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Abstract

This paper lists some classes of 2x2x2 games. All have the restriction
that there are only two payoif levels per player. In the first group of
games exactly one player wins at every outcome, in the second group exactly
one player loses, and in the third group no more than one player wins.

Some of the games illustrate theorems about non-cooperative games, and
some provide counterexamples to false hypotheses.

Three non-cooperative solution concepts, the Nash equilibria, Selten's
uniformly perfect equilibria, and Harsanyi and Selten's tracing procedure
solution are calculated for each game and some unusual aspects of the outcomes
selected are discussed. The method of trying out various solution concepts
on a standard set of games is an effective way of learning their properties,
and complements the method of characterizing the solution concepts by means

of axioms and theorems.

The author would like to thank John Harsanyi, Romesh Saigal and Robert

Weber for helpful ideas.






1. Introduction

For any class of games we can ask: What are the simplest, smallest
games it contains? By listing these games we can try out different solution
concepts, look for possible theorems, and generally get a feeling for what
it is like to play games of this type.

Here we will list the simplest 3-person non-cooperative games, selected
by a criterion of simplicity to be explained. Some features of individual
games will be noted and three solution concepts-will be discussed: the theory
of Nash equilibria, (Nash, 1951), Selten's theory of uniformly perfect
equilibria, (Selten, 1975), and Harsanyi and Selten's solution concept
involving the tracing procedure, (Harsanyi and Selten, 1980; Harsanyi, 1975). These
procedures will be applied to the games on the list and the results will be
discussed.

Several lists have appeared in literature giving the simplest members of
various classes of games. Von Neumann and Morgenstern (1945) and Shapley
(1962) listed simple n-person characteristic function games, "simple'" in the
technical sense of having only two payoff levels for each coalition.

Rapoport and Guyer (1966) presented a taxonomy of two-person 2 X 2 non-
cooperative games with ordinal payoffs, and Mayberry (1968) determined the
types of two-person cooperative games. As far as we know no one has listed

n-person non-cooperative games.

2. One-winner games

The following conditions are imposed:
1) each game has only three players,

2) each player has only two strategies, neither of which is strongly
or weakly dominated,

3) each player has only two possible payoff levels: winning (payoff=1)
and losing (payoff =0),

4) at every outcome exactly one player wins,

5) no game on the list can be generated from.any other by permuting
players, strategies or any combination of players and strategies.



The first four conditions ensure that the games are simple, while the fifth
avoids games that are essentially equivalent to other games on the_list,
The= assumptiqn in condition 3) that payoffs equal 0 or 1 does not re-
strict the generality of the results since any game with two levels of
payoff can be transformed to an equivalent game with payoffs of 0 and 1.

It turns out that there are exactly ten different games satisfying
1) - 53). They will be called the one-winner games.

Some of their properties can be deduced immediately. For example, it
follows from 3) and 4) that all are zerosum. Conditions 2) and 3) imply
that every player must have at least two winning outcomes, since otherwise
one of the strategies would be weakly dominated., None of the games can be
completely symmetrical in players since there are eight passible outcomes
and this number is not divisible by three.

The ten one-winner games are shown in Figure 1 using the following
notation. The strategy space of the three players is shown as the unit
cube. Points inside the cube are associated with mixed strategies, e.g.,

a point with coordinates (2/3, 2/3, 2/3) indicates a mixed strategy in which
each player uses the second strategy with probability 2/3. Nash equilibria
are shown as heavy lines and dots, and the tracing procedure solution is
indicated by an "X". The set of perfect equilibria are listed in Table

1. If a dot or the end of a line falls partway between two vertices

in Figure 1, it can be assumed that '"partway'" is exactly halfway unless
otherwise noted.

The three players are labelled R, C and L, abbreviating 'row-chooser",
"column-chooser" and '"layer-chooser'. Each vertéx of the cube is la-
belled according to which player wins at that outcome. For example "R
stands for the payoff vector (1,0,0).
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FIGURES 1 & 2 AND TABLE 1.

