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The minimax theory for two-person zerosum games was tested using
a matrix that was especially easy for the subjects to understand, and
whose solution did not depend on quantitative assumptions about their
utility functions for money. Players' average relative frequencies for
the moves and their proportion of wins were almost exactly as predicted
by minimax, but subject-to-subject variability was too high. This
suggests that people may deviate from minimax theory, since their
opponents have limited information and are imperfect record-keepers,
but they do not deviate so much that their own payoffs are diminished.






1. Introduction 1

Von lleumann and Morgenstern's minimax solution (1944) is generally
accepted as the correct way to play two-person zerosum games. "Correct"
is meant here in the prescriptive sense of what players should do if
they are rational.

Does the theory describe the behaviour of real players? A number
of experiments have been reported but the results have been equivocal or
negative (see Rapoport, Guyer and Gordon, 1977, Chs. 21 and 24, and
Section 7 of the present paper). This question has wide importance
since many mcdels in the social sciences, particularly economics, are
based on minimax theory or its generalization, the theory of Nash
equilibria (Nash, 1950).

A problem in past research has been finding an experimental design
that accurately tests the theory. Here we descrite a procedure that
avoids two previous difficulties.

The present experiment involves a special geme matrix, chosen for
two reasons. PFirst, it tests the theory without making assumptions
about the exact shape of the players' utility functions for money.
Second, it easy for the subjects to comprehend. It is unique in being
the simplest game possible, except for some that are trivial to solve.
(The definition of simplicity will be given in section 3.)

Our subjects' benaviour was close to minimax, and we will argue
that this confirmatory evidence should weigh strongly against past
failings of the theory, since the design used here is more appropriate.

In Sections 2 and 3 the research problems posed by utility
reasurement and the complexity of experimemtal games are discussed.
Sections 4 and 5 detail *the procedure and results. Section 6 compares
minimax with some stochastic theories previously proposed for zercsum

games, and Section 7 discusses possible explanations of the data.



2. The Problem of Utility Measurement

The strategies recommended by the minimax solution depend on the
subjects' utilities for the money payoffs. These may be different from
the payoffs themselves, so any empirical test must either determine or
make assumptions about the players' utility functions. To our knowledge
all past researchers have assumed explicitly or implicitly, that utility
in zerosum games depends on'y on the player's own payoff, and is a
linear function of that payoff. This seems counterintuitive since it
rules out such wotives as a desire to equalize payoffs or to beat the
opronent's earnings. Also, we have seen no empirical evidence that
utility is linear in money, even if the range of payoffs is restricted
to small amounts.

An alternative approach would be to assess each player's utility
function individually, and then design a geme matrix with payoffs
calculated to be zerosum in utilities. We know of no research that has
done this, and very likely the reason is that utilities would be
different in a game than in a single-person decision problem. When
people interact, various competitive or altruistic motives arise, so
their utilities derend on their own and their opponent's payoffs.

The experiment described here uses a different approach. A matrix
is constructed with the property that a player's minimax stratvegy is

invariant over all reasonable utility functions. The game is shown in

Figure 1.
FIGURE 1 HFRE

Both players should use the mixed strategy vector (.4,.2,.2,.2), in
which case player 1 will win 40% of the time and have an expected payoff
0% =24 This holds for any pair of utility functions uj(x1,x5),
uplxq ,%y), where xq and xp are the meney payoffs in the matrix. The

only requirements are that each player would rather win an amount than
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Figure l: Representations of the experimental game as
a matrix, bicolored graphs, and directed graphs.




lose that amount, and that utility depends only on the payoffs and not
on the cell where those payoffs appear, an assumption implicit in our
notation.

This invariance over utility functions occurs because there are
only two types of outcomes, a win or a loss. The minimax solution is
constant for positive linear transformations of the players' utilities.
If their utility functions satisfy uj(5¢,-5¢) > uvi(-5¢,5¢), then a
positive linear transformation can always be performed to bring the
players' utilities into coincidence with the money values. When the
experimenter uses the payoffs to solve the gace, the result will be the
same as when the subjects use the utilities, provided that both follow
minimex theory.

To clarify the structure of the geme we can also represent it as a
bicolored graph, as shown in Figure 1. Player 1 chooses a triangular
shaped node and player 2 a circle. If the two nodes are adjacent on the
graph, then player 1 wins, and otherwise player 2. There are generally
two representations of a game as a bicolored grarh: in one, adjacency
represents a win by player 1, in the other, by player 2. Since the
matrix of Figure 1 gives both players the same number of strategies it
can also be represented by a directed graph in which a player can choose
any node, and player 1 wins by being within one step of player 2.

