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MANAGERTAL INCENTIVES, INVESTMENT AND

AGGREGATE IMPLICATIONS™

PART I: SCALE EFFECTS

by

Bengt Holmstrom and Laurence Weiss

1. Introduction

The idea that optimal risk sharing can sometimes interfere with
productive efficiency is a key insight in the economics of uncertainty. This
possibility may arise when agents are differentially informed about eithér an
action undertaken by one of the parties, or some exogenous characteristic or
event. In the insurance literature, the former phenomenon is known as moral
hazard and the latter as adverse selection. Recently, adverse selection
considerations have been advanced as contributing to the magnitude of
aggregate fluctuations by affecting efficient wage-employment bargains.1 In
this paper, and its sequel, we extend the analysis of efficient risk sharing
under asymmetric information to a study of the aggregate implications of

. . . . . 2 .
incentive compatible managerial compensation schemes. The curreant analysis
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emphasizes how adverse selection and moral hazard affect the sensitivity of
desired and actual input levels to exogenous, imperfectly verifiable changes
in the firm's operating environment. The sequel paper investigates how such
considerations affect the portfolio of aggregate investment projects
undertaken in competitive economies.

We examine a situation in which risk neutral shareholders wish to
compensate risk averse managers at the lowest possible cost; a particular
example of a principal and agent relationship which has been investigated by,
among others, Ross [1973], Wilson [1968], Shavell [1979], Harris and Raviv
[1979] and Holmstrom [1979]. Our point of departure from these earlier works
is to permit the manager's payment to depend not only on the observed outcome
(profit) and whatever exogenous information may be relevant, but also on
observed values of the manager's decision variables, such as the level of
investment or other factor inputs. We show that it is generally desirable to
use information about both inputs and outputs to reward the manager. Our main
result is that such considerations will result in ex post inefficient
production decisions; factor inputs will be distorted downwards from levels
which would prevail if managers were rewarded a function of observed profits
alone, or a fortiori, if managers were risk neutral or if all information were
common. Under some conditions, this phenomenon can account for greater
cyclical variability in aggregate production and investment. Thus the model
gives rise to a new channel by which asymmetric information (in this case
between managers and shareholders) in the presence of risk aversion can
amplify the effects of exogenous shocks on aggregate variables.,

The model focuses on possible confusion between events outside of
managerial control and the level of managerial effort which both affect the

firm's observed profitability. It is assumed that the manager can observe a



signal about the prospective returan to both investment and effort and must
choose the appropriate value of these inputs conditional upon this signal.
Neither the value of this signal, nor the level of effort is directly
observable by the shareowners, although the level of investment is common
kunowledge. Profits are assumed to be a non-stochastic function of investment
and managerial effort given the realized value of the signal,

In section 2 we consider the optimal compensation scheme between a risk
averse manager and a risk neutral owner when the signal can take only two
values, high and low. The manager and the owner act so as to maximize
expected utility. The owner's utility is assumed to depend ouly on wealth,
and the manager’s on both wealth and effort. We interpret effort as either
having a wonetary equivalent or as an expenditure. It is straightforward to
show that complete iansuraunce is non-optimal; the manager would always report
that he had observed a low signal and reduce effort im a good state so that
profits in both states would be equal. To make the contract incentive
compatible requires that the manager be made sufficiently better off when he
reports a high signal. To achieve this, we show that both the level of
investment and effort undertaken in the good state is equal to their first
best levels (i.e., when everything is observable to everyone), but both the
level of investment and managerial effort is less in the bad state than it
would be under complete information. The intuition behind this result is that
a reduction in investment beneath its first best level in the bad state has
only a second order effect on profits, but imposes a first order cost on the
manager if he reports a low signal when he, in fact, observes a high state.
In this way the difference in his compensation between the high and low state
can be made smaller, while still maintaining inceantive compatibility. Thus,

asymmetric inforumation and managerial risk aversion amplifies the variability



in both observed profits and investment for this firm.

In Section 3.1 we show how these considerations can result in greater
cyclical variability in aggregate investment and profits. As in Section 2, we
assume that each manager's observed signal can take on one of two values.
Aggregate uncertainty is introduced by positing that the fraction of managers
who observe a high signal is itself a random variable, which, for simplicity,
is also assumed to take on one of two possible values. An important
assumption of this section 1s that managers do not know the aggregate shock at
the time investment and effort must be chosen. However, this information
becomes public when all firms report profits. Such aggregate information is
shown to be valuable for each individual manager's compensation schedule.
Specifically, we show that when a manager reports a low signal, his
compensation is higher when the aggregate state is bad than when the aggregate
state is good. The idea that the manager's compensation depends on his
relative performance is an implication of earlier work (cf. Holmstrom {1979,
1982], Shavell [1979]).

In Sectiou 3.2 we discuss briefly the same aggreate model, but under the
assumption that managers do observe the aggreagate shock before determining
input. Our main point here is that now fluctuations in aggregate output and
investment may be either higher or lower than in a Walrasian world. Thus,
uncertainty about aggregate variables at the time of decision making is
relevant for explaining how asymmetric information can amplify the effects of
exogenous shocks,

The final section contains a comparison with the wage-employment model of

Grossman and Hart [1981] with some alternative interpretations of results.

2. Analysis of a Single Firm

2.1 Model



We will study a firm, which is run by a risk—-averse manager and is owned
by a risk-neutral syndicate. The manager's utility function over wealth is
u(e); u'> 0, u" < 0. The manager's task is to control the firm's two
inputs. One input, labeled I, is publicly observed, and the other, labeled e,
is privately observed by the manager (but not the owners). For concreteness
we will refer to I as investment and to e as the manager's effort, although
other interpretations are possible. For instance, I could stand for labor
input (either by the manager or other workers) in terms of man hours, if that
is publicly observed.

The firm's output is stochastic. Let a be the random productivity

parameter. We will assume a can take only two values: "low" denoted a; and

"high” denoted a,. The firm's revenue in state a = o, is given by
(2.1) z = fi(I,e), i=1,2.

We will assume that the manager's level of effort carries a monetary
cost, which is indepeundent of his income level. This assumption is borrowed
from Grossman and Hart [1981] and, as they observe, can be rationalized by
viewing the cost of effort as an opportunity cost for alternative income
(rather than as a value for leisure). It is convenient then to measure
investment and effort levels in terms of their cost. In (2.1) the requisite
transformation from physical units to cost units has already been made. Since
revenue functions are indexed by i in a general way, the possibility that cost
functions also depend on i is subsumed in (2.1).

Interpreting I and e as monetary costs yields the profit function

(2.2) Hi(I,e) = fi(I,e) -1-e, i=1,2.



Regarding fi we will make the following assumptions:

Assumption 1: For i = 1,2,

a, fi is strictly increasing, twice continuously differentiable and
strictly convex.
b. azfi/alae > 0, i.e., I and e are complements.
C. afi/BI <1, afi/ae < 1 for large enough I and e.
These are standard assumptions; part c merely assures that input levels will
be finite.