The one-winner games were generated by hand as follows. The row-
chooser R was chosen as a reference and the possible ways in which winning
outcomes for R could be assigned to the vertices of the cube were listed.
Eliminating equivalent patterns and assignments involving dominated strate-
gies there are only the nine possibilities shown in Figure 2.1 The possible
patterns for the column player C were then combined with these keeping in
mind the restrictions imposed by 1) - 4). Then the possible patterns for
L were added. Finally the games on the list were compared and duplicates
were eliminated. The whole procedure was repeated for verification.

We will point out some special properties of certain games on the list,
e.g., thelr symmetries, unusual features of their solutions, or simple ways
of describing the rules. Unless stated otherwise it can be assumed the game
is asymmetrical. ’

Game Al.

Symmetries: R and C are in equivalent positions. Each of their strate-
gies are alike., Player L's two strategies are alike. The unique equilibrium
point with this symmetry is (1/2,1/2,1/2).

The game can be realized by having R and C choose '"'Heads" or "Tails'",
Player L tries to guess whether R's and C's choices will match or not
(i.e., both be "Heads" or '""Tails'", or be different) and wins by guessing
correctly, but if L is wrong R wins by matching C or else C wins by avoiding
being matched by R.

Game A3.

The interior point has coordinates (2/5(5+/3), (-1+/35)/2, (-1+/3)/2)

which are approximately (.724, .618, .618).
Game AS.
Symmetries: the three players are distinctive, but for each player,

the two moves are alike. The unique equilibrium point with this symmetry is

(1/2,1/2,1/2).



The game can be realized in the following way. Each player chooses
"Heads" or "Tails", Players C and L try to guess R's move. If C alomne
guesses it then C wins but if both guess correctly L wins, while player
R wins by avoiding their guesses.

We might iﬁagine two carnivorous animals seeking their prey which has
hidden in one of two caves, One of the two predators is stronger so if
both choose the correct cave, that one will be successful.

Game A5 has the special property that it is invariant if the labels
of each pair of moves are switched concurrently. In terms of our reali-
zation above, this means that neither cave plays any special role, and all
that matters is the relationship among the choices of caves. Games B3, Cl4, C16
and C18 appearing in Sections 3 and 4 share this feature.

Game A6,

Symmetries: players L and C are alike. Player R's two moves are
alike. Player C's first move corresponds to L's second move, and C's
second move corresponds to L's first. Two equilibrium points have this
symmetry: (1/2,1,1) and (1/2,0,0).

Each player must choose '"Heads" or "Tails". The total number of
heads is counted. If it is 0 or 3, then R wins. If it is 1, C wins, and
if it is 2, L wins.

Game A6 is a member of a general class of games defined as follows.
There are m strategies for each player, and we can define m strategy-types,
such that each player has one strategy of each type and the payoffs depend
only on the number of strategies chosen by the players that fall into each
type, not on who chooses which strategy. Unanimity games (Harsanyi
and Selten, 1980) fall into this class as do the following other games

on our lists: B6, Cl4, Clé, Cl8.



The game shows one aspect of the behaviour of Nash equilibria that
strikes us as noteworthy. If we eliminate all Nash equilibria that do not
reflect the symmetries of the game, two are left: one involviné strategies
(.5,0,0) and the other (.5,1,1). At each of these equilibria R has the
power to shut out either C or L completely and give the win to the altern-
ative player, yet this power is of no benefit to R -- at neither equili-
brium point does R gain. This is because the game is played without binding
threats or agreements so that any verbal interchange among the three players
carries no weight., Player R has the power to choose the winner, but cannot
make threats or extract promises in order to benefit from this power.

Game A8.

Symmetries; R and L are in equivalent positions and both of C's moves
are alike. The two equilibria having this symmetry are (1,1/2,1) and (0,1/2,0).
Game Al0.

