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1. Introduction

This paper is concerned with a duality theory for discrete time stochastic control
problems, The principal result is that, for rather general models, the dual variables
are martingales.

The methods and main ideas of this paper originate from several papers in the
literature., Although his results are stated in the context of a continuous time sto-
chastic control problem with the underlying process being Brownian motion, Bismut's
[1973} approach has several similarities to the one here, In particular, the variables
are in spaces of stochastic processes, namely, well measurable funczions on O x [O, =),
and convex optimization theory is used to establish the duality between the primal and
dual problems. Although conditions are stated which guarantee the equality of the
primel and dual optimal values, Bismut [19731 does not derive the kind of characteri-
zation of the dual variables sought in this paper.

With regard to discrete time models, there are two relevant lines of research in
the literature. To briefly describe the first, consider an adapted stochastic process
Z = {Zn; n=20,1, ...; defined on a filtered probability space (Q, 7, F, P). Let
X = {Xn; n=1,2, ...)] be a predictable stochastic process on the same space. The

predictable transform of Z by the process X is defined to be the stochastic integral

of X with respect to Z evaluated at some time N, that is,

N
X+ 2. = X AZ .
N n n
n=1

The problem is to maximize E[X . ZN] over a class of predictable processes X for which
this expectation is defined.

Problems of this sort were studied by Millar [1968], who assumed N < =, and Alloin
[1969], who allowed N = =, Alloin also observed this problem can be viewed as a gener-
alized optimal stopping problem because any stooping time T, taking positive values,

gives rise to a predictable process X defined by setting Kn = and for which the

L{72n)

"~

pradictable transform is the process Z - Z_ stopped at time T,

0
Alloin [l969j-asspmed the ‘admissible processes X in the optimization problem are

those bounded by a specified scalar. More recently, Kennedy [19813 studied the more

general problem where the admissible processes are those in the unit ball of an L?

space, whare p > 0, He related the solution of the problem to an optimal stopping



problem and showed that its form depends on whether p £ 1., Ian a second paper, Xennedy
[1982] applied his results to the economic problem of optimally dividing (each period)
a resource between consumption and investment, with the value next period of the in=-
vested portion being random. Using concave programming, he showed the Lagrange multi-
pliers for his problem form a stochastic process that can be decomposed into the pro-
duct of a martingale and a particular random discount factor (which corresponds to the
rate of return for the investments)., He also showed this dual process can be inter-
preted as a price system, for in an associated optimization problem where the decision
maker can buy or sell unlimited quantitites of the resource at the prevailing price
(i.e., current value of the dual process) the optimal consumption schedule turns out
to be the same as before,.

This last regult by Kennedy, that the Lagrange multipliers are related to martin-
gales, gets close to the focus of this paper. The other line of research on duality
theory for discrete time stochastic models gets even closer and, indeed, was the ori-
ginal stimulus for this paper.

Rockafellar and Wets [1976] took a general version of a stochastic programming
problem.and derived a dual optimization problem in which the dual variables are sto-
chastic processes satisfying the marcingale type of conditional expectation relation-
ship. To be more specific, and after transforming some of their stochastic programming
terminology into probabilistic terms, their result is as follows.

A filtered probability space is specifiéd, where the sample space (1 is a Borel

subset of R® and the filtration F = [Jb, Jl’ . :T-l}’ T < =, The problem is to
choose a bounded, predictable process X = [Xt; t =1, 2, .., T} so as to minimiza the
expected value of g(w, Xl’ ey XT), where w € {2 and g is an inf-compact normal convex

integrand. In their Theorem 2, Rockafellar and Wets [1976] show that with additicnal
hypotheses there exists a natural dual optimization problem for which the dual vari-

ables are stochastic processes Y = {Yt; t =0, 1, .., T} satisfying the martingale

relationship

Ely - Y7 =0 c=0,1,

., T-1.