There are games other than Figure 1 that show invariance over
utility functions — any game in which each player has exactly two
payoff levels will do —— but the geme used here is most eppropriate
because it is the srallest non-trivial one, as will be described in the

next section.

3. ggg_Problem of Simplicity

Tn our view, the games used in past experimerts have been too

carplicated for subjects to understand. In some ways a 2x2 gome is



simpler than the situations they deal with in daily life, but a
laboratory game confronts them with an unfamiliar situation. Many have
difficulty processing numbers, especially when they must look at these
nunbers from both their own and their oppenent's viewpoints.

Cne way we can achieve simplicity is to restrict the payoffs to two
levels, as discussed abtove. The game becomes a purely structural
entity, determined by the relationship of wins to losses, so the
subjects are freed from calculations involving relative magnitudes.

After that, we can lock for games with the smallest number of
strategies. Dominated or duplicated strategies should not occur, since
otherwise the game could be immediately reduced to a smallér one.

Of course the game should not be trivial to solve. An example of
one that is too simole for our purposes is the children’s pastime
Scissors, Paper and Stone (Cpie and Opie, 1970). A choice of "Scissors"
beats an opponent's choice of "Paper", "Paver" beats "Stone", and
"Stone" beats "Scissors". This is symmetrical in strategies, and
therefore the mixed strategy solution is clearly (1/3, t/3, 1/3). Ve
want a2 game that cannot be solved by symmetry, so that players will be
forced to use the full logic of the minimax solution.

These ideas are incorporated in the following criteria:

(C1) The game is in normal form.

(C2) There are exactly two levels of payoff for each
player.

(C3) No player has any two strategies identical.

(C4) No player has a deminmated strategy.

(C5) The gare is not completely symzetrical in strategies.

(C6) The gore has the smallest number of strategies per

player, consistent with (C1)-(C5).

It is surprising that there is a unique game satisfying (C1)-(C6),



assuming of course that games equivalent by positive linear utility
transformations, or permutations of the players or strategies, are
regarded as identical. It is the game of Figure 1. Some larger games
satsifying appear in the Appendix, along with the method for generating

these games.
4. Procedure

The game was played by fifty students working in twenty-five pairs.
They were recruited from the Northwestern University student body by

rosted advertisements and personal contacts. Fach served in only one

session, and students who knew each other were not allowed fo
participate in the same pair. The sessions lasted ahout half an hour
and subjects received their winnings as payment.

The players sat at a table opposite each other. ZEach held four
cards, joker, ace, two and three. A large board across the table
prevented them from seeing the backs of their opponent's cards. They

were read the following instructions.

"We are interested in how people play a simple game. I
will teach you the rules of the game, then have you play
about 15 hands to mzke sure you are clear about the rules.
Then you will play a series of hands for money at Sc per
hand.

"The rules are as follows:

1. Each player has four cards, ace, two, three, and
joker.

2. EFEach player will start with $2.50 in nickels for the
series of hands.

3. When I say 'ready' each of you will select a card from
your hand and place it face down on the table. When I say
"turn', turn your cards face up and determine the winrer.
(I will be recording the cards as played.)

4. The winner should announce, 'Ll win', and collect Sc
from the other player.

5. Then return the card to your hand.

"Are there any questions?

"Now to determine the winner:" [Subjects were shown a
placard givirng these rules :]



[S's name] wins if there is a match of jokers (two jokers
played)
or mismatch of number-cards (2, 3, for exarple)
[S's name] wins if there is a match of number—cards (3, 3,
for example)
or mismatch of a joker (1 joker, 1 number card)

Thus the game was presented in English and the rules were learned
by practice, without a matrix, or graph.

The game was first practiced 15 times, then played 105 times for
real money. Subjects went through at their own speed.

Based on some pretrials, the device of having the players
themselves figure out who won seemed to be useful in that it increased
their involvement in the game. Players tended to focus their attention
on each other rather than on the experimenter. If they happened to make
an error in determining the winner, they were corrected by the
experirerter.

In a post-session questionnaire, all subjects answered that they

had understood the rules of the game well.
5. Results

The number-cards (ace, two and three) are strategically equivalent
to each other, so each should be used.with equal probability. Therefore
we will usually group these three moves in the analysis and look only at
the relative proportions of jokers versus number-cards.