Symmetries: R and L are alike, R's first move corresponds to L's first

move and likewise the second moves correspond. Player C's two moves are

alike. All the equilibria, (r,1/2,1-r) for r € [0,1], have this symmetry.

§3. One-loser games

Condition &, which requires that exactly one player win, can be
replaced by

4’) Exactly one player loses for every outcome.

The list of one-loser games is shown in Figure 3. The games look
exactly like the one-winner list since conditions 1) - &) are still

satisfied by a particular game if winners are. declared to be losers



FIGURES 3 & 4 HERE

and vice versa, but the notation in the game matrices must now be rein-
terpreted so that "R", 'C", and "L" mean that players R, C and L lose, rather
than win, at that outcome.

Any completely mixed strategy n-tuple that was an equilibrium in a
one-winner game will also be an equilibrium in the corresponding one-loser
game, so the coordinates of the interior points are the same as those given in §1.

The set of Nash equilibria tends to be smaller in the one-loser case - —
seven of the ten one-loser games have unique Nash equilibria, whereas
none of the one-winner games had unique equilibria.

Games B1l, B3, B5, and B6.

The symmetries and coordinates of the interior equilibria of these
games are the same as those of the corresponding one-winner games.
Game B7.

This game is noteworthy because it has exactly two Nash equilibria.
Wilson (1971) and Harsanyi (1973) have shown that almost all games have
a finite and odd, or infinite number of equilibria. Because of the equal-
ities that hold in its payoff matrix, B7 lies outside their class of "almost
all" games, and it shows that their theorem cannot be extended to claim that

all games with finite number of equilibria have an odd number of equilibria.

§4. Zero-and-one-winner games

We now replace condition 4)by 4"):

4") No more than one player wins for every outcome, and there is
some outcome at which no one wins.

The games on list C will be different from those on list A since we
are requiring that all lose at some outcome.
This results in the eighteen games shown in Figure 4. Some inter-

esting games appear and the sets of Nash equilibria become more elaborate.
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The notation '"R", '"C", "L" means that R, Cor L wins and the new symbol "-" in
the game matrix means that no one wins.
Game C1.

The interior Nash equilibrium point has strategies (2/3,1/2,1/2).

The logarithmic tracing procedure solution selects the strategy triple
(4~/2)/7,1,1), R's probability being approximately .369.
Game C2,

The set of interior Nash equilibria has equation ¢ = 1/2, 4 = (1-r)/r.
The tracing procedure selects the point (.6,2/3,2/3).

For two-person games Vorobev (1958) and Kuhn (1961)

- have shown that the set of Nash equilibria is the union of a finite number
of convex sets, a fact helpful in thé design of algorithms to find‘all -
equilibria (Winkels, 1979).Game C2 shows that this theorem cannot be ex-
tended to 3-person games, since some of its equilibria form a continuously bending
curve. In this respect it is unique among the games on our lists.
Game C4.
The tracing procedure leads to the strategy triple (/2-1,0,0).
Game C5.

The tracing procedure solution gives all players zero. In terms o6f the
welfare of the three players this is a bad solution, in' fact the worst possible
one, since its payoff vector is weakly dominated by every other possible
one in the game.

Game C8.
The interior Nash equilibrium has strategies (1/2,2/3,1/2).
Game C9.
The interior Nash equilibrium has strategies (6/5-1)/25(3n/§)/2,(3ﬁ/§)/2)

or approximately (.618,.382,.382).



Game C10.

The tracing procedure leads to (1,(4+/2)/7,0) where (4-/2)/7 = .369.
Game C12.

Symmetries: R and L are in equivalent positions and C's two moves
are alike., The interior equilibria (r,1/2,1-r) for r € [0,1], have
this symmetry.

Game Cl4.

Symmetries: R and L are in equivalent positions, R's first move
corresponding to L's second move and vice versa. Player C's moves are
alike. The unique equilibrium showing this symmetry is the central point
(1/2,1/2,1/2).

