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MARKOV RENEWAL THEORY: A SURVEY
by
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Markov renewal theory is the union of renewal theory and Markov
chains, or, better put, it is the result of the union of Markov chains
with renewal processes. The answer to whether it is the Markov chain or
the renewal aspect which is dominant has always eluded me however long
I thought about it. I find its renewal aspect dominant on questions
concerning the existence of limits, and its Markovian aspect on the
evaluation of those limits, and quite often it is neither or both.

In its female aspect a Markov renewal process appears as a family
of renewal processes, possibly infinite in number, and each of a different
colour, intertwined by being superposed together in such a fashion as to
arrange their colours in a harmonious sequence pleasing to observe: the
colour of the first point depending on that of the original one, and the
colour of the next point selectel in accordance with that of the first,
and this rule being repeated forever. This invests in the Markov renewal
process an awesome regenerative power, each point along with its colour
holding the key to the secrets of all the future beyond.

In its male aspect a Markov renewal process may be likened to an ac-
count of the shapes assumed by Zeus in his varied amorous pursuits. In-
itially, having banished his father, he pursues his mother and violates
her in the shape of a serpent; then he courts his twin sister Hera in his
own shape, and this failing, in the disguise of a bedraggled cuckoo; after-

wards he rapes Maia, daughter of Atlas, while in his own shape; and then
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Leto, daughter of Titans Coeus and Phoebe, transforming himself and her
into quails when they couple; and later, after the creation of man, he
disguises himself as a mortal and has a love affair with Semele, daughter
of King Cadmus of Thebes; and still later, begats Eros on his own daughter
Aphrodite in his own shape; etc. The successive shapes he assumes form a
Markov chain (though it was then called something else), and the lengths
of the intervals between the moments of heavenly union are conditionally
independent of each other once the successive shapes are known.

Having thus established the divine importance of our subject I shall
next put down a crude introduction into its nature, along with a descrip-
tion of the major rituals performed at its temples. The already initiated
will find very little which is new. My present purposes lead me to keep
the notation and formalities to a minimum, and, partly because of this, to
limit myself to the finite state space case and merely to point out the
nature of the difference from the infinite state space case if any. The
literature, starting with about 5 titles in 1960, has grown to over 300
by 1972. This rapid growth, no doubt spurred by PYKE [53],[54] and the
recognition of many applications in a large number of fields, makes it
difficult for me to give due credit to everyone concerned. I apologize
beforehand to all those who might feel left out. 1Instead of presenting
merely the results, I have tried to capture the flavor of the field and
to give a highly stylized presentation in the unified framework of CINLAR
{11}, which is, essentially, the analog of FELLER's treatment of renewal
theory. As a result, most of the results I will be listing are presented
in the manner which seems to me the most natural in view of the present
day state of the field. Further, instead of merely presenting results,

1 have endeavored to point out the main lines of attack and the reasons



for it. For example, in the applications, I felt it better to tell where
an imbedded process is and how it can be exploited best rather than

showing the details of computations.

1. MARKOV RENEWAL PROCESSES
Let E be a finite set, N the set of non-negative integers and R+
the non-negative real numbers. Suppose we have, on a probability space

(Q,H,P), random variables

defined for each n ¢ N so that

0=ToiT1iT < v

These elements are said to form a Markov renewal process (X,T) with state

space E provided that

(1.1) P{X ,T )

=3, T - T §>t|x0,...,xn;T0,... .

n+1l n+l

B P{Xr1+l -3 Tn+l‘ Tn j'tlxn}

for all n ¢ N, j ¢ E, tCR Ve will always assume that the process is

+

temporally homogeneous: that is,

(1.2) PAX 0 =3, T =T <t|X =i} =Q(,j,t)

independent of n. The family of probabilities
Q = {Q(i,3,t); 1,j € E, t €R}

is called a semi-Markovian kernel. For our present purposes we assume

Q(i,j,0) = 0 for all i,j in E.
For each pair (i,j) the function t - Q(i,j,t) is right continuous
non—-decreasing and bounded. Defining

(1.3) P(i,j) = lim Q(i,j,t)

to



we see that

(1.4) P(i,j) > 0, ) P(i,j) =1; 1i,j € E;
JECE

that is, the P(i,j) are the transition probabilities for some Markov chain

with state space E. It follows from (1.1) and (1.3) that, in fact,

(1.5) P{X

n+l =] XO’.,.’XH;TO,.-o,Tn} = P(XH’J)

for all n ¢ N and j € E. This implies, in particular, the following

(1.6) PROPOSITION. X = (Xn) is a Markov chain with state space E

n €W

and transition probability matrix P.
If P(i,j) = O for some pair (i,j) then Q(i,j,t) = 0 for all t Gim+

and we define the ratio Q(i,j,t)/P(i,j) to be unity. With this convention

we define

(1.7) G(i,j,t) = Q(1,3,6)/P(1,3), 1, € E, t € R,.

Then, for each pair (i,j), the function G(i,j,*) is a distribution func-

tion. From (1.2) and (1.5) we see ‘hat

(1.8) G(i,j,t) = P{T_ . -T_ f_thn =i, X = j}.

1

Using this interpretation together with (1.1) we can show by induction the
following

(1.9) PROPOSITION. For any integer n > 1 and numbers ul',...,un G:m4,

PAT) =Ty < uy, T, =T Suy,een,T =T 5-un|X0’X1""}

G(XO ’XI ;ul)G(Xl ,Xz;uz). "G(Xn__l,Xn;un);

in words, the increments T1 —TO, T2 —Tl,... are conditionally independent

given the Markov chain XO’Xl""'
In particular, if the state space E consists of a single point, then
the increments are independent and identically distributed non-negative

random variables; namely, we have



(1.10) COROLLARY. If E consists of a single point then (Tn)n cN is

a renewal process.

This result together with Proposition (1.6) justify the term Markov
renewal process, somewhat, by exhibiting it as a generalization of Markov
chains and renewal processes. The full justification however is contained

in Proposition (1.6) and the following very important

(1.11) PROPOSITION. Let i € E be fixed and define SE, S},... to be the

successive Tn for which Xn = i. Then S* = (Srll)n is a (possibly

€ IN
delayed) renewal process.

Thus to each state i there corresponds a renewal process (Si); the
superposition of all these renewal processes gives the points Tn’ n €IN;
the renewal process which contributed the point Tn is the ith one if and
only if Xn = i; the types of the successive points, namely XO’Xl""’ form
a Markov chain. This is the Markov renewal process in its female aspect.
Next we describe its male aspect.

Since (Xn) is a Markov chaiu with a finite state space, not all the
states are transient and the chain, starting from any initial state,
eventually will reach some recurrent state with probability one. For any
recurrent state i, Xn becomes i infinitely often, thus causing the renewal
process (Si) to be non-terminating which in turn implies that sup_ Si = 4
with probability one. Since the supremum of the Tn is greater than or

equal to sup_ S; for any i, this argument proves the following
(1.12) PROPOSITION. If E is finite, then sup Tn = 4+« almost surely.

By weeding out those w € ! for which sup Tn(m) < ® we may assume,
and we do, that sup_ Tn(m) = 4= for all w. Then, for any w € @ and t € R,

there is some integer n such that Tn(m) <t <T (w). We can therefore

n+1



define a continuous-time parameter process Y = (Yt) with state space

t G-E4

E by putting

}.

. = T T
(1.13) Y X on { LSt <T

t

The process Y = (Y, )

so defined is called a semi-Markov process with
t’t € R+

state space E and semi-Markovian transition kernel Q = {Q(i,j,t)}.

The semi-Markov process Y provides a picture which is convenient in
describing the Markov renewal process underlying it. We may think of Yt
as the state at time t of some system or particle (or deity) which moves
from one state to another with random sojourn times in between. The
length of a sojourn interval [Tn’Tn+l) is a random variable whose distri-
bution depends both on the state Xrl being visited and the state Xn+l to be
entered next. The successive states visited form a Markov chain and, con-
ditional on that sequence, the successive sojourn times are independent.
This is the Markov renewal process in its male aspect.

Using the description above we may obtain a realization of the semi-
Markov process Y in the following manner. Suppose we have the transition
probabilities P(i,j) satisfying (1.4) prescribed along with a distribution
function G(i,j,t) for each pair (i,j). Suppose the initial state is to be
i. First the next state to be entered is sampled from the distribution
P(i,+); if the outcome is j, then a sojourn time u is sampled from the dis~
tribution G(i,j,*); the function Ve is set to be i for all t < u and Yu is
set to be j. The second step starts by sampling the next state to be
entered from the distribution P(j,<); if the outcome is k, then a sojourn
time v is sampled from the distribution G(j,k,*); the function Ve is now
set to be j for t € [u,u+vVv) and Y oty is set to be k. The third step ...,
The resulting function Ve is a realization of the semi~-Markov process Y

with the semi-Markovian kernel Q given as Q(i,j,t) = P(i,j)G(i,j,t).