The number of jokers and number of wins for each subject are listed
in Table 1. There were 5250 total moves made in the experirent (50
subjects x 105 plays each). The proportion of jokers was .394, corpared
to minimax theory's prediction of .4C0. Looking at the two types of
players separately, those in the role of player ! chose prcrortion .362
jokers, and those in the role of player 2 chose .426, ccrmpared to
predictions of .4C0 for both by the minimax theory.

TABLE 1 HIRE



These three values are close to the predictions of the theory and
the discrepancies are not statistically significant. Using a t-test for
comparing a sample distribution of unknown variance to a mean of .4, the
p values, two-tailed, are .412, .051 and .231 respectively.

Sub jects showed no significant tendency to move toward or away
from the minimax solution during the course of the sessions. Separating
the first 52 moves from the last 53, 30 subjects were closer to the
minimax proportion of jokers in the first part, and the other 20 were
closer in the second part. This is not significantly different from the
expected numbers of 25 and 25.

Although the mean number of jokers fitted minimax's prediction,
some finer details differed from the theory. Pirst of all, the variance
in the number of jokers from subject to subject was larger than would be
expected, as shown in Table 2. This was true for each role individually
and for player-types ccmbined. According to minimax, the number of
jokers produced by a player will follow a binomial distribution with
mean of 105 x .4 = 42. This distribution is approximately normal so we
may use a Zf—test for a difference between observed and predicted
variance. Tor subjects in the role of player 1, player 2, and combined,
the values of X are 91.7 (af=24), 119.8 (df=24) and 234.5 (df=49), all
of whiéh are significant at least at the .001 level using a two-tailed
test.

TABLE 2 HERE

Thus the subject-to-subject variation in the frequency of jokers
is too large for a binomial distribution. It seems as though a
subject's probability p of a joker is not fixed at .400, but changes
over the individuals, centered approximately on .400. I% is useful to
. have an estimate of this variability separate from that introduced by
sampling only a finite number of moves of each player. We will regard

each subject's probability of a joker as a random variable following a



distribution from the Beta family. This type has shapes that are
plausible for our data, and are convenient to use in calculations. It
is assumed that each subject samples a value of p and uses it throughout
the geme. Given that the mean of p is .400, the parameters of the Beta
can then be written r and 3r/2. Applying maximm likelihood methods,
using the 50 observed frequencies of jokers, gives r = 11.5. The upper
and lower quartiles of such a Beta distribution are p=.340 and .4€0, so
50% of the subjects are estimated to have p's in this interval, rather
than a1l having p=.4 as minimax states.

Another difference from the predictions of minimax is found in the
mumbers of runs, i.e., unbroken series of jokers or number-cards. Many
people produced unusually many runs, meaning that they had a tendency to
switch back and forth more quickly than if their choices were
independent of past moves. The number of runs arising from a long
randcm sequence is approximately normal, so for each player, the
expectation and variance of that player's number of runs, given the
observed proportion of jckers used, was calculated, and the observed
nurber of runs was converted to a z-score. The mean was .843, compared
with a null hypothesis of O, indicating significantly more runs than
chance (t=3.02, df=49, p<.001).

Locking at the frequencies of the three types of numter-cards, we
can judge the prediction that they were produced with equal likelihood.
Subjects in the role of player 1 produced 578 aces, 565 twos and 532
threes, and those in the role of player 2 produced 593 aces, 470 twos
and 446 threes, the latter being significantly different frcm
equiprobability (2ﬂ;24.7, df=2, p<.001). The best explanation we can
offer is that the players were attracted by the positive connotations of
an ace. In hindsight the use of an ace may have teen a fault in the
experirental design.

The proportions of wins by each player were strikxingly close to the



predicted value. Proportions observed were (.401,.599) cempared to
minimax's (.400,.600) for players 1 and 2 respectively.

A finding of interest is that there was no evidence of differential
skill in playing the geme. Skill means that some subjects in-the first
role would do significantly better than 40% wins, and others would do
significantly worse. This would show up as an increase in the variance
of the number of wins of those in the role of player 1, compared to the
variance of a binomial distribution with n=105 and p=.4. The sample
standard deviation of the number of wins was 6.7, not significantly
different from 5.02, that of a binomial (Z?=31.8, af=24, p > .1). This
means that one of the players won or lost about 1.7 games further away
from chance than would be expected.