The effect of o is described by:

Assumption 2: For all (I,e),

a. f£,> 1%,

b. afz/al > afl/al,

c. afz/ae > afl/ae.
Both total revenue and marginal revenue of each input factor is assumed higher
when o is high.

The firm's product, net of investment costs, will be denoted Yi in state

i; i.e.,

(2.3) Yy s fi(I,e) - 1.

The effort level required to produce y with an investment level I in state i

is denoted e;(I,y) and defined through the relationm:

(2.4) y = fi(I,ei(I,y)) - 1.



The profit function (value added) in terms of I and y is denoted ni(I,y) and

is defined by

(2.5) ni(I,}') fi(I,ei(I,y)) -1I- ei(I,y)

y - ei(I)Y)'

We will find it convenient to have a shorthand notation for the

production decision pair and will often write x = (I,y). Thus, ei(x) and

m;(x) refer to e,(I,y) and w,(I,y) respectively.

Assumption la implies that ei(-) is strictly convex and ni(-) is strictly

concave, For future reference we note some other implications as well.

Assumptions la and 2a follows that

(2.6) A(X) = ﬂz(x) - nl(x) = el(x) - ez(x) > 0, for all x.

From the definition of ei(-) and (2.4), we get

aei(x) 1
(2.7) 5y = Bfi(I,ei(x))/Be’ and
de. (x) 1 - 3f,(I,e,(x))/3I
(2.8) i i i

T Bfi(I,e(x))/Be :

Using Assumption la and 2c¢ in combination with (2.6) and (2.7) we have

Bez(x) ael(x) awz(x) anl(x)

(2.9) 3y < 3y and 3y > 5y .

A central feature of the model is that information is asymmetric.

From

The



manager has superior information relative to the owners on two accounts. He
can observe the choice of e and he can observe the realization of a before
production decisions are made. The owners can observe neither e nor «, only I
and vy,

The manager's informational expertise rationalizes his presence in the
firm. Since he knows factor productivities while owners do not, he should be
delegated some authority in making production decisions. Yet, there is a
problem with his expertise. His preferences for production decisions do not
coincide with the owners'. He will wish to substitute investment for effort
in an attempt to reduce effort cost, which he has to carry himself because
effort is not publicly observed.3

Owners deal with this incentive problem by designing a contract, which
pays the manager a reward as a function of the observable variables y and I.
Alternatively, the contract specifies how much the manager should pay the
owners as a function of y and I, The latter view will be taken here. Let
5(1,y) be the contingent payment schedule from the manager to the owners.
Since o caun take on only two values, the manager will use at most two pairs

(Il’yl) {when o = al) and (Iz,yz) {when o = az) given any s(+) schedule.

Therefore, a contract, denoted by 8, can be written as a pair of 3-tuples.

§ = {(Il,yl,sl), (1,,¥,8,)},

where s, = S(Il’yl) and 8, = s(Iz,yz). As is well-known by now, we will
require that 8§ is designed so that the manager chooses (Ii’yi’si) when
a = A, i.e., that & is incentive compatible,

At the time of contracting it is assumed that the owners and the manager

share the same information about a and therefore hold the same beliefs about



the probability that a will be high. Let this probability be ¢. The optimal
contracting problem which chooses an ex ante efficient contract, subject to

incentive constraints is given by

(2.10) Max U= (1 - ¢)u(n1(x1) - Sl) + ¢u(n2(x2) - 82)’
8

subject to

(1) T (x) m sy 2 m(xy) sy,
(ii) ﬂz(xz) - s, ? ﬂz(xl) =8
(ii1) (1 = ¢)s, + ¢s, = O.

Constraints (i) and (ii) are the incentive compatibility constraints; we
must make sure the manager wishes to choose (Ii,yi,si) when he observes
a = a

i+ Constraint (iii) is a zero-profit constraint for the owners. We will

a a a

call a solution to (2.10) second-best and denote it 6a = (s?,sl,xl,xz).

2.2 First-Best
Before studying the second-best solution it is useful to see what a first
best solution looks like. This solution solves (2.10) without imposing the

incentive compatibility constraints (i) and (ii). Let
(2.11) c; = ﬂi(xi) - Ses i=1,2,

be the manager's level of consumption. Then first-best solution,

* X ok Kk k_ .
§ = (SI’SZ’XZ’XZ)’ is characterized by:
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* %
(2.12) ¢, = Cy»
de, ( *)
e X,
(2.13) __1311_ =0, i=1,2,
*
aei(xi)
(2.14) —5— = L i=L,2,
* *
(2.15) (1 - $)s; + ¢s, = 0.

%
1

% X * * * *
12 > Il,y2 > Y and e, > e . It is worth emphasizing that the value of ¢

* * *
By Assumption 2, T, > T and hence S, > s, by (2.12). Also, by Assumption 1,
% *
does not affect the production decisions X, and X5 but of course the level of
profits and consumption. This will not be the case for the second-best

solution.

2.3 Second-Best

We proceed to characterize the second-best contract 3.
a a
Lemma 2.l1: Under Assumptions 1 and 2, cy > S

Proof: We know HZ(X) > ﬁl(x) for all x, from (2.6). This together with
(2.10)(ii) implies the sequence:
a a a a a a a a
e, = "Z(XZ) - %, > nz(xl) -8 > nl(xl) -8 =¢ Q.E.D.
This proposition shows that the second~best solution, at least in terms
of the manager's consumption is worse than first-best for which (2.12)

holds. As we will see shortly, the productive decisions will also be

distorted in search of a balance between optimal risk-sharing and efficient



- 11 -

production.

Lemma 2.2: Under Assumptions 1 and 2, constraint (2.10)(ii) will be

binding at an optimum.

Proof: Suppose (2.10)(ii) is not binding. Consider a perturbation dsl,
ds2 such that ds1 < 0 and (1 - ¢)dSl + ¢ds2 = 0. Such a perturbation leaves
(2.10)(iii) intact, satsifies for small enough values ds; constraint
(2.10)(ii) by the contrapositive assumption and furthermore relaxes
(2.10)(1i). The perturbation is therefore feasible. The effect on the
objective function is dU = (1 - ¢)(u'(c?) - u'(c;))ds1 > 0 by Lemma

2.1. Q.E.D.

Lemma 2.2 merely reflects the fact that the gap between Cy and ¢ should
be minimized subject to incentive compatibility constraints. This requires Cy

to be as low as permitted (and c, as high as permitted) by (2.10)(ii).

Lemma 2.3: Under Assumptions 1 and 2, coastraint (2.10)(i) will not be

* * *
binding at an optimum. Hence, xa = x Furthermore, A(XZ) > A(xl) > A(x?).

