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Abstract

Numerous experimental studies have shown that the expressed
prefecrences of individuals commonly violate the substitution axiom of
classical utility theory. The Allais paradox is a well-known example of
one type of violation. Another example is provided by recent auction
experiments which indicate that Dutch auctions systematically yield
lower revenues than sealed-bid auctions, despite the fact that these two
auctiou procedures are strategically equivalent from the perspective of
expected utility maximization. A striking feature of these recent
experimental results is that the direction of violation of the
substitution axiom is opposite Erom that associated with the Allais
paradox.

In this paper, we examine the "alpha-utility” model of preferences
which arises when the substitution axiom is weakened. We provide an
interpretation of the alpha-component of the model as a measure of the
"conceivability”™ of an outcome. This interpretation suggests that the
alpha—-component will typically take a particular form. Finally, we show
that the suggested form yields a model of decision-making which is

consistent with both the Allais paradox and the auction phenomenon.






THE ALLAIS PARADOX, DUTCH AUCTIONS, AND ALPHA-UTILITY THEORY
by

Robert J. Weber

Introduction.

The assumption that individuals act as expected utility maximizers
lies at the foundations of both microeconomics and the theory of
noncooperative games. Yet experiments have repeatedly shown that
individuals in fact fail to act in a manuer consistent with expected
utility maximization (i.e., fail to act "rationally"); moreover, these
experiments have uncovered systematic deviations from the predictions of
classical utility theory.

It is, of course, possible to defend analyses based on the
assumption of rationality, by claiming that "most" individuals "usually"”
act "almost” as if they were expected utility maximizers. Still, it is
desirable to have available a positive theory of decision-making which
accords well with experimental results. We present such a theory here.

Among the most well-known cases in which irrational behavior has
been observed are the "paradoxes” of Allais [1953], one of which is
discussed in detail in the next section. Various attempts have been
made to present a model of decision-making which is consistent with the
observations of Allais (see, for example, Kahneman and Tversky
[1979]). However, recent experiments conducted by Cox, Roberson, and

Smith [1981], involving Dutch and sealed-bid auctions, have revealed new



systematic deviations from rational behavior which (in a sense to be
made precise below) are polar to the Allais paradoxes. Most of the
attempts to explain the Allais paradoxes lead to predictions directly
opposite to the phenomenon observed by Cox, Robersoa, and Smith
(hereinafter CRS). OQur goal is to.provide an alternative model of
decision—-making which accords well with both of the observed deviations
from rationality noted above.

Recently, Chew and MacCrimmon [1979a,b] proposed a weakening of the
standard substitution axiom of utility theory, and developed a new model
of decision-making which they named "alpha~utility theory.” The
development presented by them, as well as by Fishburn [1981], is
primarily algebraic. We present here a development along
geometric lines, which we feel contributes to the empirical issue of
alpha-utility measurement, 1In addition, we present an interpretation of
the alpha-utility function which leads to a natural conjecture
conceraing the shape of the alpha component of the utility function.
Finally, we show that both the Allais and the CRS observations are
consistent with this conjecture., 1In a final section of this paper, we
discuss several of the broader implications of alpha-utility theory, to

time—-varying preferences and experimental design.

The Allais Paradox.

Actually, Allais presented several related phenomena which are

inconsistent with rational behavior. We shall focus on the phenomenon

referred to by Chew and MacCrimmon as the "Allais ratio paradox,"” and



shall discuss this phenomenon in the form it was presented by Kahneman

and Tversky. Consider four lotteries:

A: (3000,1.00) or B: (4000,.80) ,

C: (3000,.25) or D: (4000,.20) .

(Each of the four pairs (M,p) represents a lottery which awards the
amount M with probability p, and 0 otherwise.) The Kahneman and
Tversky experiments were conducted in Israel, and the payoffs were in
Israeli pounds; at the time, 3000 pounds was the median monthly net
family income. Lottery A was chosen over lottery B by 80 percent
of the egperimental subjects, and D was chosen over C by 65
percent, This despite the fact that € and D, respectively, are
formally equivalent to compound lotteries which yield A or B with
probability 0.25, and 0 with probability 0.75.