Although the general objective of the present paper is the same as that by Rocka-
fellar and Wets [1976], there are several important differences. First, various assump-
tions are different. Thelr predictable processes are bounded, whereas those here are
elements of an LP space, 1 £ p €« », Also, the objective function here is mora general,
and there is no assumption, such as made by Rockafellar and Wets [1975], implying the
existence of a solution to the primal problem.

More importantly, the methods are significantly different. Rockafellar and Wets
[1976] viewed each of the variables Xl’ X2, cey XT as an element of the space of bound-
ed random variables and proved their result by induction on the time horizon T. The

approach here is to view the whole stochastic process X as an element of an P space

of stochastic processes and then derive the duality results in one step,



The approach taken here has two imporctant consequences. Firsc, che dual variables
are shown to be martingales, the key point being that the dual stochastic processes
are shown here to be adapted to the original filtration, a result Rockafellar and Wets

'[1976] did not state in their Theorem 2. Secondly, by not being an induction proof,
the approach taken here has potential for being applied to continuous time stochastic
control problems.

After some preliminaries, which include the key result that the orthogonal comple-
ment of the subspace of predictable processes consists of the martingale difference
processes, the basic duality results are presented. These results are rather general,
so two examples are discussed in the succeeding section. The paper concludes with some
remarks about the economic interpratation of the duality results as well as how chings

might go with continuous time models.

2. Preliminary Results

Let (Q, 7, F, P) be a filtered probability space, where the filtraction F =
L?c; t=0,1, .., T}, T<a, 7, consists of Q and all the null sets of P, and 7, = J.
Let (S, 0 (¥), =m) be the measure space with S =Q x {0, 1, .., T} and Q(F)
the optional g-field, that is, the s-field generated by the adapted stochasti: pro-

cesses, Moreover, m is the bounded measure defined for A € Q(F) by

T
m(a) = E[ Z1,(, t)]
- A -
t=0 :

For 1 £ p <=, let LP = LP(S, O(F), m) denocte the Lp-space corresponding to
(s, Q(F), m) . Thus LP consists of all adapted stochastic processes X =
{Xt; t =0, 1, .., T} such that Ixt(w)lp is m-integrable over S.

As usual, let g denote the conjugate exponent of p so that 19 is the dual space

of LP. Thus each bounded linear functional £(X) omn L®? can be represented in the form

T

£(X) = E[ Z:Xth] for some ¥ € LY, 1In particular, {f p = 1, then Lz, the space of
t=0

bounded, adapted processes, is the dual of Ll.

Let D denote the set of all predictable stochastic processes in LP. 1In other
words, D consists of all the stochastic processes X in LP satisfying Xt € ;;_1 for

t=1, 2, .., T.
Let gf denote the orthogonal complement of D, that is, all the elements in L9

orthogonal to every element of D. To be more specific,

T
p* = {ve1%: E[TxyY]=0 forall X € DJ}.
t= -

If X is a stochastic process, then let AX denote the corresponding differeance

process, that is, AXO = (0 and AXC = Xc - X*-l for ¢t =1, 2, .., T.



The key result of this paper is the following,.

(1) Proposition. The stochastic process Y € D° if and only if there exists a martin-

gale M € L9 such that Y = AM.

Remark Since each bounded linear functional £(X) on LP can also be written in the

T
form f(X) = E[XOYO + Z:Xt A Yt] for some Y £ Lq, Proposition (1) can be restated to
t=]

say that QL consists of all the martingales in LY that are null at zero.