2 2°

Proof: We note first that A(x;) > A(x?) implies that (2.10)(i) is not

binding. This follows from the sequence:

a

a a
c A(XZ) =c

a a a
9 + A(Xl) - A(xz) < -

The equality follows from the fact that (2.10)(ii) is binding.

Let X%,

relaxed program (2.10)(ii)-(iii). If we can show that A(xz) > A(xl), the

be the production decisions in an optimal solution to the

A A

argument above shows that X)X will be optimal in the full program

2
(2.10)(11)=(1ii) as well; that is, x = x? and x, = x;.
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~ * * *
Clearly, Xy = Xy Because %, and x, are unique maximizers of

nz(-) and ﬂ1(°), respectively
% * * *
nz(xz) - nz(xl) >0 > nl(xz) - ﬂl(xl)'

- * * * -
This implies A(xz) = A(xz) > A(xl). We claim A(xl) > A(xl). Suppose to the

* ~ P
contrary that A(xl) < A(xl). We will show that then x, cannot be optimal in

1
*
(2,10)(i1)-(iii) because X, = %X would be a better choice.
] 1
Let 8 and S, be such that (2.10)(ii) and (iii) hold as equalities when

x % * %
the production decisions are (xl,x7). Because (xl,xz) are productively efficient,

1

the expected level of consumption ¢(w2(x;)— s;) + (1 - ¢)(ﬂ1(x:) - Sl)
is greater than when (;I’X;) is implemented (in a way which satisfies
(2.10)(i1)-(iii) as equalities). Also, since cp = ¢; = A(x;) when (2.10)(ii)
is binding, the variaunce in consumption is lower with (x:,x;) than with
(;1,X;) if A(;l) > A(x:) > 0, Consequently, the objective function in (2.10)
must be higher when (x:,x;) is implemented than when (;1,x;) is implemented so

Y

X, cannot be optimal,
- *
This proves A(Xl) < A(xl). The fact that we will have a strict
inequality follows from differentiability by a routine envelope argument,

since there are strict risk-sharing gains from choosing X; so that

*
A(Xl) < A(Xl). Q.E.D.
We combine the results above in the following proposition,

Proposition 2.1: Under Assumptions 1 and 2, a second-best solution

satisfies:

a

(a) c2

a a a
> c) > X, > X)»
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(b) x, =x
(@ D < at) < atxy,
(d) (2.10)(i) holds as a strict inequality,

(e) (2.10)(ii)~(ii1) hold as equalities.

Proof: We have proved everything except s; > s?. From (e) we can solve

for s and s°. This gives:

1 2
* a
s, = —¢(w2(x2) - “Z(Xl))’
(2.16)
$% = (1 - ),y - my&).

%
Since %, maximizes ﬂz(‘) uniquely,

7. ( *) - ( a) > 0 and so 82 > 0 > §° E.D
9 x2 “2 Xl s 2 1* Q.E.D.

Notice that (a) shows that there will be coinsurance at the optimum. In
models which screen on a one—dimensional variable (c) would directly imply

a *
3 < X A novel feature of our model is that we screen on two variables, y

. a * .
and I, and as a consequence, proving x1 < x, will require some more work and

1
an additional assumption. We turn next to this issue,

The key to locating the optimal choice of X is the following simple

observation:

a
Lemma 2.4: For some constant m, X =X solves the program:
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(2.17) Min nz(xl) subject to nl(xl) = 1,

Proof: 1If the statement were false, we could move X along the curve
ul(xl) = m and decrease the value of uz(xl) while keeping Sy and Sy
unchanged. This would not change ¢y or ¢y. It would maintain (2.10)(iii) as
an equality and relax (2.10)(ii). But then an improvement could be made by
changing sy and s, so that (2.10)(ii) is restored as an equality; a

contradiction. Q.E.D.

From (2.17) follows that X, must lie on what may be called the contract
curve of nz(-) and nl(-). In terms of marginal rates of substitution we must

have:

Bnl(x?)/al ) anz(x?)/al

(2.18)

b

Bnl(x?)/ay anz(xi)/ay

since we know x? # x:. Note that by (2.9), (2.18) implies that both
Bnl(x?)/ay and anz(xi)/By have to be non-zero. 1In contrast, we could have
both numerators in (2.18) be zero. This in fact is a case of special interest
and we will return to it shortly.
From (2.18) and (2.9) follows that either
Bnl(x?) _ anz(x?)
ol ol

(2.19)

a a
(2.20) Bnl(xl)/ay i anl(xl)/al .
an(x?)/ay anz(x?)/al

Applying (2.7) and (2.8) this can be written as:



...15..

a a a a
(2.21) of (I e, (x)))/2e = 1 of (17 e,Gx)/AT - 1
3, (17,6, (x1))/3e = 1 3, (17,e,(x]N/3T - 1

Before using these equations we will need some results on the structure

of the indifference curves of nz(-) and nl(-). Define,

I.(y) = argmax 7_(L,y) ,
i I i
(2.22)
yi(I) = argmax ni(I,y) , i=1,2,

These represent profit maximizing choices of I given y and conversely. Notice

that
33.(1 (Y))Y)
i i
(2.23) 5T = 0, and
de. (I,y. (1))
(2.24) Lt =1,
oy

Thus, Ii(y) and yi(I) are determined so that the effort level is chosen
efficiently (given y or I). Since ei(-) is strictly convex, Ii(-) and yi(-)
are well-defined functions (not correspondences) and there is only one fixed

x %
point of (2.22), namely (Ii’yi)'

Lemma 2.5: Under Assumption 1, Ii(y) is non-decreasing.

Proof: Straightforward by Assumption lb and the concavity of ﬂi(').

Q.E.D.

Next we will show that yi(I) is above or below I;I(I) (the inverse
*
function of Ii(-)) depending on whether I is smaller or greater than Ii'

Since the range of Ii(') need not cover all investment levels, we introduce
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the convention that I;l(I) =0 if T > sup Ii(yi) and III(I) = -

. Yy
if I < inf Ii(yi)'

Yi

* -
Lemma 2.6: Under Assumption 1, I (Z) Ii implies yi(I) (;) Iil(I).

Proof: If I is outside the range of Ii(y), the statement follows from

the earlier convention and Lemma 2.5. So let I be within the range of Ii(y).

Assume I > I:. Lemma 2.5 implies [;l(I) > y:. The gradient at
(I,I;l(I)) is (0,8), since I is optimal given IZI(I). Concavity of ni(-)
implies that ni(-) increases when going from (I,I;I(I)) towards the optimum
(I:,y:). Consequently, since 1;1(1) > y:, we must have B < 0; (B = 0 would
mean we are at (I:,y:)). By concavity of ni(-), the optimal y given I,y,(I),
must therefore be such that yi(I) < I;l(I).