To play Cl4 each chooses "Heads'" or '"Tails," and Player C tries to guess R's
move, R tries to guess L's move and L tries to guess C's move. If a player
guesses correctly without being guessed, then that player wins.

In the case of finite two-person games, Chin et al. (1974) Have shown that
if the set of equilibria is convex then the equilibria are exchangeable,
that is, each player can choose any strategy appearing in any equilibrium
point and the pair of strategies will again yield an equilibrium.

This does not hold for three-person games as Cl4 shows.
Its equilibria are convex but are not exchangeable, since for example,
(.2,.5,.7) and (.7,.5,.2) are both equilibria but (.2,.5,.2) or (.7,.5,.7) are not.

Chin et al. showed that their theorem could not be extended to three-
person games by giving a method for constructing a class of games that were
counterexamples. Game Cl4 is a simple member of their class.

Game C15.

Symmetries: C and L are in equivalent positions. For each player,
the two moves are alike. The uﬁique equilibrium point showing this sym-
metry is the central point (1/2,1/2,1/2).
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Game Cl6.

Symmetries: completely symmetrical in players and moves. The only
equilibrium showing this symmetry is the point (1/2,1/2,1/2).

We can regard each player as choosing "Heads" or '""Tails'. A player
wins by being the unique player to choose a head or tail.

Game C18.

Symmetries: players C and L are in equivalent positions. For each
of the three players the two moves are alike., The only equilibrium with
this symmetry is (1/2,1/2,1/2).

The game can be realized by having R choose 'Heads' or "Tails'.and
C and L try to guess the choice. If no one guesses correctly R wins. If
exactly one is correct then that player wins, but if both guess correctly
no one wins.,

This game is sémewhat like the predator-prey game A6 but in this
case neither of the predators has an advantage over the other. If they
both succeed in catching the prey a one-half share will not be enough

to keep them alive so that everyone loses.



§5. The Three Solution Concepts

The three concepts will be discussed now by giving their definitions,
the methods of zalculation and some critical comments on the results of
applying them to our games. The solutions form a nested
sequence: the Nash equilibrium set contains the set of uniformly perfect
equilibria which contains the tracing procedure solution. The three
will be discussed in this order.

Nash equilibria

A strategy n-tuple is defined to be a Nash equilibrium if no player gains
by changing to another strategy while the other players hold their strategies
fixed. The Nash equilibria of the games on the lists can be determined
graphically by drawing a cube to represent the players' strategy sets, as
in Figures 1-4, and marking Row's set of best reply strategies, which forms
a 2-space. This is the set of strategy triples in which Row's choice is
optimal given the other two strategies in the triple. Similar diagrams are
drawn for the Column and Layer players. The intersection of the three best
reply sets is found and this is the set of Nash equilibria of the game.

A difficulty with the concept of Nash equilibria is that it generally
does not yield a unique outcome. This is true for our games -- of the thirty-
eight on the list only six have unique Nash equilibria. If we eliminate
equilibria that do not show the symmetry of the game then seven more games
have unique equilibria, making a total of thirteen games in all. Of the
thirty~two games with multiple equilibria, thirty-one have an infinity of
equilibria.

Uniformly Perfect Equilibria

Selten (1975) observed that some of the Nash equilibria arising from games

in extensive form are flawed in that they suggest irrational behaviour at
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some nodes of the game tree. Players can adopt strategies involving poor
decisions at these nodes because they are never reached in the course of
rational play, so that being disposed to make irrational choices there
involves no loss to the player..

Selten developed a suggestion of Harsanyi to introduce a small amount
of uncertainty into the players' beliefs about which nodes can be reached,
so as to force players to use strategies that give rational behaviour

everywhere. He modified the game to a new uniformly perturbed one where no strategy

can be chosen with probability less than some small value p. A sequence of
values of p with limit zero generates a sequence of games whose limit is the
original game. The Nash equilibria of the sequence of games also form sequences
with limits but the limits are typically a proper subset of the equilibria

of the original game. None of the irrational equilibria appear as limits

since for every game in the sequences all its nodes can be reached with

some small probability. The limit set as p goes to O comprises the

uniformly perfect equilibria.