Proof. The sufficiency is easy to demonstrate, For an arbitrary martingale M & Lq,

set Y = AM, Under the convention AM, = 0, the linear functional £(X) corresponding

0
T
to Y can be written as f£(X) = E[ Z:Xt A Mt]. Now for arbitrary X € D the stochastic
t=l -
t .
process Z:Xs A Ms, being the stochastic integral of a predictable process with respect
s=1 T
to a martingale, is itself a martingale. It is also null at zero, so Ej Z:Xt A MCJ =
t=1
f(X) = 0 for all X € D, in which case Y = AM & DL.
Conversely, suppose Y & Q%. Clearly YO = 0, for YO € Jb implies YO is constant,
T
and any non-zero constant YO would lead to E[ Z}XthJ # 0 for some X € D.
£=0 -
Setting MO a2 0 and Mt = Yt + Mt—l for t - 1, 2, .., T, it remains to show thac M
is a martingale. Since M i3 clearly adapted, it suffices to show
= ~ 1
(2) elam |7 ] =2y ]o, ] =0, t=1,2, .., T

To do this, let t

1l and B € Jé-l be arbitrary, and set Xt = lB and XS = 0 for all

2
s # t. Since X €D, it follows that
T
E[;EQXSYS] = E[1;v ] = 0.

This verifies (2) because B € 3£-1 is arbitrary, so this proof is completed.

3, Basic Duality Results

Many discrete time stochastic control problems can be cast in the following

(primal) form:

(P) minimize £(X)

subject to xegn

Hno

where C is a convex subset of Lp, £f: C - R is a convex functional, and D, as above,
is the subspace of predictable processes., This being the case, it is natural to apply

classical optimization theory 1in order to establish the duality theory for the primal



problem (P).
One line of approach is as follows. Let QA denote the conjugate set
* . T
¢ =f{vert: swle[Zx¥ ]~ @] <],
- Xe€¢ =0
and let £ denote the conjugate functional on QO€

T

£ =sup{El Tx v ] - £].
XEC =0
These lead to the dual problem
*
(D) maximize -£ (Y)
* )
subject to Y E€C ND .

Observe, by Proposition (1), that the variables in dual problem (D) are martin-

e
Iy

*
gale difference processes., Moreover, for X € C and Y € C the definition of f gives

(0 = -2 fjxth] + £(X),
£=0

* x
so -£ (Y) < £(X) for all Y€ C N D" and all X £ C N D. In other words, the optimal

—

value of the dual problem (D), abbreviated sup D, 1s less than or equal to the optimal
value of the primal problem (P), abbreviated inf P. An applicarion of the Fenchel
Duality Theorem (see, for example, Luenberger‘[l969, p. 201]) then gives a sufficient

condition for equality to actually hold:

eCnN
rior of C and D, the epigraph of f over C has

Then

(3) Theorem. (Fenchel Duality) Suppos contains points in the relative inta-

[ ] =)

nonempty interior, and inf P is finite.

inf P = sup D,

and there exists a solution YO to the dual problem (D).

Alternative conditions can be given for inf(P) = sup(D). See, for example,
Rockafellar [197A, pPp. 56-57}. Moreover, conditions can be given that are sufficient
for ensuring there exists a solution to primal problem (P)., Rather than pursuing these
‘matters any further, however, the discussion will turn to the applicaction of these

duality results to some particular control problems.

4. Two Examples

This first example is similar to the stochastic programming model studied by
Rockafellar and Wets El976].
For the primal problem (P) one has C = LP and



T
£(x) = E[ Z g(c, w, Xt(w))],
t=0

where g: {0, 1, .., T} x G x R =» R is a function such that g(t, w, +) is convex
for each fixed (t, w). Thus f is a convex integral functional, provided it ié well-
defined in the sense that g(t, w, Xt(w)) is a measurable function of (t, w) for every
x € LP,

The functional f will be well-defined, according to Rockafellar El968], if g is
what is called a normal convex integrand, a general condition that is implied by a
variety of specific situations. Under this condition, Rockafellar [1968] went on to
derive an explicit formula for the conjugate functional f*. Lac g* be the Integraad
conjugate to g, that is,

g*(t, w, y) = sup {xy - g(t, w, x)].
x€R

If g(t, w, X) Ls majorized by an integrable function of (t, w) for at least one choice
of X € L? and if g*(t, w, Y) is majorized by an integrable function of (t, w) for at

least one choice of Y € LY, then Rockafellar [1968] showed that QA = L9 and

T
£ =5 Tg (e, 0, )]
v t=0

Thus the dual problem (D) 1is to maximize -f*(Y) over the subspace of martingale
difference processes in LY. The first hypothesis in Theorem (3) is automatically
satisfied, and the other two are easy to check for particular cases, so 1if they both
hold then inf(P) = sup(D) and there exists a solution to (D).