A different causal relationship which leads to the same mathematical
model is as follows. Suppose we are given, for each i € E, a distribution
function t - H(i,t) onIR+ and, for each i € E and t € R+, probabilities
K(i,t,j) so that Ej K(i,t,j) = 1. Suppose yg is to be i. First a sojourn
time is sampled from the distribution H(i,+); if the outcome is u, then Yy
is set to be i for all t < u, and the state to be entered at time u is
sampled from the distribution K(i,u,*). Supposing the outcome for Yy to
be j, the second step starts with sampling a sojourn time from the distri-
bution H(j,+); if this outcome is v then Ve is set to be j for all
t € [u,u+v), and the state to be entered next at time u+v is sampled
from the distribution K(j,v,*). Supposing the outcome Yyt to be k,...3
and so on. The resulting function e is the realization of a semi-Markov

process with the semi-Markovian kernel Q defined by

t
Q(i,j,t) = [ H(i,du)K(i,u,j)
0
for all i,j € E and t € R+.
Finally, a word of justificacion for the name semi-Markov process.

If the semi-Markovian kernel Q is of the form

.. -A(i)t
(1.14) Qi,5,6) = P, A - e By
then one can show that

(1.15) Py . = ilYsus<el=>py = JIYt}

for all t,s € R+ and j € E; and furthermore,

(1.16) P{Y, = jIYt = i} = P_(i,3)

is independent of t. In other words, under (1.14) the semi-Markov process
becomes a (temporally homogeneous) Markov process. Conversely, any Markov

process Y = (Yt)t R with a finite state space E is automatically a semi-
+



Markov process; if A(i,j) denotes the right-hand derivative at t = 0 of
its transition function Pt(i,j), then the corresponding semi-Markov kernel
has the form (1.14) with
Ai) = -A(d,1), P(i,1) = 0, P(i,3) = A(L,5)/x(1)
for all i and j # i with A(i,i):,éo, and if A(i,i) = 0,
A(d) =1, P(i,i) =1, P(i,7) =0
for all j # i.

Thus, with respect to Markov processes, the novel feature of the semi-
Markov process is the freedom allowed in the choice of the distributions of
the sojourn times; this freedom, however, is achieved at the expense of the
Markov property (1.15) which, instead of holding for all t, holds now only
for the jump times Tn.

Semi-Markov processes were introduced by LEVY [42] and SMITH [60]
independently and simultaneously. At about the same time TAKACS [63],164]
had studied a process which is in many respects equivalent to it. The
Markov renewal processes were studied in detail by PYKE [53],[54]. Our
terminology follows [11] which presents the theory from the point of view
of "semi-regenerative' processes and the analytic techniques of Markov

renewal equations paralleling renewal theory.

2. PRELIMINARY RESULTS

Throughout this section (X,T) = (X ,T ) will be a Markov renewal
n’n’n €N

1

process with a semi-~Markovian kernel Q over a finite space E. Then X

(Xn)n _— is a Markov chain on E with transition probabilities P(i,j) =

Q(i,],+).

We will be denoting the conditional probability P{-}{X, =i} simply by

Pi{-} and will write Ei for the expectation corresponding to it.



Let us define

n, . . . . .
(2.1) Q (i,j,t) = Pi{Xn = j, Tn < t}, i,j € E, t €IR,

for all n ¢ K. Then,

(2.2) Q¥ (1,3,t) = I(i,])

for all t > 0 where I(i,j) is 1 or O according as i = j or i # j (namely,
I(i,j) is the (i,j)-entry of the identity matrix I); and for n > 0 we have

the recursive relation

(2.3) PPk, = T [ QL 1,dwdt Lk, - u);

JCE

Ot

(for which can be given the following plausibility argument: in order for

{(X . =%k, T

L+l < t} to happen, the first transition must occur at some

n+l
time u < t into some state j and then, starting from j, the remaining n
transitions should take no longer t-u and end with state k).

We had noted, by Proposition (1.11), that the times T“ for which X“==j

is a (possibly delayed) renewal process for each fixed j. The number of

renewals, in [0,t], belonging to this renewal process is

(2.4) ) Iix =j, T <t}
n=0 1 n—
(we denote by IA the indicator function of the event A). Since the number

of renewals in a finite interval has a finite expected value, this random

number has the finite expectation

.. a T _ o n,., .
(2,5) R(l,J’t) = Ei[-nzo I{Xn=j, Tnit}] - nZO Q (l’J’t)’

for any initial state 1i.

The R(i,j,*) are called Markov renewal functions, and R =

{R(i,j,t); i,j € E, t e:m*} is called the Markov renewal kernel corres-
ponding to Q. Because R plays a very important role in the theory, we

stress once more the fact that for fixed i,j € E the function t - R(i,j,t)
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is a renewal function.* If the initial state is j then the entrances to

j form an ordinary renewal process and

co

(2.6) R(j,j,t) = ) F (3,3,t)
n=0

where Fn(j,j,-) is the n-fold convolution of the function F(j,j,*) which
is the distribution of the time between two occurrences of state j. On
the other hand, if the initial state is i # j, the time until the first
visit to j has a distribution F(i,j,*) which might be different from

F(j,j,*). In this case, namely when i # j, we have

t
2.7) R(i,j,t) = [ F(i,j,du)R(j,j,t - u).
0

Once the R(i,j,*) are obtained by the formula (2.5) the expressions

(2.6) and (2.7) may be used to solve for the first passage time distribu-

tions F(i,j,*). Computationally, especially in the present case of finite
state space E, it is convenient to use Laplace transforms.

We define, for 2 > O,

(2.8) 0, (1,1) = [ e act,3,d0),
(2.9) FoG,5) = [ e F(,5,ar),

and for A > O,

e M R(i,j,dt).

o 8

(2.10) R, (i,3) =

Then, it follows from (2.3) that the Laplace transform Q?(i,j) of the mass
n,, ., . .
Q (i,j,*) satisfies

(2.11) RS IR R ERAC RS
i €E

t
for all n ¢IN. Hence, the matrix Q? is precisely the n b power of the

matrix QA; that is,

*This fact sometimes goes unnoticed by authors who are too busy
computing to have any time left for reflection.
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n n
for all n > 1 and also for n = 0 with the usual convention that the zeroth
power of any matrix is the identity matrix.

Using the matrix notation, the expression (2.5) implies

_ 2 4 oees
(2.13) R, = 1T +Q +0Q2+ , A > 0.

By virtue of the interpretation (2.12) we can write

(2.14) Ry(I - Q) = (I-Q)Ry =1

which means that, for A > O, RA is the inverse of I - QA:
-1

(2.15) RA = (I - QA)

Next, considering the Laplace transforms (2.9) of the first passage

distributions, we obtain from (2.6) and (2.7) that

[ B DR, (L) if 143,
(2.16) R (1,3) =+ -1
| [1-FG.D] if i = §.
Conversely,
R, (5,3)/R, (3,3 if i # 3,
(2.17) F(1,5) = ! A
L 1 1/Ry(3,3) if 1= 3.

These show that the matrices Q>, FA’ RA define each other uniquely.

If the state space E were infinite, all the expressions we have above
would hold except possibly (2.14) and (2.15) which do not even make sense

in that case. From (2.13) we could write R, = I + QARA which is an in-

A
finite system of linear equations. However, in general, this system may

have more than one solution. Then, RA turns out to be the minimal solu-
tion of this system M = I + QAM' We refer to [11] for a complete discus-
sion.

Aside from the computations given here, a large number of quantities

of possible interest are computed in [10],[27],[41],[45].
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3. CLASSIFICATION OF STATES

Let (X,T) be a Markov renewal process and let Si be the renewal
process formed by all the Tn for which Xn = i. Suppose the initial state
is 1 so that Si is an ordinary renewal process. We define state i to be
recurrent (transient, aperiodic, periodic with period A respectively)
according as the renewal process Si is recurrent (transient, aperiodic,
periodic with period X respectively).

State i is recurrent if and only if the recurrence time distribution
F(i,i,*) is honest: that is, if and only if F(i,i) = F(i,i,*+~) = 1. Then,
R(i,i) = R(i,i,») = 4 and since R(i,i) = J P"(i,i) we see that i is re-

n
current if and only if i is recurrent in the Markov chain X. Similarly, i
is transient if and only if it is transient in the Markov chain X; then,
F(i,i) = F(i,i,+») < 1 and R(i,i) = R(i,i,») = 1/(1 -~ F(i,i)) < = and
these quantities F(i,i) and R(i,i) are computed directly from the Markov
chain X. So, recurrence and transientness are just as in Markov chains.

Periodicity of a state i in (X,T), however, has nothing to do with the
periodicity of i in the Markov chain X. State i is periodic in (X,T) if
and only if the distribution F(i,i,*) is arithmetic. In view of the fact
that the F(i,i,-) are not easy to compute, the following solidarity

theorem and the theorem after that are pleasant results.