The uniformly perfect equilibria of our games can be determined geo-
metrically, in the same way as the Nash equilibria. The best reply diagrams
are drawn with the provision that no strategy is used with probability less

than some small value p, and the set of equilibria as p — 0 are determined.

The uniformly perfeet equilibria of our gemes are in Table 1. It is
clear that any completely mixed Nash equilibrium will be uniformly perfect.
The requirement of uniform perfectness reduces the number of equilibria:
of the 32 games with nonunique Nash equilibria, the set of uniformly perfect
equilibria is a proper subset of the Nash equilibria for 27 games., For six

of these games the uniform perfect equilibrium is unique.
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Although requiring uniform perfectness decreases the number of
equilibria, it is not clear that the remaining ones are more rational
than the eliminated ones. For the games on the lists, the uniformly
perfect equilibria do not seem to have any obvious benefit to recommend
them. In our view the requirement of perfectness should be modified.

For most principles of rational choice, their justification can be repeated
with specific reference to any situation to which they apply. For example,
to convince two players to use a Nash equilibrium we could cite Nash's
arguments using the parameters of the very game they are playing. This

is not true for the concept of uniform perfe ctness, however, since

it was developed for extensive form games and applies to normal form

games only by "analogy".

Originally Selten (1965) defined a perfect equilibrium as one that
induced an equilibrium at every subgame of an extensive form game. He
later noted (1975) that this definition was too weak, since equilibria
still appeared involving irrational play at some unreached nodes. The
stronger definition involving the limit of a sequence of games was proposed
and this was shown to rule out the inappropriate equilibria and thus not
be too weak. However in our view it is too strong, so we would prefer an

intermediate definition such as the sequential equilibria of Kreps and Wilson (1982).

The logarithmic tracing procedure

The solution proposed by Harsanyi and Selten (1980) is the
most complicated of the three, but also the strongest in that it always
selects a unique outcome for finite games.

We will give only the outline of their procedure. First a series of

operations are performed on the game to eliminate dominated strategies and
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otherwise undesirable strategies. The game is then disassembled if possible
into parts closed with respect to best replies. (If this is not possible other
procedures are followed.) These components, called basic games, are analyzed
by the logarithmic tracing procedure, which selects a unique perfect
equilibrium point as the solution of the game.

It can be shown that all the games on our lists are basic, so the -
only operative step is the one involving the logarithmic tracing procedure.
This is intended to model the mental processes of the players as they incorporate
into their strategy selection, the notion that their opponents are intelligent
and are trying to outwit them. First a new game is constructed in which the
players are paid off as if their opponents moved randomly and unstrategically,
according to a probability distribution that Harsanyi and Selten specify.
A term is introduced into the payoff function of this game so that each
player has a unique optimal strategy. The pa&off function is then continuously
modified until it matches the original game, and the path of equilibria is
traced. If new equilibria enter during the modification they are ignored, unless
they lie on the path. The endpoint is an equilibrium in the final game and
represents the solution.

Applying Harsanyi and Selten's method to the class of basic games with
two moves per player leads to a family Gp(t,e) of auxiliary games where pe(%,1], te[0,1]
and e 0. If 4 designates the probability assigned by player i to strateg& 1,

then Gp(t,e) is defined as the game in which player i receives payoff
i - _ i, . _ _
t Hp(q) + (1-t) Hp(/a,.--,qi,---z) + e (1-t) loglq,(1-q))].

This is the weighted sum of three components:

1) H;(a), defined to be player i's payoff in the uniformly perturbed
version of the original game, with perturbation parameter p.