An implication of expected utility maximization, often stated as
the "substitution” or "independence" axiom, is the following: 1If one is
indifferent between (lotteries) A and B, then for any 0 < p € 1 and
any C, one is indifferent between pA + (1-p)C and pB + (1-p)C.
(Equivalently, if A 1is preferred to B, then pA + (1-p)C is
preferred to pB + (1-p)C.) The experimental results reported by
Kahneman and Tversky directly contradict this axiom. Therefore, an
axiomatic theory of preference which seeks to explain the experimental

results must involve a weakening of the substitution axiom.



Dutch and Sealed—Bid Auctions.

Many procedures exist for selling a single object at auction (see,
for example, Milgrom and Weber [1982]). We focus here on two particular

procedures, In a Dutch auction, a price clock is initially set at a

very high level (above the value of the object to any of the bidders),
and is then continuously decreased., At any moment, a bidder may claim
the object; he is required to pay the amount registered by the clock at

the iunstant he makes his claim. In a (first-price) sealed-bid auction,

the bidders all submit sealed bids; the highest bidder obtains the
object for the amount of his bid.

Counsider a bidder participating in a Dutch auction. If he is
rational (and if the auction is conducted in such a manner that he can
observe only the price clock, and not the idiosyncratic actions of the
other bidders during the course of the auction), then he will be coatent
to let an agent act on his behalf in accordance with instructions of the
form: "Claim the object at the price level b, if no other bidder has
claimed it at a higher level.” Counsequently, his decision problem is
equivalent to the choice of a value for b. If each bidder gives such
iastructions to his agent, then the bidder who chooses the largest value
for b will obtain the object, and will be required to pay b. This is
precisely the way a sealed-bid auction is resolved; hence, the two
auction procedures are strategically equivalent. The assumption of
rationality therefore leads to the prediction that an object will sell

for the same price in both auctious.



CRS conducted a series of experiments to test this prediction, and
found that there was a significant difference between the prices
generated by these two auction procedures. Specifically, in every one
of nine paired experimental sequences, they obtained lower average
prices from Dutch auctious than from sealed-bid auctions.

What could explain this phenomenon? If we carefully examine the
agent-based argument given above, there seems to be only oune
possibility: the price b at which a bidder would claim the object if
he were directly involved in a Dutch auction is not the bid he would
write down in the instructious to his agent (i.e., the bid he would
submit in a sealed-bid auction). TIn choosing whether to claim the
object when the price clock has dropped to b, or to wait until the
clock drops to a lower level b, a bidder chooses between two

lotteries:

A: (v-b,1) or B: (v-b,17)

where v represents the value of the object to the bidder (this value
was privately known by each bidder in the CRS experiments), and
1~ represents the probability that the object will still be unclaimed at

the lower price level. 1In choosing whether to submit a sealed bid of

b, or the smaller amount b , a bidder chooses between two lotteries:

C: (v-b,p) or D: (v-b ,p ) ,



where p and p represent, respectively, the probabilities that no
other bidder bids above b or above b . TIf all other bidders are
assumed to behave in the same fashion (i.e., associate the same bid with
their valuation of the object) in both auctions, then p = p-l—.
Therefore ¢ and D, respectively, are compound lotteries which yield
A or B with probability p, and O otherwise. The CRS experiments
indicate that in some cases subjects tend to choose B over A, and

€ over D.

Note the contrast with the Allais paradox. 1In that case, subjects
chose the lower, certain reward over a higher, uncertain reward.
However, when the reward probabilities were scaled down (through
compounding of the original lotteries with a payoff of 0), they chose
the lottery offering the prospect of the higher reward. Here, subjects
appear to choose the higher, uncertain reward over a lower, certain
reward; when the reward probabilities are scaled down, they choose the
lottery offering the prospect of the lower reward. It is in this sense
that we consider the phenomenon observed by CRS to be polar to that

observed by Allais,

The Weak Substitution Axiom.

In an attempt to account for behavior of the type discussed by

Allais, Chew and MacCrimmon proposed the following weak substitution

axiom: If one is indifferent between A and B, then for every p
there exists a q such that, for all C, one is indifferent between

pPA + (1-p)C and qB + (1-q)C. (An alternative version of this axiom,



called the "impartiality axiom” by Fishburn, is: If one is indifferent
between A and B, if one is not indifferent between B and C, and if one
is indiffereat between pA + (1-p)C and qB + (l-q)C, then for every

D, one is indifferent between pA + (1-p)D and qB + (1-q)D.) We shall

not preseant a rationale for this axiom, and experimental investigation

of its validity has not yet been carried out. Instead, we will examine

its implications, noting for the present only that anyoue who accepts

the original substitution axiom cannot object to this oune.