(3.1) PROPOSITION. If i and j can be reached from each other, then either
they are both aperiodic or else they are both periodic. In the latter case

they both have the same period.

For the proof of this, as well as the results we are about to mention,
we refer to [1] and [17].

In view of the Proposition (3.1) all states belonging to an irreducible
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closed set C of the Markov chain X behave similarly: either all states in
C are aperiodic, or they are all periodic with the same period. To deter-
mine periodicity we need not compute the distributions F(i,j,+). We

introduce

(3.2) Aij = inf{t > 0: Q(i,j,t) > 0} i,j € E

with the usual convention that if the set in question is empty then its
infimum is .

(3.3) PROPOSITION. Let C < E be an irreducible closed set of periodic
states with the common period X. Then, for any i,j € E for which P(i,j) =

Q(i,j,») > 0, all the jumps of the function t - Q(i,j,t) belong to the set

(3.4) s Ao+ x, AL+ 20,0000
117 13 1]
Furthermore, for any n € N and any sequence of states jO’jl""’jn € C

with jn = jg, we have

(3.5) YU SV TS P Y . = ki
jod1  "i1d2 3103,

for some integer k (possibly infinite).

In particular, (3.5) implies that Aii is a constant multiple of A.
Moreover, (3.5) shows that X is the greatest common divisor of all finite
sums A, . Feeet A :  with jg = J,- In view of the first statement that

joia Jn-1Jn n
all the Q(i,j,*) are to be step functions with all jumps occurring at
points of form Aij + kA, the aperiodicity is not hard to recognize. In

particular, if any one of the Q(i,j,*) has a derivative, then none of the

states in the same recurrent class ds L andj can be periodic.

4., MARKOV RENEWAL EQUATIONS
Consider a Markov renewal process (X,T) with state space E and semi-

Markovian kernel Q, and let R = & Qn be the corresponding Markov renewal
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kernel. The equations we will introduce form a system of integral equa-
tions which generalize the renewal equation in a natural manner. The
class of functions which we will be working with, to be denoted by IB,
are functions

f: E ><]R+ >~ R
such that, for every i € E, the mapping t -+ f(i,t) is Borel measurable and
bounded over finite intervals. In particular, all functions f on EXIR+
which are continuous in the second variable belong to IB as well as all
those which are right continuous and monotone in the second variable. As
special examples we note that, for any fixed j ¢ E, the mappings (i,t) -
Qn(i,j,t) and (i,t) » R(i,j,t) both belong to B.

A function f € B is said to satisfy a Markov renewal equation if

t
(4.1) £(i,t) = g(i,t) + ) [ Q@,j,dw)f(j,t-u), 1i€E, t €R,
jCEO

for some function g € IBB. Here the point of view is that g and Q are known
and the problem is to solve for f and to study the limiting behavior of
t » £f(i,t) as t gets large.

If E consists of a single point, then the equation (4.1) is nothing
more than a renewal equation. Just as in that simpler case, the system
(4.1) has a unique solution with the Markov renewal kernel R playing the

role of the renewal function. Here is the main result.

(4.2) PROPOSITION. The Markov renewal equation (4.1) has one and only one

solution; it is

t
(4.3) £G,0) = ) [ R@{,j,ds)g(j,t-s), i €CE, tER,.
JEE O
NOTATION. For any g € IB the function Q *g defined by
t
(4.4)  Qxg(i,t) = ] [Q@,j,ds)g(j,t-s), i€ E, t €IR
JEE O



15

is well defined and belongs to IB. Hence, the iterates of this operator
on B are all well defined and the nth iterate Qn* g 1is given by (4.4)
with Q there replaced by Qn which was defined recursively by (2.1)-(2.3).
We can replace Q on the right side of (4.4) by R and still have a well
defined function in B which we will denote by R#* g. Further, in (4.4),

if g is R(*,k,*) for some fixed k, we write Q *R(i,k,t) for the left side.

PROOF of (4.2). 1In the notation of (4.4), the Markov renewal func-

tion (4.1) becomes

(4.5) t=g+Q=xf,
and the assertion is that
(4.6) f =R=xg

is the only solution.

That R*g 1is a solution follows easily from the relation R =1 + Q%R
which is the same, in the present notation, as the equation (2.13).

To show that Rxg 1is the only solution, first note that, if f is any
other solution, then h = f -— R*g must satisfy
(4.7) h = Q%h, h ¢ IB,
and we will show that this implies h = 0.

By iteration (4.7) gives h = Q xh = Q2*11 = ¢¢* = Q *h = ***. TFor
fixed t, by the fact that h € B, |h(i,s)| < c for all i € Eand s < t for
some constant c. Thus,

(4.8) IhGi,e)] = |Q" *#h(i,t)|
t

<[ d@iawhG,e-w| e ] QG,3,0) = P AT <t).
j0 k

But E is finite and Proposition (1.12) applies to the effect that
sup Tn = o, Hence, as n > o,
P {T <t} -»0.
i n—

This shows that, by (4.8), h = 0. O
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The finiteness of the state space E enters into the preceding theorem
at two points: existence of R*g in B and non-finiteness of sup Tn' All
the above results hold therefore for countably infinite spaces E also pro-
vided that these two particular points have been satisfied. However,
especially the second point is not easy to settle in that more general
case. We refer to Chapters III and IV of [11] for a full treatment in the
general case.

Markov renewal equations were introduced in [11] without the knowledge
of the earlier paper by FABENS and KARLIN [23]. They introduce the same
equations in the finite state space case and obtain the solution under

conditions meant to insure the finiteness of R(i,j,t) (which always is).

5. LIMIT THEOREMS
We are using the same notation as in the preceding section. In par-
ticular, Q is a semi-Markovian kernel on E and R is the corresponding
Markov renewal kernel. Since we assume E to be finite, most of our main
results will follow from renewal theory.
For fixed j € E, the function R(j,j,*) is an ordinary renewal function.

If j is transient, then the limit as t - « of R(j,j,t) is simply

(5-1) lim R(J ,j,t) = R(J »J s+°°) = R(j:J)

[y

which is also the expected number of visits to j by the Markov chain X
starting at j. This quantity, as well as the probability F(i,j) = F(i,j,®)
of ever reaching j from i, can be computed directly by the well known
methods of Markov chains.

If j is recurrent then R(j,j) = +° and the relevant limit theorem
states that

(5.2) 1im[R(],3,t) - R(§,3,t - 1)] = 1 n(3)

>
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for all v > 0 if j is aperiodic and for t of form t = nX if j is periodic
with period A. Here n(j) is the inverse of the mean recurrence time of j,
that is,

(5.3) n{j) = 1/{ t F(j,j,dt)

with the convention that 1/« = 0. We refer to FELLER [25] for a proof of
(5.2) and of the next result which is in fact equivalent to (5.2). 1If j

is recurrent aperiodic, then for any directly Riemann integrable function g

we have
t o
(5.4) lim { R(j,j,ds)g(t - s) = n(§)/ g(uwdu,
torw 0

and a similar result holds in the periodic case. For the concept of direct
Riemann integrability we again refer to FELLER [25, p. 348].

We write I for the class of all directly Riemann integrable functionms.
These are non-negative (finite) functions defined on IR+ and satisfying a
certain summability condition. Every function in ID is Riemann integrable
in the ordinary sense. Any continuous function vanishing outside a finite
interval is in ID. Every Riemanr. integrable decreasing function is in ID.
Erery—Riemammr—integrable—decreasirpg—funetieon—ie—dn—Ib. Any right continu-
ous function dominated by a function in D is again in . The convolution
¢ *g of a function g in D with a distribution ¢ is in ID.

The

Following is on computing n(j) directly from Q. As far as computing
n(j) is concerned, it is sufficient to consider only the recurrent irredu-

cible class j belongs to. Therefore, the next proposition should be ap-

plied to each irreducible class separately.

(5.5) PROPOSITION. Suppose X is irreducible recurrent and let 7 be an in-

variant measure for X, that is, let 7 be a solution of

(5.6) J m@PE, ) = 1(3), j € E.
iCE
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Further, let m(i) be the mean sojourn time in state i, that is,

©

(5.7) m(i) = E[T_, -T [X =i] = fl1 - Y Q(i,k,t)]dt.
0 k

Then,

(5.8) n(@) = 7@/ ) r@@n@E), j € E.

icE

PROOF will be given later. First, a few remarks are in order. Since
X is irreducible recurrent, the system of linear equations (5.6) has a
solution, and the solution is unique up to multiplication by a constant.
Because of the form of (5.8) this constant factor plays no role. In par-
ticular, we may take m to be the limiting distribution by normalizing it
to have z m(j) = 1. 1Inverting (5.8) we see that the mean recurrence time
of state j is zi m(i)[n(d)/m(3)] which has a good intuitive explanation
once we note that 7(i)/n(j) is the expected number of visits to i in between
two visits to j, and that each visit to i lasts a time whose expectation
is m(i).