If a player uses a certain move and wins, is that move more likely
than average to be repeated on the next game? PFor our subjects 1t turns
out that it is somewhat less likely. To determine this let a and b be
the probabilities that players 1 and 2 respectively use a joker. Then
the probzabilities that a move that wins will be followed by a repetition
of that move are a+b-2ab and 1-a-b+22b for the two players, given that
successive moves are independent. The parameters a and b were estimated
by the observed relative frequencies of jokers used, and for each player
these numbers were compared with the observed number of repetitions of
winning moves. Of the 50 players, 18 repeated more often than expected
and 32 repeated less often, a difference that is statistically
significant (p<.05). A large mejority, 19 out of 25, of subjects in the
role of player 2 tended to avoid repeating a move after a win.

Qur players seened to feel that a move that has just succeeded
should be avoided in the imrediate future. This is related to the
single-rersen decision phencrnenon of the Gambler's Fallacy, and negative

recency in probability learning researcn (Estes, 1964; Jones, 1971). 1In

a probability learning experiment, subjects must guess whicn of two
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outcomes of a random process will occur. It is observed that they tend
to switch their guesses following a success especially after a run of
cne type of outcome.

The negative recency behaviour of our subjects will be important in
evaluating mathematical learning theory models for games discussed in

the next section.

6. Learning Theory Models for Games

A natural theoretical system to apply to game-playing is
mathematical learning theory. It was developed 1950's and 1960's to
predict single-person learning situations, but can be extended naturally
to two~person interactions. "Learning" is meant here in a very simple
sense. A subject must choose from several responses, one of which will
be rewarded and the others not. This decision is made again and again
in a series of trials, and the theory's aim is to predict how the
subject's probability of masking each choice varies as a function of past
reinforcements. In probability learning, the subarea of learning theory
most applicable to gemes with mixed-strategy solutions, reinforcement is
given according to some random process, and the statistical properties
of the subjects' responses are observed.

To extend the theory to two-rerson situations, we regard each
player as learning which strategy to use trial and error, by reacting to
past successes and failures. The two players' experiences interact, of
course, because the success of a move depends on what the other's move
is.

Mathematical learning models are antithetical to game theory
models, because they ignore the concepts of thinking and planning. The
subjects are not assured to be trying to outwit each other, or even to
keep track of what the other has done, but only to modify their

probabilities of moves depending on whether they themselves have
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benefitted from using a certain move. This represents the influence of

behaviorism in psychology, with its rejection of unotservable cognitive
processes. A number of learning theory models have been applied to
two-person game situations. They have had some success, and this poses
a very basic challenge not only to minimax theory, but the whole
approach of postulating rationality as a theory of human behaviour.

In this section we will summarize some learning theory models that
have been applied to games. We have tried to include all published
applications, on the condition that they are probabilistic. Some models
in the literature, for example, some offered by Messick (1967a,b),
predicted determinate moves on each trial as a function of past
experience. These were not included, since they seem too vulnerable to
exploitation by an opponent. )

Only a summary of the assumptions of the models will be given here.
For more information the review by Sternberg (1963) may be consulted.

A fundamental issue arises when we extend learning models to
two—person interactions. Note that in game situations more than one
response may be rewarded. For example, if player 1 chooses an ace,
either a joker or an ace is a win for player 2, and it is not clear

which move to regard as reinforced for player 2. Ideally we could

postulate that both are reinforced, but no existing mathematical
learning model seems to allow for the probability of more than one
response to increase after a single play. One way of avoiding multiple
reinforcerments on a single trial would be to have an experimen*tal game
with only two moves per player. One or the other would be labelled a
win, but not both. However this leads to a 2x2 game that is either
completely symmetrical and therefore trivial, or to one with more than
two levels of reinforcerent for a single player. No s*techastic theory
of learning yet proposed seems to deal with different strengths of

reinforcement. (Estes (1960) discussed this problem in the context of



12

two—person interactions, and proposed a non-stochastic model which was
later tested by Messick (1965).)

We will take the same approach as past researchers, that a player is
reinforced for a type of move, joker or number-card, if he or she uses
that type and wins, or uses the other type and loses. If a player wins
but would have won as well by using the other type of move, the latter
is not regarded as reinforced. We suggest that only the move used to

win is salient in the player’s mind.
The Linear Operator Model

The linear operator model was introduced in the context of games by
Atkinscn and Suppes (1958).