%
The case I < Ii is proved analogously. Q.E.D,

Lemma 2.7: Under Assumption 1, yi(I) is strictly increasing for

*
IKL Ii'

Proof: Let ei(I) be defined by the relationship yi(I)

fi(I,si(I)) - I. From (2.24) follows that afi(I,si(I))/ae 1. We have

therefore:

. 3E, (I,e, (1)) ae, (1)

yi (1) = =37 SRS

Complementarity of I and e (Assumption 1b) implies that Bsi(I)/BI »>0. It also
implies that Bfi(I,si(I))/BI - 1> 0, or else a gradient process would

*
converge to an optimum below I in contradiction with I < Ii' Thus,

1
yi(I) > 0 as claimed. Q.E.D.
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The lemmas above tell us about the structure of the indifference curves

of ni(-). The results are useful to summarize in a diagram,

Figure 1

The fact that I;l(-) slopes upward (it could be vertical) was established in
Lemma 2.5. Lemma 2.6 told us that yi(-) is below 1;1(-) for I > I: and above
it for 1 < I:, while Lemma 2.7 showed that yi(-) is strictly increasing for
IK< I:. In general, yi(-) will not be increasing everywhere (for instance
for the technology in (2.28) below). This underscores that I and y are not in

a symmetric position in the problem.
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Our objective uow is to show that y, < y,;(I;) and I; < I;(y;), implying
that we must be in the southwest quadrant of the cross in Figure 1, and hence

*
that 3 <x These results will be direct consequences of Lemma 2.4.

1.
Lemma 2.8: Under Assumptions 1 and 2, a second-best solution satisfies
a a

Proof: We noted already in conjunction with (2.21) that y? = yl(I?) is

not possible., Make the contrapositive assumption that y? > yl(I?). Let

a a
¥, < yl(Il) < y1 be such that
a ! a a
(2.25) m(Thy) =7 Ty .
From (2.9) follows that
a ! a a
(2.26) nz(Il,yI) < wz(Il,yl) .

Equations (2.25) and (2.26) contradict Lemma 2.4. Q.E.D.
For the final step IT < Il(y?), we will need an additional assumptionm.

Assumption 3: For all x = (I,y),

sz(I,ez(X)) Bfl(I,el(X))

(2.27) 3T > 31 .

This assumption states that the marginal product of capital is higher in the

high state for all output levels y and investment levels I. Obviously, since

ez(x) < el(x), Assumption 3 is stronger than the earlier assumed 2b which had

marginal product higher in the high state for all input levels I and e.
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Two examples of technologies for which (2.27) holds are the additively

separable technology:

(2.28) fi(I,e) = hi(I) + gi(e), i=1,2,

and the multiplicatively separable technology:4

(2.29) fi(I,e) = h(I)gi(e).

For the additive technology Assumption 2a is equivalent to Assumption 3 and
for the multiplicative technology (2.27) holds as an equality since
goley(x)) = gi(e;(x)) for all x.

Note that in (2.29) h(+) is not indexed. If h(+) were indexed, (2.27)

would not hold in general. An example is the following:

(2.30) fi(I,e) = (h(I) + ai)g(e) > @, > @ > 0.
Now, g(ez(x)) < g(el(x)) for all x and so the reverse of (2.7) holds. For
this technology it will be the case that I? > I(y?) and we are unable to

*
conclude that investment will be below Ii.

Lemma 2.9: Under Assumptions 1-3, Ia

1 < Il(y?) for the second-best

snlution.
Proof: By Assumption 2, and (2.6),

a a a a a a
-1> - 12> -1>0.
de de de

(2.31)
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The last step is a restatement of Lemma 2.8.
We know that either (2.19) or (2.21) holds. If (2.19) holds,then

I? = Il(y?). If (2.21) holds, then it implies together with (2.21) that:

af (1%,e. (x)) /51 - 1
(2.32) 0 ¢ —t ; 1 ; < 1.
afz(Il,ez(xl))/BI -1

if afI/BI -1<0, so is afz/at - 1 or else the first inequality in {2.32)
could not hold. From the second inquality in (2.32) follows that

afl/BI -1> afz/BI - 1, contradicting Assumption 3. Consequently,

a

a a
afl(Il,el(xl))/BI - 130, 0r T,

< Il(yi) by concavity of ﬂ1(°). Q.E.D.

Putting Lemmas 2.6-2.9 together yields our basic result that resources

are underemployed in the low state:

% %
Proposition 2.2: Under Assumptions 1-3, second-best has IT < Il,y? < Yy

a *
and el < el.

Proof: With reference to Figure 1, we have already proved in the earlier

* * *
lemmas that y? < Yy IT < Il' The strict inequality I? < I1 follows unless

III(-) is horizontal. However, the only case for which III(-) is horizontal

is the seperable one defined in (2.28). But then afl/BI ~ 1> 0, since

*
equality cannot hold by Assumption 2b. Hence I? < I1 also in that case.

* %
Finally, e? < e follows by the facts that: 1? < Il’ e and I are

1
complementary and y? < yl(I?). Q.E.D.

2.4 Value of Screening on Input I

As mentioned, a novel feature of our model is that we may screen both on
inputs and outputs. It 1s natural to ask whether this yields an improvement

over contracts which screea on output alone. The answer depends on the
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technology.

If contracts are only contingent on output y, the manager is free to set
* * %
I at his preferred level. This level is 4 (y?) when a = a and 12 = Iz(yz)

when a, = Ay Therefore, screeaing on investment will not be valuable if and

only if the second-best solution characterized above is such that

1‘; - Il(y";). From the definition of I,(+) (see (2.22)), IT

obtain if and only if (2.19) is true, which in turn holds if (2.27) holds as

a .
= Il(yl) will

an equality. We conclude therefore:

Proposition 3: If (2.27) holds as an equality for all x, then additional

screeaing on I is valueless. If (2.27) holds as a strict inequality for all

x, then additional screening on I has strictly positive value.

Note that since (2.19) obtains when screening is valueless, both the high
state manager and the low state wmanager agrees on what investment is optimal
for any given y. This explains why nothing can be achieved by constraining
the choice of I.

The multiplicative technology defined in (2.29) provides an example where
screening on investment is valueless, because as we observed earlier, (2.27)
is an equality in that case.

Whenever screening on y alone is as good as screening on I and y, the
model reduces to the standard single-variable case.5 One may check that the
single-crossing property (the cross—-partial conditiom), which is essential in
the single-variable case, is implied by our assumptions. Since I1 will be
chosen so that I; = Il(yl)’ we have (using (2.22)):

om (T, ¢y, )sy))  am (T, (D)) . am (L, (7)y)) . oL (g) (L, (5y)uy))
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The fact that anz(II(yl),yl)/ay > aﬂl(ll(yl),yl)/ay is a straightforward
consequence of our assumptions.

Of course, in a more general sense, our model will always reduce to an
equivalent single-variable problem, because (2.20) (or (2.19)) will yield a
relationship between I and y. Above this relationship was I = Il(y). The
first equality in (2.33) will always hold, but whether the single-crossing
property will be true or not in the general case we do not know.