The following is the main limit theorem.

(5.9) THEOREM. Suppose X is irreducible recurrent and g(j,*) is directly
Riemann integrable for every j ¢ E. Then, if the states are aperiodic in
x,T),

(5.10) lim Rxg(i,t) = ) 7(i)n(3)/) 7(G)mG)
t>o j J

where 7 and m are as in (5.5) and
(5.11) n(j) = g g(i,s)ds, j € E

If the states are periodic with period A, then (5.10) holds for t = x+ ki,

k €N, k > », and x € [0, ], with

(5.12) n(i) =r ) g(,x+kx - A..)
k=1 +J

where )\lJ = inf{t: F(i,j,t) > 0} (modulo A).
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PROOF. Since E is finite the limit in question is

t
(5.13) lim R#g(i,t) = ) lim { R(i,j,ds)g(i,t-s).
to jt+co0

To obtain the limit as t > = of the j-term, we note that R(i,j,*) is the
convolution of F(i,j,*) with R(j,j,*). Thus, the j-term is the convolution
of R(j,j,*) with the function F(i,j,*) *#g(j,*). Since g € D, so is

F(i9j9') *g(j9') and

[+ t [+
f at { F(i,j,ds)g(i,t-s) = F(i,3,=)[ g(i,s)ds = n(j)
0 0

with n(j) defined by (5.11) since F(i,j,») = 1 by irreducibility. Now

applying (5.4) in the aperiodic case we obtain

t
(5.14) lim [ R(i,j,ds)g(i,t-s) = n(GI)n(§), j € E.
t 0

Putting (5.14) into (5.13) and then using Proposition (5.5) to evaluate
the n(j) we obtain the desired result. We omit the proof in the periodic
case. (]

If X is reducible and i is recurrent, then the limit of R#*g(i,t) may
be obtained by considering only the recurrent class i belongs to. However,
if i is transient, and especially if there are periodic classes which can
be reached from i, the limit of R#% g(i,t) becomes harder to obtain. For a
thorough treatment of these and related matters we refer to [17].

PROOF of (5.5). We give this in the aperiodic case as an illustration
of the use of (5.13) and (5.14). If m(j) = « for any j, the mean recurrence
time of j being greater than the mean sojourn time m(j) in j, we must have
n(j) = 1/2 = 0. Thus (5.8) holds trivially if m(j) = = for any j. Suppose
now that all the m(j) are finite.

Let h(j,t) = 1 - Zk Q(j,k,t). Clearly h(j,*) is non-increasing and

its integral is defined to be m(j) in (5.7). Since m(j) < =, h(j,") is
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directly integrable. Applying (5.13),(5.14) with g there replaced by h

we obtain

lim R*h(i,t) = ) n(G)m{).

tow 3
But h=1-Q%*1 and R=1+ Q% R; thus, R*¥h = 1 identically and we
must have

(5.15) Yy n()m(j) = 1.
j

Next, for fixed 1 > 0 and fixed j € E define g by

(

1
g(i>t) = ‘\L O

Note that g(i,*) is directly integrable, and that Q* g(i,*) is directly

ifi=3,t<m,

otherwise.

integrable with

{ Q*g(i,s)ds éds[Q(i,j,s> - Q(i,j,s-1)]

TQ(i,3,+) = TP(i,3).

I

Since R = I + R*Q, R *g g+ R*(Q*g) and we have

lim R*xg(i,t) = lim R %Q*g(i,t).
t t

Applying (5.13) and (5.14) to both sides separately we obtain
n@G)t =T ) n@E)P(L,5).
i

In other words, n is a solution of (5.6). From the uniqueness up to multi-

plication of such solutions it follows that

(5.16) nG) =c7n(), j €E

for some constant c. In view of (5.15) that constant must be

(5.17) c =1/ w(i)m(i).

The desired result now follows from (5.16) and (5.17) O
We end this section with the following two results which complement

the preceding one. We omit the proofs.



21

(5.18) LEMMA. Let ¢ be a non-decreasing function defined on IR+ and with
¢(t+b) - ¢(t) < c for all t for some constants c and b > 0. Then, for

any non-decreasing right continuous function g we have

lim Qé%%§£l = g(4=).

to
Note that each R(i,j,*) satisfies the hypothesis of (5.18) regarding

¢. Thus, letting ¢ = R(j,j,*) and g = F(i,j,*) we have in particular that,

as t > =,

(5.19) R(i,j,t)/R(@G,],t) > F(@E,3).

The following is a more powerful result.

(5.20) PROPOSITION. Let X be irreducible recurrent and let 7 be a solution

of (5.6). If g(k,*) is right continuous and non-decreasing, then

t

. 1 _ 1
i: ﬁiﬁjztzj'g R(j,k,ds)g(k,t-s) = (1)

(5.21) 1
t

m(k)g(k,=)
for any h,i,j,k ¢ E. In particular,

(5.22) lim R(j,k,t)/R(h,i,t) = n(k)/n(i).

Lo

In the infinite state space case the computational result (5.5) still
holds; but (5.9) is not true in general since, then, we cannot pass the
limit inside the summation and obtain (5.13) without some further condi-
tions on the function g or the process (X,T). A reasonably complete solu-
tion is contained in [17].

Since the R(i,j,*) are renewal functions, their asymptotic behaviors
follow from renewal theory and we only need to compute the constants in-
volved. These constants are the first, second, etc. moments of the re-
currence time distributions F(j,j,*) and the object is to compute them

directly from Q. The following papers (and the references contained therein)
are primarily devoted to this task: GUPTA [27], HUNTER {31],[32], and
KEILSON [38]; see also [11, p. 165].
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6. SEMI-MARKOV PROCESSES
Let (X,T) be a Markov renewal process with a finite state space E
and semi-Markovian kernel Q, and consider the semi-Markov process Y de-
fined by (1.13). Define

(6.1) Pt(i,j) = Pi{Yt = i}, i,j € E, t € R,

where, as before, we write Pi for the conditional probability given that
Xqg = Yy = i. Throughout the following R is the Markov renewal kernel

corresponding to Q and h is defined by

(6.2) h(j,t) =1 - ] Q@,k,t), j€E teR,.
k cE

(6.3) PROPOSITION. For all i,j € E and t ¢ R+ we have

t
P (1,3) = [ R(,j,ds)h(f e =),

PROOF. Consider the time T; of the first jump. If T; > t then

Y =Y,; if T, = s < t then Y has the same distribution as Y with
t 0 1 — t t-s
initial value Xl' This renewal argument shows that
t
(6:4) P (1,3) = TA,DhE,e) + ) [ Qi,k,de)P_ (c,5).
k

For fixed j, if we define f(i,t) = Pt(i,j) and g(i,t) = I(i,j)h(i,t), then

(6.4) becomes f = g + Q *f. Solving this Markov renewal equation by using

Proposition (4.2) we obtain f = R *g which, in view of the definition of g

here, is precisely the desired result. O
Let U(i,j,t) be the expected time spent in j during [0,t] by the

process Y starting at i, that is, let

t
(6.5) U(i,j,t) = Eifg 1,(¢ds], 1,5 ¢, teR,

where lj(k) = 1 or 0 according as k = j or k # j. Passing the expectation
inside the integral, noting that Ei[lj(Ys)] = Pi{Ys= j} = PS(I,J), and

using the preceding proposition we obtain the following.
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(6.6) PROPOSITION. We have

t t-s
U@i,j,t) = [ R(i,j,ds) [ h(j,u)du. []
0 0

We will call U the potential kernel of Y. It can be used to compute

quantities such as

t
(6.7) Uf(i,t) = Ei[é £(Y_,s)ds]

for functions f in IB (see Section 4 for the description of IB). If we
interpret f(j,s) as the rate (per unit time) of rewards being received at
an instant s at which the semi-Markov process Y is in state Ys = j, then
Uf (i,t) becomes the expected value of the total reward received during
[0,t] starting at state i. In particular, when f(j,s) = e %8 g(j) for
some a > (0, we may interpret Uf as the expected value of the total dis-
counted reward received during [0,t], discounted at the rate of a, where
the rate of reward is g(j) in state j. Using Proposition (6.6) we compute

Uf defined by (6.7) to be

t t-u

(6.8) Uf(i,t) = ) [ R(i,j,du) [ h(j,s)f(j,u+s)ds.
j 0 0

Next consider the total amourt of time spent in j by the process Y.
If the initial state is i, then the expected value of it is U(i,j) =

U(i,j,+*) = lim U(i,j,t). Note that the expression given by (6.6) for

tor
U(i,j,t) is of form ¢ *g with ¢ = R(i,j,*) and g(t) = f; h(j,u)du. Thus,

using Lemma (5.18), and noting that g(«) = m(j) is the mean sojourn time

in state j we obtain the following

(6.9) PROPOSITION. For any i,j € E

lim U(i,j,t)/R(i,j,t) = m(j). O

Lt

In particular, if j is transient and can be reached from i, then the

preceding result implies that U(i,j) = U(i,j,®) = R(i,j)m(j). On the
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other hand, if j is recurrent and can be reached from i, then U(i,j) = 4.