The second example comes from Pliska's [1982] discrete time stochastic decision
model. Let the sample space () be the ZT T-dimensional vectors whose components are
either 1 or -1. Let the probability measure P be arbitrary, subject only to the
requirement that P(w) > 0 for all w € ). Define a stochastic process Z = \
{Zt; t=1, 2, .., T} by setting Ztﬁn) 2w, the rEE component of w. Let the filtra-

v ‘ T
tion F be the one generated by Z. The problem is to minimize E[u( Z)X:Zt)] subject
to X € D, where u is a specified convex function. e=l

This problem fits in the framework of primal problem (P), for C = L? and I(X) =

T
E[u( Z)Xt2~)] is convex on . With suitable assumptions about u the hypotheses in
=1 =~ =

Theorem (3) will be easy to verify, in which case 1inf(P) = max(D). This will be the
case, for example, if u is strictly convex and decreasing, has a continuous second
derivative, and satisfies either u'(x) = 0 as x = ® or u'(x) » -« as ¥ » -=, In fact,

as shown in Pliska [1982], under these particular conditions there will exist a2 solu-

tion to the primal problem (P).



S. Concluding Remarks

Besides being of general theorerical interest, the primary importance of the
duality theory has to do with applications of stochastic control models where the
dual variables can be interpreted as prices., Xnowing by the duality theory presented
above that the price processes are actually martingales may have significant economic
implications, Of course, the interpretation of Lagrange multipliers and dual variables
as prices is well-known for economic models. This interpretation is discussed in the
context of linear programming in Danczig [1963], for example. Some references involv-
ing more general settings are Arrow, Hurwicz and Uzawa El958], Baumol [1977], and
Gale [1960]. The paper by Rockafellar and Wets El976] enumerates several additional
papers dealing with price systems associated with constraints appearing in mulcistage
stochastic programs.

One-economic application where duality theory may be of inrerest is the area of
consumption-iavestment problems. Such problems, as well as variations such as optimal
capital accumulation under uncertainty and resource allocation under uncertaincy, have
been extensively studied in the economics literature; see, for example, Arrow and
Hurwicz [1977], Brock and Mirman [1973], Mirman [19711, and Lucas and Prescott [1971].
The basic idea is that each period the decision maker must divide his wealth between
current consumption, yielding immediatce utility, and investment, which becomes worth
a random amount next period. This leads to a trade-off between current and future
consumption. Welch [1979], Zilcha [1976], and, as mentioned at the beginning of this
paper, Kennedy [1982] studied particular versions of this problem and showed the
Lagrange multipliers could be interpreted as prices.

Rockafellar and Wets [1976] derived their results in the context of the variables
being bounded stochastic processes. The specific approach taken here would not work
in that case, because the dual of L is not Ll and so one could not proceed as in
Proposicion (l). However, it is possible that one could apply one aspect of their
approach in order to overcome this difficulty without resorting to their induction
proof methodology. This would be to add more structure to the convex funcrional £
in primal problem (P) and then apply the results of Rockafellar [1971] to show that
Q* N D is actually in Ll, even though Lt is not the dual of L.

The principal advantage of the approach here over that by Rockafellar and Wets
[1976] is that it does not rely on a proof by induction on the time variable. Thus
this method has the potencial of being suitable for continuous time stochastic control
problems. Indeed, for p < = one could proceed as above aund compute QL but with

~T
linear functionals of the form E[? X Ytdt] one would get the uninteresting resulc

“0



T
= ». On the other hand, with linear functionals of the form E[ ! XtdYt] one sees
‘0
that D7 contains all the martingales in LY null at zero. These interesting issues

|
-

o

deserve further study.
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