2) H;( REEEL FEEER ), the payoff if the others use an equiprobable mix of
their strategies.

3) log[qi(l—qi)], a strictly convex function of player i's strategy.
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The weight t represents the players' increasing awareness of their
opponents’ strategic behaviour. The parameter e introduces the logarithmic
term, whose purpose is to break ties among strategies and ensure a unique path,
and p makes the equilibria uniformly perfect.

It is shown that there is a unique analytic path of equilibria in Gp(t,e)
as t goes from O to 1, for small positive e and p. The limit of the endpoint
is determined as e goes to 0, and the limit of these limits is determined as p
goes to O.

To calculate this point, we used the fixed-point algorithm of
Merrill (1972), as coded by Saigal (1974), and modified for the purpose
of tracing a path of fixed points rather than calculating a single value.2

Three noteworthy properties of the solutions found will be mentioned.

The first is the result in game C5, in which it selects the only point
weakly payoff-dominated by every other outcome in the game. This strikes us
as rather perverse behaviour for a rational solution concept. On the one hand
it is clear that non-cooperative solutions can sometimes be payoff-dominated
by some other points, as in the case of the Priscmers' Dilemma, but in that
game the players have an outcome even worse than the solution hanging over
their heads, and can rationalize the solution as a lesser evil. However in C5
the blayers have nothing to lose by ignoring the advice of the tracing
procedure and have at least the logical possibility of gaining.

A second property is illustrated by game C1l8. 1In this game the totally
mixed equilibrium strategy (3,%,%) is chosen. It can be shown that this choice
is unstable with respect to the payoffs. Slight alterations in the payoffs cause the
tracing procedure to choose either (%,0,1) or (3,1,0). By selecting only
uniformly perfect equilibria, the procedure is robust with respect to the
assumption of perfecf rationality. The players can make small mistakes in

strategy choice and the equilibrium stays approximately constant. However



it is not robust with respect to assumptions about their payoffs as this
example shows3 1In defense of the procedure it should be noted that the
unstable solution (%,%,%) is a consequence of a deeper requirement --
a solution should be unique and have the same symmetry as the game. This
is a very persuasive principle for specifying solutions, and thus game Cl8
should perhaps be regarded as a demonstration of the difficulty of finding a
éolution invariant with respect to payoff deviations.

A third feature of the tracing procedure is evident from games in which
the solutions have "irregular' coordinates, such as Cl where column 1 is
played with probability ,369. These values arise from the use of the
logarithmic term in the auxiliary games. If another function equally
suitable were used, such as q;l (l—qi)_} the strategy prescribed for column would
change. V

Ideally a special reason for using the logarithmic function might be found,
but if not we could take the philosophical position that a solution concept
does not have to be uniquely justified in every aspect. It should be generally
consistent with our notions of rationality, and lead to the selection of a

single outcome, but at some point arbitrary elements must be introduced.
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Footnote 1:

Figure 2 includes configurations with at least two R's since
Row must win at two outcomes or more to avoid having weakly dominated
strategies, and also no more than four R's since the other players may
not have weakly dominated strategies.

That the number of configurations is nine can be verified by enumerating
analytically the number of ways of marking the vertices of a cube, with
equivalence induced by rotations or reflections, with one pair of opposite
faces, the two rows, distinquished. Using Polya's enumeration formula
the cycle index is

4 2 2 4
+ 9x2 + 4x4 +'2x2xl .

18
16 71

If we let the coefficient of rk be the number of ways of placing
exactly k R-markers, then the generating function for the number of ways is

r8 + r7 + 5r6 + 5r5 + lOr4 + 5r3 + 5r2 +r+ 1.

We can generate the twenty configurations corresponding to the
s s 2 3 4 - . . . .
coefficients of r', r” and r . Eliminating ones with dominated strategies

gives the nine shown in Figure 2.