Combining Proposition (6.9) with (5.22) we also obtain

(6.10) lim U@i,j,t)/Uhk,t) = 7(HHm(3)/mk)mk)

t>oo
for all i,j,h,k in the same irreducible closed set; here m(j) is the
limiting probability that Xn = jas n > =, If we sum U(i,j,t) over all j
we obtain exactly t; hence, for k recurrent and reachable from h, (6.10)
implies that

(6.11) lim U(h,k,t)/t = m(k)mk)/) 7(i)m(j).
too j

This provides an intuitive explanation for the following.

(6.12) PROPOSITION. Suppose X is irreducible recurrent and m(k) < o.

Then, for any i € E,

(6.13) v(§) = lim P {Y = j} = T(HnG)/) mk)mk)
k

o

in the aperiodic case, and

(6.14) ii: PAY = i} = Amg) rzl h(j,x+nk- xij)/g m(k)m(k)

in the periodic case if the per.od is A; here Aij is the first atom of
the distribution F(i,j,+) and the summation over n is for n with

+ .
X 0k 2 A 4

In the particular case where the sojourn distributions are all ex-
ponential, namely when (1.14) holds, Y becomes a Markov process. In that

case all states are aperiodic and

m(j) = f h(j,s)ds = f e:_>‘(j)S ds = 1/A2(3).
0 0

Putting this in (6.13) gives the well known result that the limiting dis-

tribution of an irreducible Markov process is given by the solution of
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(6.15) P v(AG,k) =0, T v@) =1

J J
where A(j,k) is the derivative, at t = 0, of the transition function
Pt(j,k).

In the case of infinitely many states, it is possible to define semi-
Markov processes of much greater complexity. All of the results above
hold, even in the infinite E case, provided that there be no instantaneous
states and that the definitions of R(i,j,*) and 7(j) be altered slightly
so that R(i,j,t) becomes the expected number of visits to j by Y in [0,t]
(rather than the defining sum (2.5)), and 7(j)/7(i) becomes the expected
number of visits to j in between two visits to i. For such more general
processes we refer to PYKE and SCHAUFELE [55],[56]. Results such as (6.8)

generalize [44] and [11, p. 167].

7. SEMI-REGENERATIVE PROCESSES
These are processes which are, in general, non-Markovian and yet
possess the strong Markov propertv at certain selected random times. Then,
imbedded at such instants, one finds a Markov renewal process. Using that
property, one ends up with Markov renewal equations whose behavior we have
already studied.

Let Z = (Zt)t ER, be a stochastic process with a topological
state space ¥, and suppose that the function t Zt(m) is right-continuous
and has left-hand limits for almost all w. A random variable T:Q - [0,«]
is called a stopping time for Z provided that, for any t € R,, the occur-

rence or non-occurrence of the event {T j_t} can be determined once the

history}(t= O(Zu; u < t) of Z before t is known.* If T is a stopping time

*Somewhat better put,}(t is the o-algebra generated by {Zu, u < t}
which, further, includes all the negligible sets of J{.
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for Z, then we denote by HT the history of Z before T.#*

The process Z is said to be semi-regenerative if there exists a Markov

renewal process (X,T) with a finite state space E such that
a) for each n € N, Tn is a stopping time for Z;
b) for each n € N, X is determined by}(Tn;
c) foreachn € N, m> 1, 0 <ty < oeee < tm and bounded function f

defined on Fm,

(7.1) Ei[f(Z )|}(Tn] = Ej[f(zt seeeaZy Y] on {xn = j}.

Tn+t1”"’ZTn+tm i o
Here Ei and Ej refer to expectations given the initial state for the Markov
chain X. Condition (a) is that an observer who has watched Z until time t
can tell whether Tn is less than or equal t or not. Condition (b) is that
the observer who has watched Z until Tn can tell what Xn is. Condition (c)
is the most important: it considers a random variable Wn =

£f(2Z Z ) which is a function of the values Z takes at the

T +t; T+t

future instants Tn-+t ,Tn-kt . The left-side of (7.1) is the condi-

12 o

tional expectation of wn by an cbserver who has watched the process until
Tn (and therefore knows Tn and XIl in addition to all the other information
this gives him). To a second observer who takes Tn as the time origin, the
variable Wn appears as W, = f(Ztl,...,Ztm) and therefore, if the present
state is Xn = j, his estimate of wo is Ej(wo), which is the right-hand side
of (7.1). The process is semi-regenerative if the two observers come up
with the same answer; in other words, if the extra information that the
first observer had concerning the past of Z is worthless as far as pre-
dicting the future.

All Markov processes are semi-regenerative; all semi-Markov processes

*Hp={AeM: AN (T <t} el for all t}.
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are semi-~regenerative; the queue size process in an M/G/l queue is neither
a Markov process nor a semi-Markov process but is semi-regenerative; simi-
larly, the queue size process in a G/M/1 queue is semi-regenerative. Fol-

lowing are the main results.

(7.2) PROPOSITION. Let Z be a semi-regenerative process with state space

F and let (X,T) be the Markov renewal process imbedded in Z. Let Q be the
semi-Markovian kernel for (X,T) and let R be the corresponding Markov re-

newal kernel. For any open set AT F let

(7.3) Kt(i,A) = Pi{Zt €A, T > t}, Pt(i,A) = Pi{Zt € A}

for t GZR+, i ¢ E. Then,

(7.4) P_(i,4) R(1,3,ds)K, __(3,4).

Il
o~
Ot rt

PROOF. It is clear that
Pt(i,A) = Kt(i,A) + Pi{zt € A, T, <t}
Now, using the definition of semi-regeneration, the second term can be

written as

Ei[I[O’t](Tl)Pi{Zt € A]HTl}]
= § g Q(i,j,ds) I[O’t](s)Pt_s(j,A).
Hence,
t
(7.5) P (1,A) = K (1,8) +) [ Q@,5,d8)P __(5,8).

j 0
For fixed A, this is a Markov renewal equation of form f = g + Q *f with
f{i,t) = Pt(i,A) and g(i,t) = Kt(i,A). Now the proposition follows from
Proposition (4.2).

Concerning the limiting behavior we have the following. The notation
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is that of Theorem (5.9) and is immediate from the preceding proposition

(7.2) and theorem (5.9) upon taking g(i,t) = Kt(i,A) in (5.9).

(7.6) PROPOSITION. Under the hypotheses and the notations of (7.2),
further assuming that (X,T) is irreducible recurrent aperiodic and
m(j) < » for all j, we have

lim P _(1,A) = ) 7())n(j,A)/) n(Hm(j)
oo j ]

with

(7.7) n(j,A) = Kt(j,A)dt.
0

We end this section with a number of applications of the preceding
two results to processes such as the '"backward recurrence time,'" "forward
recurrence time," etc. in semi-Markov processes. Many other applications
and examples may be found in the next section.

Let (X,T) be a Markov renewal process with a finite state space E,
and let Y = (Y )

t't € Ry

each t and w, there is an n € N such that Tn(m) <t < Tn+l(m) and then we

be the semi-Markov process associated with it. For

put

(7.8) Yt(m) = Xn(m), Vt(m) =T (w) -t, Ut(w) =t - Tn(m).

n+l
Then, Vt is called the time until the next transition after t, and Ut is
called the time since the last transition before t. A little reflection

shows that any one of the four processes

Y= (Y), (Y,V) = (Y, ,V )

t’t ¢ ]R+’ (YaU) = (Yt’Ut)

(7.9) t &R,

(¥,U0,V) = (Y ,U.,V.), ¢ R,

is semi-regenerative admitting (X,T) as an imbedded Markov renewal process.
We had studied Y extensively in the last section. We now consider the

process (Y,U,V) from which results about the remaining two are easy to

obtain.
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For the semi-regenerative process Z = (Y,U,V) with state space F =
ExR xR, if we take A = {k} x (x,o) x (y,») for some x,y € lR.+ and k € E,
the function defined by (7.3) becomes

Kt(i,A) = Pi{Tl > t; Yt = k, Ut > X, Vt > y}
(7.10)

I(i,k)l(x’w)(t)h(i,t-+y)

where h is as defined by (6.2). Thus, using Proposition (7.2) we have

t-x
(7.11) PAY =k, U >x, V >y}= [ R@,k,ds)h(k,t+y -s).
0

When (X,T) is recurrent aperiodic with m(j) < « for all j we may apply

Proposition (7.6) to (Y,U,V) to obtain

(7.12) lim Pi{Yt =k, Ut >x, V. >y} = #%‘ﬂ(k) f h(j,s)ds
o xty

where mm = ¥ n(j)m(j).

