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1. Introduction

The formulation and treatment of competitive markets as games,
cooperative and noncooperative, is well established in the literature.
Papers by Debreu (1952) and Shafer and Sonnenschein (1975), among many
others, are representatives of the noncooperative approach. Papers by
Debreu and Scarf (1963), Shapley (1964), Shapley and Shubik (1969) and
Aumann (1964, 1975), among many others, are representatives of the
cooperative treatment. In those papers the solution concepts of a
noncooperative equilibrium (modeled after the Nash equilibrium), the core
and the Shapley value were defined and analyzed for competitive market
games.,

Treatment of noncompetitive market games and, in particular,
monopolistic and oligopolistic games is less common in the literature.

In that respect, two main lines of analysis were used so far. Papers
like Aumann (1973), Shitovitz (1973) and others formulate monopolistic
situations as games where the set of competitive agents is a continuum
and where a monopoly or an oligopoly is distinguished by its measure
being positive. The papers in that tradition are interested mainly in
the core of these games and its relation, allocation and utility wise, to
the competitive equilibrium.

A different approach for noncooperative monopolistic games was taken
by Kats (1973, 1974). 1In these papers a monopoly in a game of countably
many players is distinguished not by its size, relative to the size of
other agents, but rather by its ability to affect the actual set of
alternatives available to the non-monopolistic agents.

Here we use the approach taken by Kats in dealing with situations

where, on one hand, there is an agent (or agents) who, in some way, has



control over what other agents can do and, on the other hand, cooperation
is possible. In particular we consider situations where agents are being
endowed with a bundle of commodities, but where only one agent has an
access to a production process, a process that can convert these initial
bundles into bundles of consumable goods. Examples of cases that can be
modeled this way are:

1. A governmental agency which has complete control over a trading
market, like the Stock Exchange, where the trading of commodities can be
viewed as a production process.

2. An industry where a patent is held by one agent and where no
production can take place without the use of the patent.

3. A group of workers, like a labor union, which control an
essential part of the production process in a plant, so that no
production can take place unless management and that union cooperate.

We also consider situations where more than one agent has an access
to production. More precisely we look at situations where going through
production requires the consent of each of several distinguished
monopolies, each controlling a different stage of the production process,
as well as examining situations where several alternatives are available
for production, each controlled by a different oligopoly. Examples are:

4, A plant where several labor unions control each of several
critical stages of the production process.

5. A case of two companies each holding a patent to very similar
production processes.

The above examples can be sorted out into two different categories.

The first would include cases like the one about the government and the



stock exchange market, where the monopoly is not really needed for
economic activity to take place. An argument can be made to the effect
that trade can take place even without governmental intervention. One
can consider the existence of the monopoly in this case as an imposition
on the market. The second category would include cases like the one
about the monopoly which developed a patent. The very existence of the
monopoly improves the outcome of agents in the market using the patent.

In all of these examples one element repeats itself: There exist an
agent (a monopoly) which can affect, up or down, the pay-off of all other
agents in the market.

It is well known (Debreu and Scarf (1963) and Shapley (1964)) that
in non-monopolistic market games with transferable utilities, when the
economy is replicated repeatedly, the core and the Shapley value converge
to the competitive equilibrium (in fact the convergence of the core holds
true for economies without transferable utilities as well). Thus a
natural question to ask is: 1Is there an analogous result for
monopolistic situations? 1In this case, what is the monopoly's share of
society's welfare or what is its "power”™? Similarly, how is the welfare
of the non—monopolistic players affected by the existence of the
monopoly? In this paper we concentrate on asymptotic results with regard
to the core and the Shapley value. We state them now for the case of an
exchange economy with a presence of a monopoly (see example 1 above),
Later we extend them to include economies with linearly homogenous
production.

1. In the limit, the Shapley value of the monopoly is exactly one

half the gains from trade of the non-monopolistic players, no matter what
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the initial endowments or utility functions are. Moreover the Shapley
value of each non-monopolistic player is just one half of his individual
gains from trade.

2, The limit core consists of all imputations such that each
non-monopolistic trader loses relative to its competitive payoff in a
free market and the residual is received by the monopoly. This
characterization does not hold in cases of finitely many replications.