Finally, it is worth noting that while additional screening on I may have
no benefits, it will never be optimal to delete y from the contract. This is
so, because by (2.9), yl(I) < y5(1) for all T and so preferences for y given I

do not depend on whether a = @ or aye

2.5 Comparative Statics

Given the technology, two parameters affect the choice of X ® the
probability of a high state (¢) and the manager's risk aversion., These
effects can be signed.

From Proposition 2.1 we know that (2.10)(ii) and (iii) will be binding.
We can solve for $) and s, from these equations. The result is given in
(2.16). Substituting (2.16) into the objective function of (2.10) and taking

derivatives yields the following first—order conditioms for y? and I?:

pam, () w () - u (D) ] o (x)

du
(2.34) ——=-(1 -9l i ] = 0.
dy 3y a (CT) oy
pam, (x) u'(ca) - u'(ca) am. (x2)
(2.35) §§-= (1 - §) [t L e I

L
a
u (cl)
. a a a a a
When ¢ is changed, N and c, will also change, but so that c, =c + A(XI)

(as (2.10) (ii) is an equality). If u(e+) exhibits non-decreasing absolute

, . 'ba,  'Sag., a0 . a a
risk—-aversion, [u (cl) -u (cz)]/u (Cl) will increase in ¢, because c, and N
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will both increase (in order for (2.10) (iii) to hold). Now, anz(xi)/ay >0
by Lemmas 2.8 and 2.9. Also, c? < cz by Proposition 2.1 and so

u‘(c?) - u'(c;) > 0. Consequently, differentiating (2.34) totally with
respect to ¢ implies dy?/d¢ < 0. By Lemma 2.9 and Assumption 3,

anz(x?)/al > 0. If equality prevails then Lemma 2.5 and dy?/d¢ < 0 imply
dI?/d¢ < 0, while if a strict inequality holds, the same conclusion follows

from differentiating (2.35) totally with respect to ¢. Thus, we have shown:

Proposition 2.4: An increase in the probability of a high state (¢) will

a
1

absolute risk-aversion.,

decrease y? and I if the manager's utility function displays non-decreasing

The result is intuitive and reflects the trade-off between productive
efficiency and risk-sharing. The more likely the low state is, the more we
care about productive efficiency as long és risk-aversion does not increase
too much due to the decrease in the level of expected income.

Based on the same trade—off we can also conclude:

Proposition 5: If the manager becomes more risk—averse (in the sense of

a concavification of u) y? and I? will decrease.

Proof: If we replace u( ) by u( ) = v(u( )) where v is concave and

increasing, u( ) is a more risk-averse utility function than u( ). It is
straightforward to check that then

G(cz) - ;(cl) N u(cz) - u(cl)

u(c,.) u(cl)
1
The conclusion follows from (2.34) and Lemma 2.5 as before. Q.E.D.

3. Aggregate Analysis
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If there is a large number of firms of the kind described above with
productive shocks that are independent, then the aggregate implications from
asymmetric information are merely that a lower overall level of investment and
production will obtain relative to the full-information world. Next we want
to study the effects of asymmetric information when the productivity shocks of
the firm are dependent; that is, when there is some aggregate uncertainty.

Our specific objective is to establish that under some circumstances
asymmetric information will magnify fluctuations in output and investment.

The simplest way to introduce aggregate uncertainty into the model is to
let ¢ represent the fraction of firms which have a high a. Thus, conditional
on ¢, the probability that a firm has a high a is ¢. We will assume that ¢
can take only two possible values, ¢2 > ¢1.

Let the ex ante probability that ¢ = ¢2 be p. Let

., = Pr =6¢., a
Pyy { b

We have, of course,

ai} be the joint probability distribution of ¢ and «a.

(1 -p)(Q - ¢1) > Pyy (1 - p)¢1,

Py

]
I

The marginal distribution of o is given by 5 = Pr{a = az} = Py, + Pyy and

1 - 5 = Pr{a = al} =P + Pyye We denote the counditional distribution by

gji = Pr{¢ = ¢j|a = ai}. Since ¢2 > ¢1,
p P
P12 11

(3.2) 222 > 221, 211 > 212.
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As before, we will assume that a contract is designed ex ante, when the
manager and the owners hold the same probabilistic beliefs given by the matrix
(pji) above. We will also assume, as is natural, that aggregate shocks are
publicly observed and that contracts therefore can be indexed by the
realization of ¢. To what extent they are indexed depends on whether ¢ is
observed before or after x is chosen. If it can be observed before, then both
the production decision x and the payments s from the manager to the owners
can be indexed by ¢. In this case the analysis of the previous section will
apply rather directly as we will discuss shortly. Perhaps the more
interesting case is when ¢ cannot be observed at the time x is chosen, but
before rewards are paid. Then the analysis of optimal contracts is more
complicated because of the risk the indexing of s may introduce into a

contract. We proceed to look at that case first,

3.1 Manager Uninformed About ¢

Since ¢ is observed after x is chosen but before s is paid, while a is

observed as before, a contract § is now a pair of 4~tuples:

S = {(II,Y1,511,821) N (Iz,yz,slz,szz)}.

Here, x

i = (Ii,yi) is the manager's choice if a = a, and s.. is his payment to

ji
the owners if ¢ = ¢j and o = a, .

An optimal contract now solves the following program:

(3.3) M:x pllu(wl(xl) ~ 311) + p21u(n1(x1) - s21) +

Py umy(xy) = 81,) + pypulmy(x,) - s,,),
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subject to

(1) P ulm (xp) = sy) + pyjulm (x)) = s,))

2 ppulmy () = s)5) + pyulm (xy) = s5y,),

(ii) Ppuy (%)) = xpp) + pyyulmy(x)) = s,,)
> pppulmy(x)) = 8))) + pppulmy(xy) - sy,
(1ii)

P18y ¥ P8y T P1pS1g t PypSyy = 0

where x; and ﬁi( ) are as before.

The formulation above deserves brief comment. Constraints (i) and (ii),
requiring incentive compatibility, are based on the view that the ex ante
policy of truth-telling is optimal for the manager. Of course, this is
equivalent to requiring that conditional on a, the manager is better off

telling the truth. These constraints would read:

(1) Pl () =8y ) + by ulm () = sy0)

> leu(nl(xz) - 812) + ZZIu(nl(xz) - 522),

(ii') 212u(w2(x2) - 512) + Zzzu(wz(xz) - 322)

> llzu(ﬂz(xl) - sll) + Zzzu(ﬂz(xz) - 521).