For a large number of other results on the process (Y,U,V) we refer
to [56]. Some of the results above may also be found in SCHAL [(57] with
some further results in [ll]; see also KEILSON [37] and KEILSON and

WISHART [40].

8. ATFPLICATIONS

The importance of Markov renewal theory lies in its large domain of
applicability rather than the inner richness of Markov renewal processes.
In this respect, the situation is the same as that with renewal theory: a
renewal process is a trite object but renewal theory is the most important
tool in elementary probability theory. It is from such a point of view
that we have stressed the theory of Markov renewal equations and the manner
in which they arise in studying semi-regenerative processes. Following is
a rapid review of some of the more important applications. For other ap-

plications we refer to the bibliography [6].
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(8.1) M/G/1 Queueing Systems. This is a single server queueing system

subject to a Poisson process of arrivals and arbitrary service time dis-
tributions. Let Tn be the time of the nth departure, Xn the queue size
just after the nth departure, and Zt the queue size at time t. Then,

(X,T) is a Markov renewal process, and Z is a semi-regenerative process
having (X,T) imbedded in it. If the queue size is allowed to be infinite,
then the state space E will be infinite. Otherwise, if only finite queues
are allowed, E is finite. 1In either case Propositions (7.2) and (7.6)
hold. Therefore, the time-~dependent behavior of the queue size process Z
reduces simply to the derivation of the probabilities Q(i,j,t) and Kt(i,j),

and the computation of R and n. For the results we refer to [11].

(8.2) M/G/1 Queues with Bulk Service or Queue Dependent Service Times.

The main properties of the system described in (8.1) are preserved even
when the number of customers served during a service time, instead of being
one, is a random variable depending on the number of customers in the
system just at the start of that service. Thus, defining Tn to be the
time of departure for the nth Latch, and Xn to be the number of customers
just after Tn’ we again have a Markov renewal process (X,T). Again, the
behavior of the queue size process Z may be obtained by direct applications
of Propositions (7.2) and (7.6) once the semi-Markovian kernel Q and the
probabilities Kt(i,j) are computed. We refer to NEUTS [46],[48] and
LAMBOTTE, TEGHEM, LORIS-TEGHEM [65] for further details.

Similar remarks hold in the case of service times depending on the
queue size. With Tn and Xn defined as in (8.1) we still have a Markov
renewal process and all the remarks made in (8.1) apply. For detailed

treatments we refer to HARRIS [29],[30], SCHAL [59], and SUZUKI [62].
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(8.3) G/M/1 Queues. Entirely similar remarks hold for this system as for
the M/G/1 systems. Some of the computations are carried out in [11]. See

also FABENS [22] for earlier treatments of queues and inventories.

(8.4) Markov Renewal Branching Processes. This is a Markov renewal process

(X,T) where X is a branching process. In other words, the size Xn+l of

the (n-+-l)th generation depends not only on the size Xn of the nth genera-

tion but also on the lifetime Tn —-Tn of the nth generation. Such proc-

+1
esses were studied and applied to a number of queueing systems by NEUTS

[49],[50].

(8.5) Queues with Semi-Markovian Arrivals or Services. We concentrate on

the system with semi-Markovian arrivals and exponential services. Let Tn
t
be the time of the nth arrival and let X; denote the 'type'" of the n h
arrival. It is assumed that (X',T) is a Markov renewal process and that
the service times are exponential. Then, letting X; be the number of
. . th . .

customers in the system just before the n arrival, we obtain a Markov
renewal process ((X',X"),T) with state space E={(i,j):1 € F, j € N} where

F is the finite set of "types.' Then, the queue size process Z = (Zt) be-
comes a semi-regenerative process with ((X',X"),T) imbedded in it. These
processes were studied by NEUTS [47] and ¢INLAR [8],[9] by rather poor
techniques necessitating superfluous assumptions. A straightforward

analysis using Propositions (7.2) and (7.6) would yield the same results

quicker and in greater generality.

(8.6) Machine Repair Problem. Consider a machine with an arbitrary life-

time distribution. There are a number of spares available so that, when
the machine in operation fails, it is replaced by one of the spares and
the failed one is sent to be repaired. The repair times are exponential

and a repaired machine is as good as new. Let Zt be the number of machines
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working or waiting as spares at t; then the total number of machines minus

Zt is the number of them in the repair shop. Let Tn be the time of the

nth failure and let Xn = Zg .  Then, (X,T) is a Markov renewal process

n
and Z is a semi-regenerative process with (X,T) imbedded in it. The first
passage time distribution F(i,0,-) is the distribution of the time until

the first breakdown of the system, namely, the first time a failure occurs
with no available spares for replacement. The probability that the system

-A(t-s)

is working at time T is Pi{Zt #0} =1 - ft R(i,0,ds)e with A as
0

the 'rate" of repairs.

(8.7) System Reliability. Consider a finite number of components in series

(so that if any one fails the system fails also). When a failure occurs,
the component which has failed is repaired and all the other components are
re—adjusted. A repaired or readjusted component has a lifetime distribution
¢(i,-) depending only on the type i of the component itself, and the repair-
time of the ith component plus the readjustment time for all the others has
the distribution y(i,*). Let Xn pe the type of the component which has

th . o . th .
caused the n failure and let in be the time of that n failure. Then

(X,T) is a Markov renewal process with

t t-s
Q(i,ji,t) = [ v(i,ds) [ ¢(G,du) TT (@ - ¢(k,u)).
0 0 k#j

In addition to asymptotic values of the number of times j fails in [0,t]
(whose expectation is R(i,j,t) if the initial failure was due to i), a
quantity of interest is the system reliability at t, namely the probability

that the system is working at time t. This is equal to

t
1 -) [ R(,3,d8) (1 - p(j,t-s)).
i 0

Further quantities of interest such as the ratio of times the system is
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under repair to times the system is working can be obtained by easy inte-
grations. We refer to [11] for a somewhat more extensive treatment in a
special case.

(8.8) Clinical Trials. Markov renewal processes turn out to be useful as

models for the behavior of diseases such as cancer and leukemia. There
the Markov chain X models the successive phases of the disease and the

duration Tn —Th becomes the length of time the phase Xn persists. Then,

+1
the first passage distributions F(i,j,+) yield useful information concern-
ing the development of the disease. WEISS and ZELEN [69] have applied this
model to actual clinical data of acute leukemia using a model with six
states (death, initial relapse, first partial remission, second partial
remission, first complete remission, and second complete remission) and
obtained the distributions of the sojourn times directly. See also [70],

[241.

(8.9) An Insurance Problem. A similar problem occurs in constructing a

model to represent the evolution of the "'degree of disability' after an
accident in order to evaluate the expected payments by the insurance com-
pany. JANSSEN [34] has modeled this process by a semi-Markov process Y
where Yt is the degree of disability t units of time after the accident.

Relevant quantities of interest are the limits as t » = of P{Yt = j}.

(8.10) Counters of Type I. Particles arriving at a counter can be clas-

sified (with respect to their energy levels, velocities, or physical
types) into a number of '"types." Let Tn be the time of the nth arrival
and Xn the type of the particle arriving then. It is supposed that (X,T)
is a Markov renewal process. An arriving particle which finds the counter
free gets registered and locks the counter for some random time whose dis-

tribution depends on the type of the particle causing it. Arrivals during
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a locked period have no effects whatsoever. Supposing that the time
origin is a time of registration, and the first locked period has length
L, then the time of the next registration is T] = inf{Tn: Tn > L}. Thus,

if Xi denotes the type of the next particle to get registered, we have

Q" (i,j,t) = P{X] = 3, T] < t|X; = i}

| - 4 | < X L
E;[P{X! = 3, T} < t] oo

1

L
El[z f R(XO’k’dS)[Q(k’j’t —S) - Q(k9j’L_ S)]]
k 0

t u
[ v@,dw) } [ R(i,k,ds)[Q(k,j,t -s) - Q(k,j,u-s)]
0 k O

if the distribution of the locked period caused by an i-type particle is
$(i,*). A little reflection shows that the '"registration process" (X',T')
(where Xé is the type and Tg is the time of the nth registration) is also
a Markov renewal process and Q' is the corresponding semi-Markovian kernel.
For counter problems of this type and the type to be discussed next

we refer to [11, p. 178], BARLOW [2] and VANDEVIELE [68].

(8.11) Counters of Type II. Arrival process is again a Markov renewal

process (X,T); an arriving particle which finds the counter free gets
registered and locks it for some time; a particle which arrives to find
the counter locked does not get registered, erases the influence of the
past arrivals, and locks the counter for some random time. Again, let Xé
and T; be the type and time of the nth registration and let ¢(i,*) be the
distribution of a locked period caused by an i-type particle (if it does
not get erased).