Suppose two responses, Ry and Rp, are possible, and the subject has
probability pp of making response Ry at trial n. If the experimenter
reinforces response R4, then the linear operator model postulates that
the probability pp+1of response By at the next trial is a linear
function of py:

Pn+1= Pp +0 (1-pp) with O e (0,1].

If the experimenter had reinforced the other choice Rp, a different
operator would have been applied to py, an operator whose form can be
deduced from the definition of the first operator, if we assume that the
two responses can be learned equally quickly. If Rj} is reinforced then
Ro's provability must decrease from g (= 1—pn) to eqn, since Rl and R2
are ccrmplementary events. Thus by, symmetry, if B is not reinforced,
its own revised probability must be

Pnd = 7En

The parareter § measures the subject's responsiveness to past
experience. For simplicity we will assure that the two players learn at
the same rate, i.e., have identical values of # although our

conclusions about the adequacy of the model for our results can be shown
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to be the same without this assumption.

Let the probabilities on trial n of players 1 and 2 choosing a joker be
a and bn respectively, and let W be the prcbability that they both choose a
Jjoker. Then the probability a . for player 1 on the subsequent move can be
calculated:

Prob(1l uses J at ntl) = Prob(l uses J at n+l/ JJ at n) x Prob(JJ at n)

+ Prob(l uses J at n+tl/ JN at n) x Prob(JN at n), etc.

The conditional prcbabilities can be determined by ncting who wins at play
n, which move they made, and therefore whether it was reinforced. These probabilities

are shown in Table 3.

TABLE 3 HERE
The probabilities of the pair of moves made at play n, JJ, JN, NJ and NN

are w_, a_-w
n’ n

e bn—wn and 1—an—bn+wn, respectively. It can be calculated that the

asymptotes a and b, of a_ and b are a = % and b € 375, .400), where the
value approached by bn depends on the learning parameter 8. The set of possible
values of a and b are compared with the observed values in Figure 2.

FIGORE 2 HERE

They are far from the observed values compared with minimex's predictions.



Luce's Beta Model 14

Atkinson and Suppes (1958) suggested the use of Iuce's Beta model
to deal with two-person games. Like the linear operator model,
probabilities are modified depending on which move is reinforced, but
the equations are different. In the case of reinforcement in a
gingle-person decision situation, ILuce (1959) suggested the following
operators for the cases of reinforcement and nonreinforcement,

respectively:

Pn+t =P By /(-m, )
Pn+1 = Pn /(Pp #3-2pp )

The parameter,g measures the subject's responsiveness to past
experience.

This results in an "independence of irrelevant alternatives
property: if a player decides to choose a response from some specified
subset, then the relative likelihood of each response in the subset is
independent of the unconditional probabilities of responses outside the
subset.

Applying these operators to the two-terson case by setting up a
table analogous to Table 3, gives a set of recursive equations for the
probability of responses at trial n. The equations for the asymptotic
values are too difficult to solve analytically, and therefore were
approximated for various values of/3 by iteration on a computer. The
set of possible values is shown in Figure 2.

Again, all possible values are farther from the data than is the

minimax prediction.
Suppes and Atkinson's Markov model

In the same way that linear operator theory is related to behaviour
modification, Suppes and Atkinson's model (1960), also known as

gingle-stimulus sampling theory, is an outgrowth of the study of



classical conditioning. ZEach player is'regarded as being ready to make
one or the other move at each play. If that move wins, the move is
repeated, but if it loses, the player's disposition changes with
probability 0 to the alternative. Applying their equations (pp.26-27),
the asymptotes for our game are (.500, .400).

Like the other two learning theory models, the Markov model
performs poorly on our data, as shown in Figure 2. This is in contrast
to the positive results of Suppes and Atkinson's series of experiments.
Possible reasons are that in most of their experimental procedures
subjects did not know they were facing each other, but thought they were
interacting with a chance reinforcer. They were often not told the
payoffs associated with the outcomes, or the opponent's moves, and
further uncertainty was introduced into the linkage of the move with the
payoff, by having the payoffs depend only probabilistically on the
outcomes. Although these features are common in daily life, they are
far from the assurptions of gare theory, and it is understandable that a
model based in learning theory gave better predictions. In their one
experiment whose design involved fulling informing the subjects about
the payoffs, and the existence of an opponent (Group E), learning theory

predictions were not close to the observed propertions.
A probability matching model