T T -
1f we multiply (i ) by (1 - ¢) and (i1 ) by ¢ we get back to (i) and (ii).
Constraint (3.3) (iii) assumes that owners are risk neutral. This may
appear to be a bad assumption now that we deal with aggregate risks as well as

idiosyncratic risks., We retain it for technical simplicity with the following
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rationalization. 1If owners were modeled as risk averse with respect to
aggregate shocks, then the manager could absorb some of that risk and would
certainly do so in the second-best solution. However, the manager's risk
absorbtion capacity 1s negligable relative to the risk sharing a stock market
(i.e., the ownership syndicate) can offer. Therefore, by assuming that owners
are risk meutral, we are merely capturing the fact that they are so relative
to the manager.

The optimal solution to (3.3) will be denoted x?,s?i(i,j=1,2). The
consumption of the manager in state a = as ¢ = ¢, is:

J

(3.4) cji = ni(xi) - sji =y - ei(Ii,yi) - sji'
As in the previous section we will show that (3.3) (ii) is binding but (3.3)
(i) is not at an optimum, The argument is slightly more elaborate now because
it is not evident that the manager's expected utility from consumption is

higher when a = o, than when a = as as the conditional probabilities on ¢

2

change with a.

Lemma 3.1: Under Assumptions 1 and 2, constraint (ii) in (3.3) is

binding at an optimum,

Proof: Let Xl be the multiplier for (i), AZ for (ii) and u for (iii).

Naturally, u > O.

The first-order conditions for 511 and $y1 are (dropping the superscript

for simplicity):

Pro
(3.5) a2 5 e

'
2 By Tha A(xl)) + (1 + Al)u (cll) -u=0,
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P
(3.6) L 220

9 By + A(xl)) + (1 + Xl)u (c21) - u= 0.

€21

Suppose i, = 0. Then (3.5) and (3.6) imply ¢i1 = S91 = - The first-order

condition for S12 is:

1 p '
11 =
(3.7) (1 + Xz)u (C12) Al PL u (c12 - A(XZ)) u = 0.
Combined with (3.5) this gives (since Xl > 0, Xz = 0)
1 pll 1 u \J
u (clz) =y + Al E)T;u (Cl2 - A(XZ)) >u 2 m— u (cl).

Consequently, c12 < cl. Similarly, the first-order conditiom for S99 is:

P
21 !
2) Al 5 u (c22

(3.8) (1 + A)u (c
2 2 ”

- A(Xz)) -u =0,

which together with (3.5), gives €y < e

The assumption A, = 0 has led to the conclusion that Cy9 and cyy are both

2
below ¢ = €11 = Sy Since A(x) > 0, this contradicts (3.3) (ii). Hence,

A2 > 0 and the claim follows, Q.E.D.

We will go on to show that at an optimum (3.3) (1) will not be binding.
Again, the strategy is to solve for an optimum without (3.3) (i) and check
that the solution to the relaxed program satisfies (3.3) (1).

Denote by ;i’;ji(i’j = 1,2) the solution to (3.3) with constraint (i)

dropped.

-~ * -~ A

Lemma 3.2: Under Assumptions 1 and 2, Xy = x2,s12 =

-~ * *
A(xz) = A(xz) > A(xl) > A(xl).
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Proof: When (i) is not imposed, the optimal choice of X9 8195 S99 will
necessarily maximize plZu(CIZ) + p22u(c22) subject to (ii) and (iii); (here

~ A ~

X158 18, are kept fixed). The first claim follows immediately.

* *
For the second part A(xz) > A(Xl) was proved before. We

* A
claim A(xl) > A(xl).

* * A
Suppose not. Then we caa choose xl = xl, s11 = nl(xl) - c11 >
> nl(xl) - Cy and Sy1 = nl(xl) = ¢y > nl(xl) = Copo because x) # . It

1
A *
follows if A(xl) > A(xl) that this choice will satisfy (ii), leave (iii) with

a surplus and leave the objective unchanged. But this contradicts the fact

a

that we are at an optimum at x

A

S QIE.D.

1> %110 Sa1°

Lemma 3.3: Under Assumptions 1 and 2, constraint (i) in (3.3) is not
binding at an optimum.

a

- *
Proof: Throughout, keep x; and X, at the optimal levels X, and X, = X,

in the relaxed program (3.3) (ii)-(iii). We show first that (Xl’XZ) can be

implemented incentive compatibly without indexing payments on ¢ and that (i)
is not binding in that case. Next we show that any improvment obtained in the
relaxed program (3.3) (ii)-(iii) by indexing payments on ¢, maintains (i) as a
strict inequality. This proves the claim.

Choose Sl and s2 so that (ii) and (iii) hold as equalities. Then,

(3.9) nl(xl) -8, = nz(xz) -s,

- A(xl)

~ 1 A A ]
> nz(xz) -8, = A(xz) = nl(xz) = S,e

The first equality is (ii) while the inequality follows from Lemma 3.2.

Inequality (3.9) shows that if we do not index on ¢, then (ii) and (iii) imply
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that (i) is not binding.

Now, consider the optimal payments 8,3811559] (52 is not indexed by ¢
] ?

according to Lemma 3,2). We claim s, > s Suppose not, i.e., s, > Sye

2 2°
Then, by (iii),

(3.10) pulr,(x)) = 8, + (1 = pulr (x) = s))

pu(m,(x,) = 5,) + (1 = pluCn (%)) =5, )

A%

v

pulny(xy) = 8,) + (1= p) gy uln (x)) = 5 )

+yulm (x)) - s,))]

LY

= ppyulm (x) = s) +pyu((x)) = 5y)

~

F (yy + Py ulm,(x,) = 5,

The first and second inequalities follow from the concavity of u, the facts

KN [ EN ] A ] A \]
that ﬂz(xz) - s, > nl(xl) -8y and 5 < Sy 8 < 8 and (iii). From (3.10)

we see that the objective function is lower for (s ) than for

2°%11°%21
) 1 ~ [}
(SI’SZ)’ contradicting the optimality of the former. Consequently s, > S,e
2159 the component of the objective
A 1

function relating to o = a, does not go up s, P Sye Hence, the component of

the objective function relating to a = a cannot go down, which means the left

side in (i) cannot go down. On the other hand, the right side of (i) does not

\ 1 ~ ~
When moving from (sl,sz) to Sll’s

~ ]

go up as s2 > S,e In sum, (i) is maintained as a strict inequality when

A A

payments are (511,321,52). Therefore, solving (3.3) (ii)-(iii) yields a



solution to (3.3) (i)-(iii) as well. Q.E.D.
We can now apply the results from the previous sections to prove:

Proposition 3,1: Under Assumptions 1-3, a solution to the second-best

b * ) * b x b *
program (3.3) has 12 = 12, Yo = Yoo I1 < Il’ Y4 < Yqe

Proof: Just as in the simpler model of the previous section, it is clear
from (3.3) that a necessary coandition for Xy to be optimal is that it solves
(2.17). Since Proposition 2.2 was based on (2.17) alone, it follows that

b * b *
Il < Il’ Y1 < Yie
* b *

The claim I; = 12, y, = ¥, was established in Lemmas 3.2 and 3.3. Q.E.D.