Now using a Markov renewal argument at the time T, of the first

arrival (we assume X, = Xé, TO = Té = 0) we can write
t t
Q"(i,3,t) = [ Q(i,3,ds)¥(i,s) + ) [ Q(i,k,ds)( - ¥(i,8))Q"(k,j,t-s).
0 k O

Letting



35

t
£(1,8) = Q'(,3,6), g(i,0) = [¥(i,9)Q(,],ds),
and Qi,k,ds) = Qi,k,ds) (1 ~ ¥(i,s))
we can put the above equation in the form
f =g+ Q=xf.
This is a Markov renewal equation again, except that the semi-Markovian

kernel Q here is defective:

Y Q(i,k,») < 1.
K

It turns out that Proposition (4.2) remains true provided that R there is
replaced by R = & Qn where the Qn are defined by (2.2),(2.3) by replacing
the Q's there by 6. For the results we refer to {11, p. 183].

It was this applied problem as well as the one to be discussed next
which led to the more general theory of Markov renewal processes allowing

"deaths'" after finitely many transitions in [11, Definition (2.5)].

(8.12) Pedestrian Delay Problem. Let Tn be the time the nth vehicle
crosses a fixed point on a highway and let Xn be its "type' (this "type"
may stand for velocity or shape ¢r whether the vehicle is a car or a
truck, etc.). It seems plausible that this process (X,T) be a Markov
renewal process; cf. JEWELL [36].

At time 0 = T, a pedestrian arrives to cross the highway; considering
various factors involved, he "accepts' a gap of size x with probability
¥(j,x) if the oncoming vehicle is of type j. We are interested in finding
the distribution of the delay to the pedestrian. Letting L denote this

delay we have
t
Q(i,3,ds)¥(§,s) + ) f Q(i,j,dS)(l-w(j,S))Pj{L < t-sl.
j 0

o8

PAL<t} = z
j

Again, letting f£(i,t) = P_{L < t} and Q(i,j,ds)(1 - ¥(j,s)) we can put

this equation in the form
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f=g+ é *f
with a suitable definition for g. This is a 'generalized" Markov renewal
equation and (4.2) holds with R there replaced by R = z an. This problem
is based on MARADUDIN and WEISS [43] and may be found zn {11, p. 177].
For other interesting applications to traffic theory we refer to
BULLEN [3] and WIENER et al. [71].
References to a number of other applications which are of somewhat

more routine nature may be found in the bibliography [6].

9. RESTRICTION TO A SUBSET
Let (X,T) be a Markov renewal process with state space E, and let D
be a subset of E. Suppose the initial state i is in D, and consider the
states visited by X at its subsequent entrances to D along with the times

of those entrances to D. In other words, letting
(9.1) NO =0, Ny = inf{n > 0: Xn ¢ D}, N2 = inf{n > N, : Xn ¢ D},...
we are interested in the process (ﬁ,f) where

(9.2) X = an, T = TNn, n ¢ IN.

The process (i,T), then, is called the restriction of (X,T) to D except
that we have a minor problem to settle. It could happen that, for some
w £ ), the process X enters D only finitely many times; then, if the total
number of entrances to D after 0 is n, we have No(w) =0, Nl(m) < @ ...,

Nn(w) < «© but Nn (w) = Nn+2(m) = ese = 4o, In such a case, (9.2) does

+1

not make sense since we have not defined X or T . To settle the matter,
[ee] [ee]

we adjoin a distinguished state A to the state space E, and define X (w)
oo

A, T (w) = += for all w. Thus, the process (ﬁ,f) has the state space DA

D U {A} for X and [0,»] for T.
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We notice that the process (X,%) defined above is a Markov renewal
process with state space D, =D U {A}. In particular, if D is a set of

recurrent states, then N, ,N are all finite and in is in D for all

PERRE
n < 3 that is, then X has the state space D. Otherwise, if D contains
transient states from which X may leave and never return to D again, then

X has the state space D, where A is an absorbing state and Xn = A means

A
that X has left D after at most n-{ visits to D never +o return,
Computations regarding (i,f) are easy. We observe that the number of

times the semi-Markov process Y visits a state j € D during (0,t] is the

same whether it be computed with E as the state space or with D; that is,

(9.3) ZI{X =j,T<t}=ZI{i=j’T<t}
n n n— m o

for any j ¢ D. Thus, if R is the Markov renewal kernel corresponding to

(i,f) and R is the one corresponding to (X,T), we have
(9.4) R(i,j,t) = R(i,j,t), i,j € D, t > 0.

Once R is known, the semi-Markov kernel Q and the first passage distribu-
tions F for the process (i,%) can all be computed by using the relations
in Section 2. Note that Q(i,j,t) # Q(i,j,t) even for i,j €D ; in fact,
we have

(9.5)  Q(i,j,t) = Q(i,j,t)

t t-u
+Y V[ Q@,k,du) [ R(k,k',ds)Q(k',j,t-u~s).
k k' ¢D O 0

In many applications, this idea of restricting (X,T) to a subset D
of E leads to considerable conceptual simplifications. For example, if
one is interested in the relative behavior of one state j with respect to
another state k, one could restrict one's attention to the Markov renewal

process (X,T) with D = {j,k}. Similarly, to obtain a ratio limit theorem
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such as (6.10), one needs to consider only a four state Markov renewal

process (i,ﬁ) with D = {h,i,j,k}.

10. HITTING DISTRIBUTIONS AND THE MAXIMUM OF A SEMI-MARKOV PROCESS
Let (X,T) be a Markov renewal process with state space E = {0,1,2,...]
and semi-Markovian kernel Q, let Y be the associated semi-Markov process,

and define

(10.1) Zt = sup{YS: s < t},

in other words, Zt is the maximum level the process Y has ever attained

during [0,t]. We are interested in the distribution

(10.2) ﬁt(i,j) =P {z_ =3l

We adjoin a distinguished state A to the state space and define
X =4, T =+=. For a subset A of E let us define N to be the smallest
integer n > 1 for which Xn € A if there is any such n; otherwise we set
N = «, Then,
(10.3) FA(i,j,t) = Pi{XN =3, Ty < t}
is the probability that, starting at i, the process Y enters A for the
first time at the state j € A and this happens at or before t.

Assuming we have F, computed we now finish the computation of

A
ﬁt(i,-). For i € E let A, = {i+1,i+2,...}. Then,

(10.4) Q(i,j,t) = FAi(i’j’t)’ jEA, t ER

is the probability that the first transition of Z is to state j and this
happens before t. A little reflection will show that Z itself is a semi-
Markov process (all of whose jumps are upward), and that 6 is the corres-
ponding semi-Markovian kernel. Hence, P can be computed as in Section 6

with Q replacing Q.
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Returning to the computation of (10.3), we use the standard "Markov
renewal' argument: either the first transition of Y is to j and this
happens before t, or else the first transition is to some state k § A at
time s < t and from k the process Y hits A at j during (s,t]; in other

words, for j € A,

t
(10.5)  F,(1,3,t) = Q(1,5,t) + ] [ Q,(i,k,ds)F, (k,5,t -s)
k O
where
(10.6) QA(l,k,t) = ‘{Q(i,k,t) if k ¢ A.

For fixed j ¢ A, the equation (10.5) can be put in the form f = g+—QA* f
by defining f(i,t) = FA(i,j,t) and g(i,t) = Q(i,j,t). This is a Markov
renewal equation with a defective semi-Markov kernel QA. As we have re-
marked earlier in (8.11) and (8.12), Proposition (4.2) remains true with

R there replaced by R

A S z QZ where QZ are computed through (2.2) and

(2.3) with Q therein replaced by QA.

Maximum of a semi-Markov process is of interest in level crossing
problems and queueing theory. Our results above cover those of [61] who
arrived at these results by computational techniques. Noticing the semi-
Markovian character of Z reduces the task immensely. Moreover, the hitting

distributions FA(i,j,') are of interest in themselves.

11. GEOMETRIC ERGODICITY
Consider a Markov renewal process (X,T) with Markov renewal kernel R
and first passage distributions F. The results we are now concerned with
are sharper versions of the limit results (5.1) and (5.2). We will merely
sketch the main results in this area; for detailed treatments we refer to
TEUGELS [66],[67), CHEONG [4],[5], and SCHAL [58].

A A .
For fixed A > 0, let F (i,j,dt) = e t F(i,j,dt); this defines a mass
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function Fx(i,j,-). We denote by Fx(i,j) = Fl(i,j,+w) its total mass.
Note that FO(i,3i) = F(i,j) = F(i,j,+=) and F '(i,§) = F,(i,§) is the
Laplace transform of F(i,j,+). In analogy with the definitions of
transience, etc. we now define a state j to be A-recurrent if Fx(j,j) =1
and A-transient if Fk(j,j) < 1l. A X-recurrent state j is said to be null
if ftFK(j,j,dt) diverges and non-null otherwise. For A = 0 these concepts
coincide with the ordinary definitions of recurrence and transience. Just
as in that case, if X is irreducible, then either all states are A-recurrent
or else they are all A-tramsient. If they are all A-recurrent, either
they are all null or all non-null.