Let > be an asymmetric weak order on a convex space of lotteries,
and assume that the order is open, i.e., has neither maximal nor minimal
elements. Let ~ be the indifference (equivalence) relation induced
by » . We say that » 1is continuous, if for every A - B ~ C, there is
some 0 < p <1 such that B ~ pA + (1-p)C. We say that » is
monotononic, if for every A - B and 0 < p<q<1l, qA + (1-q)B > pA
+ (1-p)B. The following theorem is due to Fishburn (an equivalent
theoren was proved independently by this author, using the approach
outlined below); it represents a strengthening of the original

characterization theorem proved by Chew and MacCrimmon.

Theorem 1: An open, asymmetric weak order '~ om a convex space of
lotteries is coatinuous, monotonic, and satisfies the weak substitution
axiom, if and only if there are linear functionals w and o on the
lottery space, with a strictly positive, such that

w(A)

. . W
A - B if and only if GCAY > 3

(B)
B



Proof: Rather than present a formal proof of the theorem, we will
sketch a geometric derivation of the ceatral step in the proof of the
forward implication (the characterization result).

Let A ~-B »C be any three lotteries, and consider the simplex of
(compound) lotteries involving these three. The weak substitution axiom
implies that for any lotteries X ~ Y in the simplex, there is a

substitution fuanction q:[O,l] > [0,1] (depending on X and Y) such

that for all p and Z, pX + (1-p)Z ~ q(p)Y + (l—q(p)]z.

If > satisfies the traditional substitution axiom, then it is
well-known that the isopreference sets in the simplex are parallel
lines. 1In the curreat setting, consider lotteries X ~ Y. For any
0<p<1l, pX+ (1-p)Y ~ q(p)Y + (1~q(p))Y = Y. Consequently, the
isopreference sets are convex; the continuity and monotonicity of 7
then imply that the isopreference sets are lines.,

We next show that any two isopreference lines determine all the
others. Consider the diagram in Figure 1. Assume that JK and WMN
are isopreference lines, and consider the lottery Rge For some p

and q, R4 ~ pM + (l—p)R7 and R, ~ gN + (1—q)R7. Let q(e) Dbe the

10

substitution function for the (ordered pair of) lotteries M aund N.

Since R4 ~ RlO’ it must be that gq = q(p). But R0 ~ pM + (l-p)RZ,

and R,, ~ gN + (l—q)RZ. Consequently, R, ~ R This final

12 0 12°

indifference determines the isopreference line through Rge
Finally, we show that the isopreference lines are either parallel,
or all meet in the same point. This is the crucial step in the

characterization, since it implies that the position of the lottery B



Legend: 11. line through M,R,

RZ' arbitrary point on 4 *“\N
%4. arbitrary line through M, c

crossing JK

RA' intersection of JK, 13

Ls. line through RO’ R,

16. line through RZ’ parallel to 15
R7, intersection of 13, 16

18. line through R7, N

19. line through Rz, N

RlO' intersection of 18’ JK

line through R parallel to Le

10’
RlZ' intersection of 19, 211

Figure 1.
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in the preference structure (relative to A and C) can be
characterized by two parameters: the p such that B ~ pA + (1-p)C,
and the baryceatric B-coordinate of the point of concurrence of the
isopreference lines. View the central portion of the diagram as the
projection of a tetrahedron with vertices M, N, and Ry 1in the
ABC-plane, and vertex R2 above the plane. The lines R4R10 and MN
are coplanar; so are the lines RoRy9 and MN, Finally, the lines
R4R10 and RgRyo are coplanar, since RoR, and RioRyg are
parallel. Therefore, if any two of the lines intersect, the point of
intersection must lie in all three planes. The remaining line is the
line of intersection of two of the planes, and hence must also pass
through the (unique) point of intersection of the three planes. The
only other possibility is that none of the three lines intersect, in

which case they must be parallel. Q.E.D.

¥rom the geometric argument come two empirical predictions. 1If a
decision-maker's preferences satisfy the continuity, monotonicity, and
weak substitution axioms, his isopreference sets in any three-lottery
simplex must be linear (as they certainly must be if he is an expected
utility maximizer), and furthermore, they must be either parallel or
coincident. GEstimation of the a-component of the position of any
lottery in his preference structure is equivalent to the estimation of
the point of coincidence.