Footnote 2:

Merrill’s original algorithm constructs a homotopy between a simple
function and the function of interest, estimates a fixed point, and then
restarts using a new homotopy, a finer search grid, and the previous
estimate as a starting point. The modification used here eliminates the
restart. After getting a sufficiently accurate estimate of a fixed point
it changes the parameters of the problem slightly, and allows the
algorithm to shift to the new fixed point.

The parameter sequence was generated using a series of values
(pl, Pys +o ) (tl, t2, ... ), and (el, €ys +o- ) with limits 0, 1 and O,
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respectively, and constructed the parameter vectors (pl, tl’ el), (pl, tl’
(pl, tz, e2), (p2, tz, ez), etc. Since Gp(t,e) is continuous for

(p,t,e) € (3,1) x [0,1) x (0,%), then if lim lim lim (path of equilibria)
p»0 e300 tal

exists, it will be independent of the choice of a sequence (pi, ti, gi),
if the latter - is in this domain and has the limit (0,1,0).

The algorithm gives only an approximate limit, but the exact values given
in Sections 2 -~ 4 can be calculated when some of their coordinates and the
approximate location of others are known. The three simultaneous nonlinear

equations that determine the path of the equilibria can be replaced by approximations

that are solvable.

Footnote 3.
Harsanyi and Selten recognize that this type of behavior occurs and

reject the idea that equilibria should be continuous in payoffs.
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Figure captions:

Figure 1. One-winner games Al to Al0O. Solid lines and dots: Nash equilibria.
"{": logarithmic tracing procedure.

Figure 2. The nine possible configurations for wins by the row player.
Figure 3. One-loser games Bl to B1O.

Figure 4. Zero-and-one winner games Cl to Cl8.
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One-winner games

Al:
A2:
A3:

Ab:
A5:
A6:
A7:
A8:
A9:

Al0Q:

(%,%,2), 4 € [0,1]

(r,0,0), r € [%,1]
(2/(5+/5), (-1+4/5) /2, (-1+./5) /2)
(r,1,1), r € [0, &

(1,0,0)

same as set of Nash equilibria
(r,0,0), r € [0,1]

(%5,%,1)

(0,c,1), ¢ € [0,1]

(0,c,1), ¢ € [%,1]

(5,%,%)

(1,c,0), c € [0,%]

(r,%,1-r), r € [0,1]

One-loser games

Bl:
B2:
B3:
B4
B5:
B6:
B7:
B3:
B9:

B10O:

(3,%5,0), 2 € [0,1]

same as the Nash equilibrium
same as the Nash equilibrium
same as the Nash equilibrium
same as the Nash equilibrium
same as the Nash equilibrium
(1,%,0)

same as the Nash equilibrium
(5,%,%)

(r,%,1-r), t € [0,1]

Zero-and-one-winner games

Cl:

C2:
C3:

C5:

(r,1,1), r € [0,%]
(2/3,3,%)

(0,0,1)

(%,7,(1-v)/r), r € [%,1]
(1,0,0)

(r,0,0), r € [0,1]
(r,1,1), r € [0,1]
(0,¢,1), c € [0,%]



C6: (r,0,0), r € [%,1]
C7: (%,%,0)
c8: (r,1,1), r € [0,%]
(%,2/3,%
(r,0,0), r € [¥,1]
C9: same as set of Nash equilibria
€10: (1,¢,0), c € [0,%]
Cll: (0,c,1), c € [%,1]
(%,%,%)
(1,¢,0), c € [0,%]
c12: (r,%,1-r), r € [0,1]
C13: (%,%,4), £ € [0,1]
Cl4: same as set of Nash equilibria
C15: (r,1,0), r € [0,1]
(r,%,%, r € [0,1]
(r,0,1), r € [0,1]
Cl6: same as set of Nash equilibria
C17: (0,¢,1), c € [%,1]
(5,%,%
(1,¢,0), c € [0,%]
C18: same as set of Nash equilibria

Table 1: Uniformly perfect equilibria for the thirty-eight games.