3. The limit core described above has a center of symmetry and the
Shapley value of the monopolistic game converges to that center of
symmetry.

4., The Shapley values and the limit of the core are given for the
cases of several monopolies or oligopolies. 1In the case of several
monopolies, even though the limit of the core does not have a center of
symmetry, the limit of the Shapley values is still contained in it. This
inclusion result fails in the oligopoly case.

Another observation is that in the finite case it is possible that
some of the nonmonopolistic players would benefit (in the core) by the
very presence of the monopoly. However, no one of these nonmonopolists
would gain if their number is not greater than three.

Those results are derived by using a model of a cooperative game
with transferable utilities (with money). Coalition which does not
contain the monopoly is assumed to be unable to take any economic
activity. However, when the monopoly is a member of a coalition, the
worth of that coalition is the maximum total utility that its members can

achieve by trading their resources.



The paper is organized as follows: The basic model is layed out in
sections 2 and 3. 1In Sections 4 and 5 we derive the basic asymptotic results
of the Shapley value. 1In section 6 the cases of multimonopolies and
oligopolies are discussed. The limit core and the comparison between it and
the limit Shapley values are discussed in section 7. 1In order to maintain

continuity we gathered all the proofs together in section 8.

2. The Model

To simplify the presentation we discuss first a model of a trading
economy without production. We consider a model of n traders, one monopoly,
and £ goods, not including "money.” Each trader i, 1<i<n, is assumed to have
a utility function Ul of the form

Ui(xi,gi) = ui(xl) + &i
where ui:E‘H:El is concave and differentiable and £1eEl represents the net
change from the initial money position (&1 might be negative or positive).
Each i, l<i<n, is endowed with an initial bundle ai=(ai,...ai)€Ei and strats
with no money. Denote §=(a1,...,a“)€E2-n and assume that

+

n
() 7 at>o0 = 1,2,000,8,
i=1 1]

i.e., that each good is presented in the market. Before describing the role
of the monopoly in this model it is clear that if traders are permitted to
transfer goods and money at will then the above economic model can be
formalized as a cooperative n-person game with side payments. Let N={l,..,n}
be the set of all traders. The potential worth of a coalition S is given by

(2) v(S) = max{ X ui(xi)‘ Z x1 < Z al and xI > 0 i = 1,2,...,n}.
ie$S ie§ ieS



Notice that by the continuity of the ul and the compactness of the set of all

reallocations x= (xl,...,x¥)eEn& of a, the maximum in (2) is achieved.
+ a

The monopoly, denoted by o, has the power to block any trade of goods
within a coalition S< N as long as it is not a member of that coalition. 1In
that case any member of S can consume his initial endowment only. Let

No = N_'{0} and let v, be the game on Ny describing the monopolistic case,

i.e., for SC N,

“v(S) 0€S
(3) vo(S) = o
Z ul(al) o¢S .
~ie§

The following properties of the nonmonopolistic case are important to the

sequal. Let b=(b1,...,bn) be an optimal allocation for the market when trade

is permitted. 1i.e.

n

n n
(4) § ui(bl) =v(N), ) bl = ) aland bt >0 i=1,2,..,n.
i=l i'——‘ =1

Let u% denote the partial derivative of ul with respect to the jth

j aA A N
good. Then b% > 0 implies that u%(bi) > ul(bl) for every i (otherwise i could
J ~ J ]

transfer some amount of j to i to increase the total utility). ©Notice that by
(1) for each j, 1<j<%, there is an i, l<i<n, such that bl > 0. Hence no

J
confusion would result if the competitive prices w=(mj,...,mg) are defined by

(5) w5 = u?(bi) for all i such that b% > 0, 1<j<L.
J J

Define the competitive imputation by



(6) wi = gi(bl) 4+ g-(al-bi) , 1i=1,...,n.
It is easy to verify that the prices m and the imputation w=(wl, ... w0)
are independent of the choice of the optimal allocation b. To understand (6)
notice that m+(xi-al) is the amount of money that trader i must pay under n in
order to buy the bundle x1, over and above the amount that he gets by selling
his initial bundle al. This amount should be subtracted from ul(xl) in order
to yield the net “"income™ of i, and it is this income that i wishes to
maximize. The vector b=(bl,...,b1) is a vector of such maximizers and thus

(m,b) is an equilibrium point for the economy.