The following result (Fishburn [1981]) indicates the relationship

between alternative representations of - .
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Theorem 2: If (w,a) and (w',a') both represent > , then

there are coanstants a, b, ¢, and d satisfying ad > bc, such that

aw + ba ,

t—
]

cw + da .

Alpha-Utility Theory.

Chew and MacCrimmon formulate the characterization result of
Theorem | slightly differently. For any lottery A, define
u(A) = w(A)/a(A). Then A > B if and only if u(A) > u(B). This
appears quite similar to the standard utility representation of
preferences. However, each lottery A has two parameters associated with
it: u(A) and a(A). The second parameter (from which the theory takes its
name) is used to evaluate compound lotteries. If C = pA + (1-p)B, then

u(C)

(pa(A)u(a) + (1-p)a(B)u(B))/(pa(A) + (1-p)a(B)), and

a(C)

n

pa(A) + (1-p)a(B). If we consider wu(e) as the "utility”
function and af+) as the "weighting"” function, it is apparent that
alpha-utility theory is a type of weighted utility theory. If u is
unbounded, it follows from Theorem 2 that (u',a’') will represent the
same preferences if and only if u' 1is a positive affine translate of u
(i.e., u'" = au + b, with a > 0) and a' is a positive multiple of a.
Classical expected utility theory corresponds to the special case in
which the weighting function is constant,

What interpretation can we give to the weights? Consider Figure 2,

and view u as a classical utility function. However, assume that the
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decision-maker is skeptical about the actual outcome of the lottery
C = pA + (1-p)B. The decision-maker believes that when Nature
chooses A, he will actually receive A with probability a(A); he
believes that Nature will, with probability 1-a(A), return to the
beginning of the lottery and choose again between A and B.
Similarly, when Nature chooses B, he believes that he will actually
only receive B with probability o(B); with probability 1-a(B),
Nature will renege and choose again. Then

(pa(A)u(A) + (1-p)a(B)u(B))/(pa(A) + (1-p)a(B)) is the classical

expected utility of the lottery C.

Figure 2.

This suggests that a(A) can be viewed as a measure of the

"conceivability” of thne outcome A. When we purchase a lottery ticket
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wnich offers $1 million as the prize, we commonly say to ourselves,
"Really, I can't imagine myself winning."” 1t being difficult to
conceive of such a great change in our wealth, we subconsciously lower
our perception of the likelihood of winning. This down-grading of
perceived likelihood corresponds to the assignment of a lower a-weight
to the outcome "$1 million" than to the outcome “$0" (no change in
current wealth).

If we accept this interpretation, then we should expect the
"typical” weighting function (when outcomes correspond to changes in
wealth) to be maximal at 0, and decreasing as one moves away from zero
in either direction. Since the weighting function must be positive, it
is not unreasonable for us therefore to expect it to be bell-shaped
(concave near the origin and convex further away, although not
necessarily asymptotically zero). 1In the next sections, we explore the
consequences of assuming that decision-makers are alpha-utility
maximizers, and that their weighting functions are bell-shaped and
maximal at 0. We will also assume that u is unbounded. Since the
weighting functions which appear in the (a,u)—-pairs representing a
decision-maker's preferences are determined up to a positive scalar
factor, the assumed properties of the weighting function will be

invariant under the choice of representation.



The Allais Paradox Revisited.

Let L <M <H denote three monetary outcomes, and consider the

lotteries
A: (M,1; L,0) B: (Hd,p ; L,1-p)
c: (M,q; L,1-q) D: (H,pq; L,1-pq) .

We shall call preferences for A over B, and D over {, Allais-type
preferences. We assume below that u is increasing, and without loss of

generality, we further assume that u has been chosen so that u(L) = 0.

Theorem 3: The pair (a,u) corresponds to Allais-type preferences
only if a(M)u(M) < pea(H)u(H) < (pa(H) + (l—p)a(L))u(M) . If these
inequalities are satisfied, then Allais-type preferences will be

exhibited for all sufficiently small q.

Proof: The two inequalities, wu(A) > u(B) and u(C) < u(D), yield
lower and upper bounds on u(H)/u(M). The first inequality of the
theorem, and the final statement, follow upon noting that the lower
bound on u(H)/u(M) is increasing in g, and equals a(M)/(p'a(H))

when q = 0. The second inequality is direct. Q.E.D.