A phenomenon reported in probability learning experiments is

probability matching: subjects tend to guess an outcome with a

provability that is identical to its likelihood of being reinforced
(Estes, 1964). Although this is irrational from a utility-meximizing
perspective, the fact that it has been widely observed, and the fact
that anotrer feature of our data, negative recency, also occurs in
probability learning experiments, prompt us to test a model suggested by

Estes (1958), based on probability matching. He conducted an

15
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experimental game and found remarkably close agreement. Matching

becomes more complicated in the case of two people, since each is trying
to duplicate probabilities influenced by the other, not fixed
externally. To determine the predictions of the theory for our game,
the fourth and fifth columns of Table 3 were used to determine the
probabilities of reinforcement of each move as a function of a and b.
The'basic idea of probability matching states that these are equal to

the probabilities of using the moves:

ab + (1-a)b + (1-a)(1-b)/3

o
I}

(1-a)b + 2(1~-a) (1-b)/3

o’
1}

The solution is (.500, .400), identical to Suppes and Atkinson's
model, and relatively far from the data. One possible reason that this
model worked in Estes' experiment but not here, is that in the former
only one pair of subjects was used, and they had previously participated
in a series of single-person learning experiments. Thus they may have

been unintenionally "primed" to produce probability matching.

Assessment of the stochastic models

Overall, we can say that the learning theory models do not fit the
subjects' behaviour. First, there is the discrepancy in the predicted
proportions of moves. In the plane of the players' probabilities, the
linear operator model ranges from .140 to .147 in Euclidean distance
from the data, Iuce's model from .062 to .147 and the probability
matching and Markov models lie .140 away. This comvares with the
minimax's distance of .046.

There is a further probl m in the learning theories' predictions
abcut the sequence of moves. They imply that when a response is
reinforced its protability rises, but this was not observed in the data.

Instead we found negzative recency, which is tantamount to
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"anti-learning". Subjects avoid successful moves, at least in the short
term. Of course there is a plausible explanation — they are trying to
double-think each other, to avoid moves they think the opponent is
expecting. But this is directly counter to the assumptions of learning
theory, and in this way these models are incorrect in their first
premises. (For a model that allows negative recency, see Restle

(1961)).
7. Discussion

Game theory deals with social interaction, not with individual
responses. Therefore the most accurate test of the theory involves
situations where subjects are facing other subjects, rather than
programred strategies. Many researchers, however, have had subjects
play against computers or stooges. While this may be useful in
increasing experimental control, it is not clear that natural
geme—-playing behaviour is being elicited. Unless the experimenter knows
how an opporent behaves, it is impossible to program a computer to act
like one.

A further disadvantage of this approach is that subjects are
usually isolated in cubicles. They do not see an opponent, of course,
because there is none, and feel less involved in a competition.

Sub jects should know that they are interacting with an opponent and
know the payoffs involved. In several experiments, subjects have been
told they are acting in a randon environtent, when they were actually
playing against an opponent. We do not believe it is valid to use the
results as a test of geme theory. |

Past experiments were surveyed according to these guidelines, and
the results are displayed in Table 4. We have tried to include 211 gare
experiments that used pairs of real subjects informed of their

situation. Further criteria are that the subjects chcse moves directly,
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e.g., did not choose mixed strategies which were later implemented by

the researcher, and also that the number of moves was "small". The last

condition eliminates some experiments involving duels and Colonel Blotto

games.

TABLE 4 HERE

Past results have been counter to the minimax theory, but we regard
the present experiment as evidence that it may be true after all. Here
the game was simple, the subjects met face-to-face in an involving
situation, and the test was free of metric assumptions about utilities.

Positive evidence was the correct proportions of strategies used,
and the correct proportions of wins. Negative evidence was the correct
dependence among successive moves, and the high variance in proportion
of jokers from subject to subject. It seems that minimax theory was
confirmed in the large, but not in the small.

This is puzzling at first: how could the overall proportions have
followed the theory, when the individual moves that generated them did
not? We suggest that the following occurred: players were constrained
to follow minimax in its gross statistics because these were more
available to the opronent. However, at each move players felt free to
invent patterns, follow hunches, or do a number of other things that
introduced dependencies and variance into the sequence of plays. They
could do this without significant danger because the opponent had a
limited ability to calculate all the relevant probabilities, especially
when only a small sample of moves was available. But a large deviation
from the overall minimax proportion was easier to notice, so players
avoided the risk of loss by sticking close to the minimax predictions.

