality software for inequality
constrained optimization is NAg Libraries, 1250 Grace Court, Downers Grove,
TIllinois 60516, USA; eigenvector/eigenvalue routines are in the NAg library
also. A FORTRAN subroutine to compute A and X given A, a, A and a is

available from A. R. Gallant at the cost of reproduction and postage. This

offer expires two years from the publication date.



Table 3. Unconstralined and Zoneavity Coastrained gstimates
of the Log Fourier Cost Function.

Estimates

Parameter Unconstrained Constrained
9; 5.15225840 5.15162315
8> 0.04998733 0.04711753
93 0.25741658 0.26905123
I8 0.15489132 0.15903904
85 0.53770477 0.52479220
3g ~0.39950191"° -0.u40411924
89 -0.015u40615 -0.01507702
9g -0.01251629 -0.01186372
8g -0.00673627 -0.00672459
Gig 0.00U483888 . 0.00471898
911 0.00146290 0.00134721
612 -0.00027147 -0.00006238
813 -0.00782715 0.0005541%
91y 0.00208733 -0.00091758
915 0.00540352 0.00657224
815 0.00034498 0.00028351
917 ~-0.00034014 -0.00027510
813 -0.00059587 -0.000559946
819 -0.00172445 -0.00130695
520 ~0.00206864 -0.00192279
821 0.00458804 0.00454106
822 -0.00108728 -0.00167624
931 0.00062251 0.00067079
224 -0.00008305 -0.00034696
925 0.00179617 0.00197237
826 -0.0015u4407 -0.00149405
827 0.00041365 0.00050895
828 0.00373929 0.00360038
823 -0.00085219 -0.00097934
§3¢ -0.00037345 -0,00029840
831 0.00335384 0.00295936
EEYY -0.000674R6 -0.000529%1
933 -0.00475002 -0.00405092
334 0.0 0.0
Sa2¢ 0.00056657 0.000289Q4
I3g -N.00054179 -N.00038718
837 0.0 0.0
2ag 0.00002994 0.00007474A
939 0.00056254 0.00043954
By 0.0 0.0
EINY 0.001089346 0.00094977
942 0.00D182R18 0.00170208
043 -0.00018134 -0.00018251
Suy -0.00004127 -0.00006491
Gyc -5.00062405 -0.00053148
Sug 0.0 0.0
Fy7 -0.00029692 -0.00029107
Bug 0.00013566 0.00022772
Oy9 0.0 0.0
559 0.00007749 0.00009056
95 0.00013755 0.00013684
8ca 0.0 0.0
653 -0.00026505 -0.00029745
d5y -0.00043343 -0.00036084
EET 0.0 n.0
355 -0.0004541% -0.00049713
857 -0.00002568 0.00003890
Sg3 0.0 0.0
€59 ~0.00006449 0.00000642
S5¢0 -0.00000549 -0.00006614
361 0.0 0.0
562 0.00091222 0.00092219
91 0.00043126 0.00034011
5(2,0) 63.61102751 63.71693345
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Table 4. TFourier Flexible Form Estimates of Allen Partial Elasticities of

Substitution and Price Elasticities, U.S. manufacturing, 1959.

Estimates
Elasticity Unconstrained Constrained
ORK -~ 6.5321 - 6.0083
Ok, .3288 . 4890
OKE . 6613 1.1704
SxM . 4545 .2935
OLL - .2813 - .4163
OIE 4.5678 3.6353
oM - .2422 - .1289
OpE - 28.5133 - 37.1911
OrM - .0157 . 9837
M . 0642 - .0436
KK - .4013 - 3691
Nk, . 0908 . 0300
NKE -0300 .0719
NxM .2806 .0180
N1k .0202 . 1350
"L - .0776 - .1149
LE .2069 1.0037
LM - . 1495 - .0356
NEK . 0406 .0530
NgL 1.2608 . 1645
NgE - 1.2917 - 1.6830
NEM -.0097 + 0445
MK .0279 .1811
ML - .0668 - 0796
NME - .0007 . 6071

My .0396 - .0269
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