3. Replication

Consider now n types of traders with k traders of each type. Traders of
the same type have identical utility functions and identical initial hundles.
We shall continue to use the notation of the preceding sections but with the
understanding that the index "i" hereafter refers to types, not individuals.
We thus have k identical economies regarded as a single economy, having kn
traders of n different types. The competitive price vector of the enlarged
market is again n, while the competitive imputation is just the kn-dimensional
vector (w,w,..,w) (k times). The characteristic function vK of the enlarged
market is defined on NK = {1,..,nk} by
n

max{ ) slul(xl)| } sixl < 7§ sial and x1 > 0 i=1,2,..,n}
i=1 iesS iesS

L

(7) vKk(s) =

where sl is the number of traders of type i in S. Thus vK(S) is the per
replica worth of the coalition S when trades are permitted.
With the presence of a monopoly who controls all trades,

the corresponding game v% on N = NK{/ {0} is defined by



(8) vK(s) =, si

4., The Shapley Value

There are few equivalent definitions for the value of a game. We use
here the one described in Shapley (1953). Intuitively, the value of a
game to a given player is the average of his marginal contribution over all
possible coalitions. In other words it is his expected marginal worth in a

coalition chosen at random. Thus we define

(9) oi = {v(S) - v(S\{i})}
Si

where the probabilities to be associated with the expectation symbolf} are
such that each coalition size from 1 to n has probability 1/n and all

coalitions of the same size are equally likely. Hence

. n o (Is]-D(a-]s|)!
ol = | % ________________ (v(8) - v(S\{i})) .
s[=1

5. The Shapley Value of the Monopolistic Game, Asymptotic Results

In this section we derive the Shapley value of the monopoly as well as of
each type of traders when the number of replications tends to infinity.
Denote by ¢(p,k) and ¢,(p,k) the Shapley value of trader p in the games vK and

v% respectively. Let

ol(k) = ) o(p,k) i=1,..,n
pENk
1
(10) ¢3(x) = ¥ ¢o(p,k) i=1,..,n
pENR
1

$3(k) = ¢4(0,k)



where NK is the set of traders of the ith type in NK. Thus ¢1(k) and ¢$(k)

i
are the values of type i in the games vk and vg respectively and ¢3(k) is the
value of the monopoly in vg. Shapley (1964) proved the following seminal

theorem:

Theorem 1 (Shapley)

The value of vk converges to the competitive pay-off vector, namely

lim ¢1(k) = wi for each i, l<i<n,
k>

We prove that for monopolistic games the following holds:

Theorem 2 For each i, l<i<n ,

. 1 . <
(1) lim ¢3(k) = - [wl + ul(al)] for each i, 1<i,<n.
k>
1o oo
(I1)  1lim ¢3(k) = = [} wi - ) ui(al)] .
k> i=1 i=1

Namely, in the limit the value of the monopoly is one half the total net
"income"” yielded by the monopoly's permission to trade. On the other hand,
each type looses one half of its net "income™ in comparison to its value in
the case where all trades are permitted (namely, compared to the
non-monopolistic game). The proof of the theorem, along with all other
proofs, is stated in Section 8.

In order to capture markets with production as well, the above model
can be generalized as follows: Let G:E%>FM be a production function.

+ +

The initial endowment of agent i is aleE&. The utility function will be
+

UL:EA+IxEM>EL of the form Ul(x1,gl,yl) = ui(xl,yl)+£l where consumer i can
+ o+

consume part or all of the total initial endowments, as well as commodities
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produced through the production process. As before, we assume that ul is
concave and differentiable. With production, the per-replication potential

worth of a coalition S, S¢ N, with access to the production process, is

1 R . s s e s s . .
vk(s) = - max{ E slul(xl,yl)l Z sixl g z slagl, 2 slyl<G( Z slal- Z six1)
k ies ie$ ie$ ie$ i€$ ieS
and xi, yi > 0, i = 1,2,...,n}.

The characteristic function of the game is defined now exactly the same as
in (8), except that vk(s) will replace vk(S).

In case k=1 we denote v = vl. Notice also that a pure exchange economy is
a special case where G(x)=0.