An immediate consequence of the two inequalities of Theorem 1 is
that Allais-type preferences can only be observed when the points
(u(L),a(n)), (u(M),a(M)), and (u(H),a(H)) 1lie on the frontier of the
graph of a convex function. If we further assume that u 1is concave on
the interval (L,H), this in turn implies that the points (L,a(L)),

M,a(M)), and (H,a(H)) lie on the frontier of a convex function. We



expect this to be the case when L =0 and M and H are relatively
large, and indeed, the commonly-reported examples of the Allais paradox
involve quantities M and H of substantial magnitude.

MacCrimmon and Larson {1979] present the results of a anumber of
experiments investigating Allais-type preferences. One interesting
feature of the experiments was that the scale of M and H was varied
over several orders of magnitude. They observed Allais-type behavior
most frequently when the scale was at its maximum level, less frequently
when the scale was reduced, and they observed a number of reversals of
the Allais phenomenon when the scale was at its minimum level. These
results are fully counsistent with our hypothesis that the typical

weighting function is bell-shaped.

Dutch and Sealed-Bid Auctions Revisited.

Assume that n bidders compete in the auction of a single
object. The object is subjectively valued by each bidder in monetary

terms; the valuations X1see+5X, are independent, identically-

n
distributed, nonnegative random variables, and the common distribution

G has a density G' = g. (This model accords well with the CRS
experiments.) Further assume that the utility compoanent of the bidders'
alpha-utility functions is linear (in money), and the weighting
component o 1s the same for all bidders (up to scalar multipnles). (In

essence, we mean to study the behavior of risk-neutral bidders with

nontrivial weighting functioms.)
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We shall determine the (unique) symmetric Nash equilibrium point of
the Dutch and sealed-bid auction procedures, The equilibrium notion we
use for the sealed-bid auction is a direct extension of the standard
notion: We require that each bidder's bid be a best response, given the
strategies of the others, The equilibrium notion we use for the Dutch
auction is a bit more subtle: We assume that each bidder will claim the
object as soon as his payoff from the claim is greater than the alpha-
utility payoff he expects to receive from waiting to make a later claim,
again given the strategies of the others.

Let bD and bg denote the symmetric equilibrium strategies in

the Dutch and sealed-bid auctions.

Theorem 4: If « 1is decreasing and concave over the range of
potential payoffs (i.e., over the range of Xi - bD(xi) ), then
bD <{ bg. Consequently, the sealed-bid auction will yield uniformly

grzater revenues than the Dutch auction.

Proof: The proof proceeds in several stages. First, we will
establish necessary conditions for bp and bg to be symmetric
equilibrium strategies. Then we will show that the solutions of the
necessary conditions indeed are equilibrium strategies. Finally, we
will establish the asserted ordering betweeu by and bg.

Consider first the Dutch auction. Assume that bidders 2 through n
all adopt the iacreasing strategy b(e), and consider bidder 1's

decision problem. Let w(x;t,T) be his expected payoff (in alpha-
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utility terms) when his valuatioa is x, the price level has descended
to b(t), and his plan is to claim the object when the price level
further drops to b(T1). (Clearly, this function is only defined for

T € t.) Then

a(x=b(t)) F(t)*(x-b(1))
a(x-b(1))*F(t) + a(0)+(F(t) - F(1)) °’

n(x;t,t) =

where F = ¢! is the distribution of the highest opposing valuation, and
f =F'.

We call b a symmetric equilibrium strategy (for the Dutch auction) if

it has the following two properties: (a) Whem t > x, w(x;t,t) 1is not
maximal at 1 = t, and (b) w(x;x,7t) 1is maximal at T = x. In essence, (a)
asserts that at all price levels greater tham b(x), the bidder anticipates
greater expected reward from waiting than from immediately claiming the
object, and (b) asserts that at the price level b(x), the bidder considers
any wait to be no more attractive than an immediate claim.

In any situation corresponding to a particular valuation x and current
price level ©b(t), t is bidder 1's decision variable. The derivative of =

with respect to Tt 1is

3 (x56,1) = [ax-b(1))+a(@)+ £(1)+F(E)+ (x-b(1)) = b' ()= (alx-b(1)))?+(F(1))?

b'(t)ea’ (x=b(1))*a(0)s (x-b(7))F(1)+(F(t)-F(1))

N
i

b (1) ea(x-b(1))*a(0)+F(1) (F(t)~-F(1))]

[ [alx-b(r))F (1) + a(0)-(F(£)-F(1))]% ,
The associated first-order condition at equilibrium is EE-| e .. =0,
T 't=x,T=%
or
(D) (x-bC))-£25 = b () LX)
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A boundary condition which must be satisfied at equilibrium is that
b(x) = x , where x 1is the lowest valuation in the support of the
distribution G (i.e., at equilibrium a bidder with the lowest possible
valuation must have an expected payoff, conditional on winning, of zero.)