Suppose X is irreducible and let A > 0 be fixed. If the states are

all A-transient, then

a1.1)  ®R'G,3) = [ M R@,3,dt) = P (,)RG,H)
0
for i # j, and for i = j,
AL, A,
(11.2) R (3,3) = 1/[1 - F (§3,3)] < =

On the other hand, if the states are A-recurrent, then

(11.3) R\(1,5) = 4o

for all i,j. In this case, if the states are null, then
1§ e
(11.4) lim = { e~ R(i,j,dt) = 0,
0

t
tre

and if they are non-null,

t

(11.5) lim %—f M R(,5,d0) = F L0 ()
t>c0 0
where
A, T .
(11.6) n" () = 1/[ te"" F(3,3,dt).

0
These results have further implications concerning the limiting be-

havior of the semi-Markov process Y. Let Pt(i,j) be the transition
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probability as defined by (6.1). Then, assuming irreducibility, we have

(11.7) lim et P (i,1) =0

-0
if the states are A-transient or A-recurrent and null. Otherwise, if the

states are A-recurrent and non-null, then

(11.8) Lim e P (1,5) = F (5,0 (Dut ()
t >
where
(11.9) () = [ *@ - T Q(,k,t))dt
0

k
and nk(j) is as defined by (11.6).

12. STRONG LAWS AND THE CENTRAL LIMIT THEOREM
FOR CUMULATIVE PROCESSES

Let (X,T) be a Markov renewal process with X irreducible. Let

wl,wz,... be random variables taking values in R = (-»,+=) and such that

wl,wz,... are conditionally independent given (¥X,T) and that the distri-

bution of Wn given (¥X,T) depends only on Xn T -T . That is,

—l’Xn’ n n-1

P{W_ < y|Xm,Tm,W m €N, k ¢ N, k # n}

k;
(12.1) = P{w_ < yIXn_l,Xn,Tn— T 1}
= K(3,3,t3y)

on {X =i, X =3j, T -T = t} for some kernel K. Define the partial

n-1 n n n-1
sums

. = b = + a
(12.2) Sp =038 =S +W ., n €N
and let Nt = z I(O t](Tn) be the number of transitions in (0,t]. We are
n b

interested in the asymptotic behavior of Sy as t > =,
t

Let the initial state i be fixed and consider the successive values

§0,§1,... of the sequence {Sn: Xn = i}. The important point on which all
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limit theorems are based is that this sequence (Sn) is a random walk in

A

R, in other words, él -5

§2 -3 .. are independent and identically

0’ 1?”°

distributed. Let Mt be the number of entrances to i in (0,t]; this is
the counting process associated with the renewal process formed by the
times Tn for which Xn = i. The second important point is that we can
write

(12.3) S. =S. +R

where the remainder term Rt is, roughly speaking, stationary in time.
Therefore, the limiting behavior of SNt is the same as that of éMt and
the latter is fairly easy to analyze.

Here are the arguments leading up to a strong law of large numbers
(we leave out the adornment "almost surely" in the statements below). Let

+ .
Sn be computed from the sequence lwll,lwil,... just as Sn is computed from

+, . . . .
Wi,Ws,...; then, (Sn) is an ordinary renewal process and in particular

(12.4) s, = (W | +eeet ]wnl o {X; # e, X .

We assume (see (12.11) below for the computation) that

+ . +. + +_
(12.5) a (i) = Ei[sl] = Ei[sn+ - Sn] < o,

1
(See (12.11) below for the computation, either a+(i) < o for all i or for

none; so the selected initial state plays very little role.) Then, clearly,

(12.6) (S+

+
ntl Sn)/n -+ 0, n > o,

Since Mt is the number of renewals in (0,t] in a renewal process, as t - «,

Mt + « and Mt/t + n(i). Thus, (12.6) implies that

+ +
SMt+l—SM)/t+O, t > o,

t

a2.7) (

+ +
Now, the remainder term R_ in (12.3) obviously satisfies IR [< S -5
t ti— Mt+l Mt

so that, by (12.7),
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(12.8) Rt/t->0, t > o,

It follows from (12.3) and (12.8) that

(12.9) lim 5 /t = lim §M /t
t t t t
= 1im(§M /M )1im(M _/t)
t "t £t
= lim(én/n)lim(Mt/t) = a(i)n(d)
t

where
(12.10) a(i) = E[§]

and n(i) is the quantity computed in (5.8).
The dependence of the limit in (12.9) on the state i is in appearance
only. Assumption (12.5) implies that a(i) is well defined, and a computa-

tion yields

(12.11) a(d) = ) 1(i)n(G) /@)
j

with

(12.12) n(G) =) [ QG .k,dt) [ K(,k,t,dy)y,
k 0 -

where K is as in (12.1). (Incidentally, a+(i) of (12.5) is obtained from
.{.

(12.11) by replacing n there by n where n+ is obtained from (12.12) by

replacing y there by its absolute value ,yl.) It follows from (12.11)

and (5.8) that the limit in (12.9) is

(12.13) a=a(@)n@E) =) 1(G)nG)/) T()Im()
J J
independent of 1i.
The strong law (12.9) is a generalized version of the one given in
[55]. Next, we will discuss the central limit theorem for the process SNt.

This also will be a generalized version of the one in [55] where Wn are

assumed to be of the form Wn = k(X

n—l’xn’Tn+l'_Tn) for some function k.

Further, [39] contains a central limit theorem for the sequence Sn' Here
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are the main steps of the central limit theorem.

We now need to assume that the variance of ST is finite. Then, in
(12.3),
(12.14) Rt//€'+ 0, t > o,
Thus we need concern ourselves with only the term §Mt' Now, S is a random
walk and M is a renewal counting process. However, S and M are dependent
and a certain amount of care is necessary. The applicable result is the
central limit theorem due to SMITH [60] in whose terminology (§Mt) is a

cumulative process defined on (Mt). We have,

. 1 (s %
(12.15) iiz P{gyi(th ~ at) < x} = _i

2
Y /2 dy

Sl

27
where a 1is the constant computed in (12.13) and

(12.16) b% = var(§; - af))
with Tl denoting the first Tn for which Xn = i, n > 1 provided that the
variance of Tl is finite. In view cof (12.14),(12.15) yields the central

limit theorem we were looking for: under the assumptions mentioned,

X _v2
(12.17) lim P{—l—{SN - at} f_x} = f ~l—-e yo/2 dy.
two b/t Mt -0
13. EXTENSIONS
We have been considering Markov renewal processes (X ,T ) with
n’ n’n €N

finite state space E (except for some comments regarding the case of
countably infinite E). The most obvious extension concerns E. When E is
countably infinite the relevant results are in [11] and the references
contained there.

In the case where the state space E is arbitrary, one can still ob-

tain the same results as in the countable case but with some adjustments.

Such a theory was introduced in GINLAR [12]; one of the open problems left
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in [12] was solved by JACOD [33] in a comprehensive study. A theorem

of [12], due to an overanxious estimation, is indeed faulty; this was
discovered and corrected by KESTEN (his paper is to appear shortly). This
theory finds applications in continuous storage theory, (see [13],[18],
[19]) and superpositions, etc. in [7].

The second extension concerns the space within which Tn take values.
Instead of requiring Tn to be increasing and non-negative, one can keep
the definition (1.1) with Tn taking values in R or r" without further
restriction. This was done by ANDERSON [1], JANNSEN [35], and JACOD [33].
The resulting theory is the generalization of the theory of random walks
(rather than renewal theory).

Finally, an extension can be made by replacing the parameter set IIN

of (Xn’Tn) by the parameter set IR+ to obtain a genuine continuous-

n €N

time process (Xt’T ) is a Markov process and

e GﬁR+' Here, (Xt)

t € R+

(T

has independent increments given (X ). The defining property
tt€R+ t

now becomes

P{X € A; T

t+s - Tt € B Xu,Tu; u < t} = QS(Xt,A,B)

for all t,s € R, , where Q is a "semi-Markov kernel' satisfying

Qs (x:4,B) = [f Q (x,dy,du)Q_(y,A,B-u).

The resulting theory is a generalization of the theory of processes with
stationary independent increments, and of the theory of additive functionals
of Markov processes. These processes were introduced by CINLAR [14],[15]
and EZHOV and SKOROKHOD [201,[21]. 1In addition to generalizing the modern
potential theory of Markov processes, this finds applications in processes
in random environments [16], signal detection problems in the presence of

noise, etc. In the case X takes values in a finite set, we also have some
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results in NEVEU [51], and central limit theorems in FUKUSHIMA and

HITSUDA [26] and PINSKY [52].

(1]

(2]

[8]

9]
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