This is more plausible when we consider the well-known feature of
the minimax solution, that if one player follows it, the opponent is

free to deviate without loss. Thus the closer one gets to the minimax



the less incentive there is for the other to follow it too. We can then
expect a certain amount of variation, but it would be centered on the
minimax probability.

If this explanation is true we would not each player's proportion
of wins to be affected. Neither would decide to go so far from minimax
that their proportion of wins decreased. This is precisely what was

found: player 1 won almost exactly 40% of the time.
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Appendix

Table 5 gives the number of game matrices with only two levels of
payoffs. These structures satisfy (C1) and (C2), but possibly violate
(C3)-(C6), in that they may have dominated or duplicated strategies or

be symmetrical in moves.
TABLE 5 HIRE

The numbers were determined ty applying Harary's formula for
emumerating undirected bicolored graphs (Harary, 1958). Two—level gemes
and bicolored grarhs are isomorphic, as can be seen by identifying
strategies with nodes, and a win for player 1 with adjacency of the two
strategies used, as in Figure 1. Player 1 needs to be specified to
define the isomorphism, and will be chosen as the player with fewer
moves, or in the case of equal nurters of moves, the player with the
fewer winning strategies. .

For certain values the isomorphism fails: if the two players have
the same number of strategies and same number of wins, there can be two
graphs yielding two garmes that are equivalent to each other but with the
players switched. 1In this case Harary's formula gives an upper bound.
The only such inexact value in the table is 55, an upper bound for the
number of 4x4 games with eight wins for a player. Case-by-case listing
shows that there are only 29 distinct games in that category.

To find the gemes satisfying the additional requirements of
(C3)-(C5), we can proceed as follows. First, list all possible rows
such a matrix could have. There are 2£‘of these: RRR...R, CRR...R, ...,
C€CC...C. Construct a grarh with nodes rebresenting these rows and an
edge connecting two nodes if one row dominates the other. Identify all
the independent sets (sets of nodes with no edge connecting any pair) of
up to n nodes. Each independent set will correspond to a game without

dorminated or duplicated rows. There may be dominated or duplicated
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columns, so they must be inspected pairwise and the game eliminated if
these appear.

It is helpful to use'certain shortcuts, e.g., to divide the search
into parts, locking first for games with exactly one row containing
exactly one win for the row chooser. This row can be specified to be
RCC...C, and the other rows, CRC...C, ..., CCC...R, eliminated from the
grarh. Next we look at rows with exactly two wins for player 1. This
substantially reduces each graph's size. The method is tedious but can
be performed by hand for games as large as 5x5. For larger games it can
be camputerized and independent sets of strategies determined by an
algorithm such as that given by Bron and Kersboch (1973).

The results of applying this procedure for m = 1...5, and n=1...5
are shown in Figure 3. Along with each game is a graphical way of
representing it, and also its solution by minimax theory. The list

includes 1 4x4 , 1 4x5 and 7 5x5 games.
FIGURE 3 HERE

™o 5x5 gemes are of special interest in that they can be
represented very simply as undirected graphs, as shown in Figure 3.
Similar lists of two-person nonzerosum games, and three-person

2x2x2 games are given by 0'Neill (1976) and O'Neill (1982).



2 1

. 5 5

2/5 + -

1/5 - -
1/5 - +
1/5 - +
Value

4x5 Gamz

1

0 4

/4 - -
1/4 -+

1/4 + -
1/4 + +
Value

5x5 Games

31

7 7

3/7 + -

1/7 - -
1/7 - +
1/7 - +
1/7 -+
Value

11

9 9

1/9 + +
1/9 + +

2/9 + -
2/9 - +

3/9 - -
Value

11

7 7

1/7 + +

1/7 + -

1/7 + -

2/7 - +

2/7 - -
Value
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5%x5 Games (cont.)