We will require the following lemma on several occasions.

Temma 1l: Let g and h be differentiable functions for which
(i) g(x) > h(x) and (ii) g(x) < h(x) dimplies g'(x) » h'(x). Then

g(x) » h(x) for all x > X .

Proof: If g(x) < h(x) for some x > x then, by the Mean Value

-

Theorem, theve is some x 1in (x,x) such that g(x) < h(x) and

g'(;) < h'(;). This contradicts (ii). Q.E.D.

Let b satisfy the differential equation (D) and the associated

boundary condition. A direct application of Lemma 1 (with g(x) = x

an

and h(x) = b(x)) shows that b is increasing. Consider 5T =t °

for t > x. Then

2 £ -b
3| = aleb(e))+a(0)- (F(6)) -[(x—b(t)).ﬁ(i_; - b'(t)-%t-)—)—]

/ [a(x-b(£))-F(t)]% .

For x = t, the bracketed expression is zero. (This follows from (D).)
When x 1is decreased below t, the first of the bracketed terms
decreases and the second increases (since a is decreasing). Therefore
the expression is negative, and (a) is satisfied.

In order to verify that (b) is satisfied, we require another lemma.
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Lemma 2: Assume that o 1is positive, decreasing, and concave on

(0,2). Define

-1 - olz) a'(z)
A(z) =1 G) + z ME)) R

Then for all 0 < z < Z, A(z) < 0,

Proof: Clearly, A(0) = 0. Furthermore,

A'(z) = a'(z).(E%Ej'_ 5%57) + zoﬁé%§§l - z.(géég%)z . The assumptions of

the lemma imply that A'(z) < 0 for all z; consequently,

A(z) < 0. Q.E.D.

After a bit of algebraic manipulation it can be shown that

. -b
) o = @(EB(1))+a(0)+F()* [FC0)+ ((x=b(1))+EET - b1 (r) 2L (T))

— b (1)« (F(x)-F(1) )+A(x-b(1))] / D*

where A 1is defined as in Lemma 2, and D 1is a wnonzero expression.
For x > 1, it follows from the first-order condition that the first of
the expressions within the brackets is positive; from Lemma 2, it follows
that the second expression is negative. Therefore, the entire bracketed
expression is positive, and (b) is satisfied.

Consider next the sealed-bhid auction, and let w(x;t) be the
expected payoff to bidder 1 if the other bidders follow the increasing
strategy b, if bidder 1's valuation is x, and he submits a bid of

b(t). Then

m(x;t) = a(x-b(t))F(t)-(x-b(t))
- a(x-b(t))-F(t) + a(0)-(1-F(t)) °
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If b is to be a symmetric equilibrium strategy (i.e., if for every
valuation x, b(x) is to be a best response for bidder 1 when the other
bidders use the strategy b), then b must satisfy the first—order

am

condition —

3t lt=x = 0, or equivalently,

(8)  (x-b0x)) £ = br ()« 2 BLD) 1 () e (1-F D) Ax-D(R))

and the boundary condition b(x) = x . Again, it caa be shown that the

solution of these conditions is indeed a symmetric equilibrium strategy.
Finally, let by and bg, respectively, denote the symmetric

equilibrium strategies in the Dutch and sealed-bid auctions.,

Subtracting the first-order condition for bg from the first-order

condition for by yields

(bg (x)=b (1)) +£E5%. = [b] (x)+alx=by () = bL{x)alx-bg (x))]/a(0)

- bé(X)'(1—F(X))-A(x-bs(X)) .

From Lemma 2, A(x—bs(x)) < 0; therefore, if bD(x) > bs(x) for any x,
it must be that bb(x)-a(x-bD(x)) < bé(x)-a(x—bs(x)). But since o is
decreasing, it must also be that a(x—bD(x)) > a(x—bs(x)). Therefore,

it follows that bﬁ(x) < bé(x) . Since bD(E) = bs(i)’ it follows from

Lemma 1 that for all x > x , bp(x) < bS(X) . Q.E.D.