An immediate consequence of the preceeding proposition is our main

conclusion:

Proposition 3.2: Under Assumptions 1-3, the aggregate levels of

production and investment are lower and fluctuate more when there is

. incomplete information than when there is full information.

Proof: The aggregate level of investment when ¢ = ¢i is

= .10 + (1 - 6.)I0. Therefore, I2 - I° = (4. - 6.)(I. - 1%). In the
i = %5 0501, » Iy = Iy = ey = oL, = 1),
—% % * *
full-information case this difference is 12 - I1 = (¢2 - ¢1)(12 - Il)' Since
* *
IT < I1 < 12 and ¢2 > ¢1 the conclusion follows. Q.E.D.

In the model of the earlier section the means for improving risk-sharing
without violating incentive compatibility was to decrease X When the
aggregate levels of investment and output (that is, ¢) in the economy can be
used as signals about individual firms' productivities, a second instrument
for controlling incentives is made available: indexation of payments on ¢.

We show next that such indexation will be used in the spirit of relative
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performance evaluation: if the manager claims that the firm is in a low
productivity state and it turns out that the aggregate level is high, he will
receive less income than if the aggregate level is low (“"confirming” his

claim):

Proposition 3.3: Assume the manager's utility function displays

decreasing or constant absolute risk—-aversion. Then c?l > 29
b b

S11 < Sy

, Lee,,

)

Proof: Let Xz be the multiplier for (3.3) (ii) and u the multiplier for

(3.3) (iii). Tt follows from first—order conditions for S?l and sgl that

(dropping subscripts for notational simplicity):

Pig v '
(3.12) —Az ;Iz-u (cll + A(xl)) + u (cll) =yu > 0,
p22 t 1§ 1
(3.13) —Az S;I u (c21u (c21 + A(xl)) +u (c21) =u > 0.
By (3.1), (3.12) implies:
P22 ¢ '
(3.14) —XZ Ezz-u (c11 + A(xl)) + u (Cll) < 1.

From the inequality in (3.13):

L4

P22 u (eyy)
21 u (c21 + A(xl))
11
Thus, since u < 0,
p22 Tt Tt
(3.15) -KZ —=u (c21 + A(xl)) + u (c21)

Pa1
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u (C21) e (K]
< - = 1 (c21 + A(Xl)) + u (Cll)
u (c21 + A(Xl))
wa' e, A A ()
= [ ; 21 1 - ; 21 Ju (c21) < 0.
u (c21 + A(xl)) u (c21)

The last inequality follows by non-decreasing absolute risk-aversion and the
fact that A(xl) > 0.

From (3.13)-(3.15) it follows that c11 ? Cyy- Q.E.D.

The intuition behind this result seews clear. If S11 < So1» then

Efs Ia = a1] < E[sjila = a2] since £ . > 2 The expected payment to the

jl 11 12°
owners is higher in the high aggregate state than in the low aggregate state
when 3 is chosen. Since they are the same if we do not index on ¢, it
appears that choosing $11 < $531 is a new means for discouraging the high state
manager from posing as a low state manager.

The matter is somewhat wmore complicated, however. Even if 211 = 212
(i.e., ¢1 = ¢2) so that indexation would serve no purpose along the lines
described above, it may pay to use randomized payment schemes (see Maskin
[1981]). Whether s, is greater or less than S,1 in such schemes depends on
the shape of the utility function. Thus, the combined effect is in general
ambiguous. However, if absolute risk-aversion is non-decreasing, then Maskin

{1981] has shown that randomized schemes will not be used (if &, . 6 = 212) and

11
so the remaining effect is the one argued above.

Proposition 3.3 also shows that indexation has positive value in
accordance with the general results of Holmstrom [1979] and Shavell [1979].
Indexation relieves (partly) the burden of policing incentives by lowering

Il' We may therefore expect that I1 is higher when we can index payments on ¢

than when we cannot, A partial confirmation of this is the following result:



Proposition 3.4: Under the assumption that the manager's utility

function displays constant absolute risk—aversion, the investment level in the
low productivity state (a = al) is higher when one can index on the aggregate

state ($) than when one cannot.

Proof: Let IT be the low state investment level in an optimal solution

to problem (2.10) when ¢ = 5 and let IT as before be the low state investment

level in an optimal solution to (3.3). What is claimed in the proposition is
b a
that Il > Il'

Equation (2.35) determines I?. A first-order condition for IT can be

derived as follows. Consider payment perturbations ds11 = d321 = ds1 and d32

and an investment perturbation dI; in (3.3) such that (3.3) (i1)-(iii) remain

binding. Straightforward calculations (eliminating dsz) yield the condition:

ds aﬂl(xl)

311

(3.16) L= (- D= FHEG@ fo) = u (e)] +
1

E(u'la )}.
1 1

Constant absolute risk-aversion implies that (3.3) (ii) can be written (since

S12 = S99 = sz) as:
(3.17) $u (ﬂz(xz) - sz) =p,u (ﬂz(xl) - sll) + P,y,u (wz(xl) - 521).

Differentiating (3.3) (ii) and using (3.17) we get:

anz(xl)
(3.18) ds, = ds, - ——— dI

2 1 312 1

Differentiating (3.3) (iii) we get ds, in terms of ds, which after

substitution into (3.18) yields:



(3.19) ds, = ¢ ~Zm—— ar, .

Finally, substituting (3.19) into (3.16) gives the condition for IT:

am . (x,) u'(c ) om. (x.)
du — = 221 2 1Y
(3.20) ===l - §)[s —= - ; ] - 1=o0.
dIl aI1 E(u |a1) oLy

Notice, that (3.20) reduces to (2.35) if S11 = Sop°

Now, if I = I? in (3.20), we must have improved risk-sharing (since

1
14 1 ]
(3.3) yields a higher utility than (2.10)). Thus, u (cg) >u (c;) and
L 1
E(u (c?)lal) < u (c?). Consequently, the inner bracketed term in (3.20) is
smaller than the corresponding terms in (2,35) and so dU/dIl > 0 at I1 = II'
b

Therefore, I1 > I?. Q.E.D.

3.2 Manager Informed About ¢

We will now briefly discuss the case where the manager makes decisions
after observing both a and ¢. Since owners eventually observe ¢ as well, the
situation is analytically equivalent to one where both parties observe the
aggregate state before x has to be determined. However, the contract is still
asumed to be made before any information is released (either about a or ¢).

A contract consists now of four 3-tuples:

§ ={(111’3'11’311)’(112’3’12’9‘12)’(121’3'21’521)’(122’>'22"322)}

The first index is for the aggregate state, the secound is for the firm
state. If ¢ = ¢1, then the manager can choose between the first two 3-tuples;
if ¢ = ¢2 he can choose between the latter two.