1 1
> 0 > 0 0
1/2 - - + + +
0 -+ 4+ - -
/2 + + - - -
0 + - - -
0 + - - 4+ -
Value = 0
31112
8 8 8 8 8
o2
3/8 + - - - -
1/8 -+ - - 4
1/8 - - + - +
1/8 - - - 4+ +
2/8 - 4+ + + - )
Value = -1/4
1 1 1 2 2 A .
7 7 7 7 17
/7 -+ + - - &6——0
1/7 + - + - -
1/7 + + - - -
2/7 ~ - -+ -
2/7 - = - -
Value = -3/7
1 1 1 1
4 4 0 4 4
1/4 + + + - -
1/4 + - - + -
0 “+ - - - +
/4 -~ 4+ - - 4
1/4 - - + +
Value = 0

Figure 3 : Games satisfying (C1)-(C5) for up to five strategies

per player. "+' represents a win for player 1, "-" for
player 2. Minimax strategies appear by the rows and columns.
The value given is the value to player 1, for win = 41, loss = -1,

Graphical representations are as described in Section 2.
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(mumber of jokers used by player 1,
rumber of jokers used by player 2,
number of wins by player 1)

Range: (0-105, 0~105, 0~105)
Minimax prediction: (42,42,42)

Observed values:

(19,37,41) (46,58,31) (57,58,41) (35,76,44) (49,47,36)
(41,47,44) (32,37,50) (34,31,49) (31,36,38) (44,43,40)
(32,39,39) (51,45,57) (28,56,43) (32,34,49) (48,39,34)
46,40,35)  (38,43,35) (41,43,51)  (34,53,41) (45,52,46)
39,34,50) (48,36,42) (17,44,47) (27,39,52) (35,62,35)
Mean prop'n of jokers Wins
Obs'd Pred’'d Obs'd Pred'd
Subjects, P1'r 1 .362 .400 .401 .400
Subjects, P1'r 2 .426 .400
Combtined .394 .400

Table 1. Numbers of jokers for each subject-pair and
means of proportions.
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No. of No. of Subjects
Jokers CObserved Predicted Differense
o4 0 .00 .00
5-9 0 .00 .00
1014 0 .00 .00
15-19 2 .00 +2.00
20-24 1 0} +1.99
25-29 2 27 +1.73
30-34 8 3.09 +4.91
35-29 11 12.24 -1.24
40-44 8 19.07 -11.07
4549 Q 11.96 -2.96
50-54 3 3.08 -.08
55-59 4 .32 +3.68
60—€4 1 .01 +.99
65-69 0 .00 .00
TO-T4 0 .00 .00
75-T9 1 .00 +1.00
8034 0 .00 .00
85-89 0 .00 .00
0-9% 0 .00 .00
95-99 0 .00 .00
100-105 0 .00 .00
Stand. Dev. 11.00 5.02 5.98

Table 2. Number of subjects per number of jokers used.

Move at n Winner Move reinf'd Prob(Joker at n+l, given moves at last play)

Player: Player: Player:

1 2 1 2 1 2

J d 1 J N (1=-8)an + 5  (1-7bp

J N 2 N N (1-6)an (1-2bp

N J 2 J J §1-e)an+3 (1-Dbp +

N N *1 N J 1-9)an (1-9bn +
2 J N (1-%an+ 7 (1-9by

Table 3. Operators for the linear operator mcdel. "J" — Joker
"J" — Joker, "N" — Number-card.

* __ first row occurs with probability 2/3%, and
second occurs with probability 1/3.



Dstes (1957, Figure 7)1

Salizguchi (1950) 1

Suppes and Atkinson 48

(1960, group L)

Malicolm and Licherman 9

(1965)

Frenkel, (Rapoport 96
et 2l.,1976, gzme 775)
present study 25

Table 4. Results of game experiments. (¥
were reversed in the original

No. of
rairs

Ho. of

nlrya
nitye

60

210

105

2 typcgrarhical error.)

Size of Gane

2x2 2x3
0 1 1
1 1 1
Vins 2 3 3
for 3 1 2
Flzyer 4 1 3
1 5 1
6 1
7
8
9
10
11
//,_12
Table 5.

2x4

— =2 N W OUVIW — —

DOV

“eioeo,
RN SRS

L
sirat

667
657

453, .367,
223,.523,

35
875

.750
750

- 09*
<o

.400
400

Tub

X Prov'n of noven
3 Nyve A T (': -7 ~
N fiveragee Uonpie C.D.
.50 —_
59 —
. ~

50 .500,.233, 167 ——

167 .500,.333, 167 —-

.691 413
. 684 . 149
.694 .074
571 .093
.86 .36

.5C* .49

L3262 .093
LA26 107

these numbers
lication due to

4x4

OV OV N — —

21
29
44
55% (29)

lunber of games satisfying (C1) and (C2)
(two-level gemes in normal form). * - upper bound.