The CRS experiments involved relatively small potential gains for
the bidders, with the difference between the winning bid and the
winner's valuation being less than $100 in all cases. We believe the
assumptions of the theorem to be valid for amounts in this range.
Consequently, we believe that the theorem offers an explanation for the

phenomenon observed by CRS.
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The theoretical situation is not as clear when the difference
between bids and valuations can be so large as to lie in the range
beyond the point where a becomes coavex. However, our intuition
(backed up by thought experiments discussed with colleagues) is that the
CRS effect might in fact be reversed - that Dutch auctions may draw
higher bids than first-price auctions., 1t appears as if this would be
predicted {(for appropriately-shaped a-functions and concave u-functions)

from the theory laid out above.

The Dynamics of the Weighting Fuunction.

If we interpret a{x) as the "conceivability” of the wmonetary
outcome X, then we would expect an individual's weighting function a
to change subsequent to a permanent shift in his total wealth. This
raises several iunteresting issues.

Many authors, starting with Friedman and Savage [1948] and
Markowitz [1952], have attempted to explain the variety of risk-seeking
and risk-avoiding behaviors typically associated with a single
individual, by assuming that the individual's (classical) utility
function has several undulations located near the origin (i.e., near his
current wealth level). 1In order for this explanation to be accepted,
one must believe that a permanent change in wealth leads to a change in
the utility curve. A number of the phenomena these authors have
attempted to capture can be given an alternative explanation in the
context of alpha-utility theory, by assuming that the utility component
of the individual's preferences does not vary, but that the shape of the

weighting function changes in response to changes in wealth.
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If the weighting function truly measures conceivability, we might
expect to find that individuals who have ia the past experienced marked
changes in their wealth will have relatively counstant weighting functions
over a wide range of monetary outcomes, and will exhibit behavior more
consistent with classical utility theory.

The "prospect theory” of Kahneman and Tversky [1979] involves an
editing phase in which lotteries are segregated into riskless and risky
components and a reference point (from which to view changes in wealth)
is chosen. This editing could well correspond to a shift in an
individual's weighting function which occurs (rapidly) between the
presentation of a lottery and his assessment of it. Their theory also

involves a processing phase in which "decision weights,"” rather than
original probabilities, are used to combine the individual's preferences
over the various possible outcomes of a lottery. A major differeace
between their theory and alpha-utility theory is that their decision
weights depend on the original probabilities, but not on the outcomes
themselves, while alpha-weights depend directly on the outcomes of the
lottery, and only subsequently act as weights which (subjectively) modify
the lottery probabilities. It appears that a theory in which the weights
depend only on the lottery probabilities cannot simultaneously account
for both the Allais and CRS phenomena.

An incidental implication of alpha-utility theory warrants
TP )

comment. A popular method of conducting decision- or game-:
experiments with a limited experimental h:!;-t is to tell the subjects
that a small number of the trials in which they are involved will be

selected at random (at the conclusion of the experiment), and that the



- 23 -

payoffs accruing from only those experiments will actually be made. If
the subjects are expected-utility maximizers, this experimental
procedure will elicit the same behavior as would be elicited if all
trials were to yield actual payoffs. However, if the subjectsare alpha-
utility maximizers, with nontrivial weighting functions, this limited-
payoff procedure may elicit behavior somewhat different from that which

a full-payoff procedure would yield.

Summary.

In this paper, we have proposed an explanation for several
phenomena which coantradict the expected—utility-maximization model of
"rational” behavior, and which appear at first glance to lie in
opposition to one another. We have presented a geometric perspective on
alpha-utility theory, and an intecpretation of the weighting function as
an index of conceivability. We have shown how the game-theoretic notion
of equilibrium can be generalized to subsist in the more-general-than-
usual framework of alpha-utility preferences.

Finally, we have shown that an acceptance of alpha-utility theory
(and our interpretation of it) leads to a number of empirical
predictions - that isopreference curves (in lottery simplices) are
linear and coincident, that the weighting function of an individual is
typically bell-shaped, and maximal at his curreat wealth level, that the
Allais effect will weaken, and finally reverse, as the payoff scale is
decreased, and that the CRS (Dutch auction) effect may reverse as
potential payoffs are increased, Clearly, these predictions must be

subjected to further experimental investigation. That the theory
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presented here will fully describe the behavior of all individuals, or
even the behavior in all instances of any single individual, is too much
to hope for. Still, we offer this theory as an accounting of what may
be an important component of the overall individual decision-making

process.
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