An optimal contract, denoted §€, solves the program:
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(3.21) Max (1 - p)[¢1u(n2(x12) - 512) + (1 - ¢1)u(ﬂ1(x11) -s,.) +

11
8,k k,

p[¢2u(ﬂ2(x22) - 522) + (1 - ¢2)u(v1(x21) - 521)],

subject to
(i) nl(le) - sjl > nl(sz) - Sj2’ j=1,2
(ii) ﬂz(ij) - sj2 > nz(x,l) - Sjl’ j=1,2,
(1ii) ¢jsj2 + (1 - ¢j)Sjl = kj’ j= 1,2,
(iv) pk2 + (1 - p)k1 = 0.

We have written the zero—profit constraint as two constraints (iii) and (iv)
to make it evident that for the optimal choices of k1 and k2, (3.21) separates
into two independent problems of the same structure as (2.10), except that in
(3.21) expected payments to the owners are kj rather than zero. For constant
absolute risk-aversion this difference has no bearing on the choice of
production decisions.

We will restrict attention to the constant absolute risk aversion case,
since our purpose is to show by way of examples that results councerning
aggregate fluctuations are generally ambiguous when the manager can observe ¢
before choosing input levels.

Since (3.21) is essentially two separate programs, it follows from
c c

*
1 = 1, and

Section 2 that optimal investment levels are 112 29 9
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121 < I11 < I1 (as ¢2 > ¢1; cf. Proposition 2.4). Aggregate investment in
- *
state ¢ = ¢j will be I§ = ¢j12 + (1 - ¢j)1§. Both for the high and the low
- —k
aggregate state I§ < Ij, i.e., aggregate levels in the second-best are below

first-best levels. We can write the fluctuation as

c
21

=C

” -C _ % * * c
(3.22) L= =0, = ¢, -ID+ A -6 -I,)-0U- 0, 0(L; = I,

e T .
1 < 12 —Il, if and only if the

difference between the last two terms is negative. Either case is possible as

Expression (3.22) shows that f; -1

can be seen by changing the technology. Cousider an additively separable

C
21°

(with the kink appropriately smoothed to preserve our

*
technology (2.28) for which Il > Iil >1I Now change hl(I) so that it

c
11

*
assumption of differentiability). This will not change I,, I

becomes flat beyond I

c c .
11° 121 but will

*
bring I. as close as we wish to 1°.. Consequently, we can make the middle

1 11
c zc ,T* %

term in (3.22) arbitrarily small and hence fz - Il < I2 - Il' In other words,

aggregate levels may fluctuate less in the second-best than in the first-best
if the manager can observe é. This is not possible when the manager cannot
observe ¢, as we showed in Proposition 3.2.
The reverse may also obtain. In the example discussed above, change
hl(I) so that instead hl(I) becouwes arbitrarily steep below ITI. That way we
c c

can bring 121 as close as we wish to Ill'

difference between the last two terms in (3.22) can be made positive and hence

Since 1 - ¢2 <1- ¢1, the

* -k
2~ It

We conclude that the aggregate level of investment may fluctuate either

=c
I2 -

-.c —
Il > 1
more or less when the manager first observes ¢ than when he does not. The

same is true for output. We can further show that the optimum in (3.21) can

either be higher or lower than in (3.3). In other words, the value of having
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the manager better informed about the future (in this case ¢) can be either
positive or negative., This observation conforms with earlier findings in the
principal-agent literature that a more informed agent may or may not be worth
more to the principal (see, e.g., Green and Stokey [1980]). 1In the present
context the two opposing forces are easily identified. On the benefit side
(3.21) has more instruments for controlling the manager, because x can be
indexed by ¢. On the cost side the constraints in (3.21) are tighter. All
feasible points in (3.21) (with I;; = Iy and Yi1 = Y210 of course) are also

feasible in (3.3).

4, Conclusion

In this paper, we have shown that asymmetric information between owners
and managers will generally distort input levels downwards from that level
where marginal revenue product equals factor cost. 1In some settings this can
amplify the magnitude of fluctuations in aggregate investment levels., As in
recent models of equilibrium business cycles, we have shown that the magnitude
of such fluctuations depends on the availability of aggregate information at
the time allocation decisions must be made.

In several aspects, our analysis is similar to the wage—employment model
in Grossman and Hart [1981]. They consider a situation in which workers
cannot directly observe the marginal product of labor while firms can.
exovided firms are risk averse and profits unobservable, they show that
efficient risk sharing may necessitate a reduction in labor input relative to
a Walrasian (spot) labor market, or a first-best allocation in which all
information is public. However, the assumption that firms are risk averse
appears unattractive, If uncertainties in production are firm specific, then
a stock market ought to be able to spread the risk so that owners will act as

if they are (almost) risk neutral with respect to these idiosyncratic risks.
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On the other hand, if risk is common to all firms, then aggregate information
will reveal publicly the state of labor productivity and hence not be a source
of incentive problems. In either case, and presumably even if there is a
mixture of both types of risk, incentive problems should disappear. The
assumption that profits are uanobservable also appears dubious, especially for
publicly traded companies with active share markets.

Our explicit model of managerial control with an unobservable factor
input makes the tradeoff between efficient risk bearing and productive
efficiency more plausible. This formulation completely separates the function
of screening on observable factor ianputs from the problem of risk sharing with
suppliers of factor inputs, which is the driving force of Grossman and Hart.
If we interpret I, the observable factor, as labor, then the substantive
conclusions of the model would be robust to risk aversion on behalf of
labor. 1In this case, labor and shareowners could make a separate insurance
agreement because they may have common information, and the incentive problem
between the manager and owner would be unaffected.

Our analysis of the principal-agent problem when the principal’s reward
depends on both inputs and outputs is of some interest in contexts beyond
those considered here. For example, our model could be interpreted as an
optimal taxation model of the type first proposed by Mirrlees (1971). 1If
labor hours were observable, as well as income, but not ability or effect,
thea social welfare could be improved by making taxes depend on both hours
worked and income. For the case of two types of individuals, an optimal tax
schedule would force low ability individuals to work less than they would

otherwise desire in the absence of redistributive taxes.
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Footnontes

lsee Azariadis [1981], Chari [1981], Green and Kahn [1982] and Grossman

and Hart [1981) for partial equilibrium analyses. A general equilibrium model
is found in Grossman, Hart and Maskin [1982]. Hart [1982] provides an

excellent overview of this literature.

2In independent work Hart [1982] and Maskin [1982] discuss managerial

models similar to ours.

3This channel of incongruity in investment preferences is different from
that in Wilson [1968] and Ross [1973]. They rely on differences in risk-
preferences induced by optimal risk-sharing. Since we assume there is no
investment uncertainty (o is revealed to the manager) there would be no

difference in preferences without the introduction of unobservable effort.
This technolgoy is the one considered in Hart [1982].

IThis is the fact Hart [1982] exploits.
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