We can state now the analogue of Theorem 2 for production economies:

Theoren Zi

1 - -~ 1 n » »
lim ¢9(k) = lim [ vk (N'tk )dt - - J ui(al,on),
ke IS 2 i=1

where "a’ is the smallest integer > a.

Thus, if the production function G is homogeneous of degree 1 then
| oL
lim ¢g(k) = - [v(N) - Z ul(al)],
k> 2 i=1
namely in the limit the value of the monopoly is exactly one half the

net "income” yielded by the use of its homogeneous technology.

6. The Multi Monopolies and Oligopolies Cases

We move now to consider cases of more than one entity having an access
to the production process. We will distinguish between two different
situations. 1In the first there is a set M = {My,..,Mp~]} of m entities

each of which controls a different part of the production process, so that no
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production can take place by the coalition S unless M({S. FExamples can be a
case of several labor unions in the same firm where the members of each are in
charge of a different segment of the production process. Only a coalition of
managemet with all unions will enable production to take place. Another
example can be a case where each part of the production involves a use of a
different patent and each patent is held by a different entity. In this
multi-monopolies case the characteristic function v§ for the k-fold replica

market is defined on NKUM by

“vK(s) if MC S
vk(s) =, si
M z -— ul(al) otherwise.
ie$S

In the definition of vK we use the game vk rather than the more general one
M
vK just to simplify the presentation.
The second case is one where an access to the production process can be

gained through each of several entities. 1In this case of several oligopolies

we denote L = {Ly,..,Lp—1} and define the characteristic function vk by
L

[ vk(s) if SAL # ¢
vk(s) =; gi
L ) —— ul(al) otherwise.
-ieS

Theorem 3. Let ¢ (k) and ¢ (k) be the Shapley value of the games vg and vi
- M L

respectively. Then

m n n
(1) 1lim ¢M(k) = ——= ( )} wil - ) ui(al))
koo M mtl =1 i=1
and
. 1 . .
lim ¢1(k) = =——~ (wl - ul(al)) , i=1,..,n .

k+o M m+1
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1 n o,
(I1) lim ¢L(k) = ——= ( § wi - ) ul(al))
k+ro L mtl =] i=1
and
. m ..
1im $1(k) = === (wl - ui(al)) , i=1,..,n
k+cu L m+l

where ¢E(k) is the Shapley value of the set of monopolies M in v; and ¢;(k) is
the Shapley value of the ith type in v;. The terms ¢t(k) and ¢i(k) are
defined similarly.
m

In the first case, the more monopolies there are, the greater (;;I)
is their share in the net "income"” while in the second case as the number of
oligopolies increases their value drops.

Notice that since all the monopolies (oligopolies) are symmetric players
then by the last theorem the value ¢:t(k) and ¢it(k) of each monopoly My and

each oligopoly Ly in the games vK and vk respectively is asymptotically given
M L

by
Mt 1 n n
lim ¢ (k) = ——= ( Z wi - 2 ul(al)) R t = 0,..,m1,
k+o M mtl o i=1 i=1
lim ¢ (k) = —=———- ( Z wi - Xui(ai)) t =0,.., m—1.
ks L m(m+l) 21

7. The Core

This section deals with the limit core of the various games described
above, namely, the limit of the core of the k-fold replication games with one
or more monopolies or oligopolies. We also explore here the relations of the
limit core of these games to their asymptotic Shapley value. In order to

simplify the exposition we assume that ul(al) = 0, i = 1,2,00.,n.
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Let v be a game with side-payments in a characteristic function form
defined on a set N of players. The core Cv of the game v is the set of
all imputations a = (al,...,an) that satisfy

(i) For each S ¢ N v(s) < ] of

ie$S

and

(ii) v(N) = § ol .

ieN

If the game v is a market game (i.e. is defined as in (2)) then v is
totally balanced and hence has a nonempty core. Thus for each k the game vk
defined in (7) has a nonempty core C(k). Using the result of Debreu and Scarf
(1963), C(k) "shrinks” to the competitive imputation w=(w1,..,wn). It will be
shown below that in the case of one monopoly the core C,(k) of the single
monopoly games converge to the set of all imputations such that each type i
gets an amount smaller or equal to wl and the monopoly collects the residual
or the loss of all the types together. Thus an imputation is in the limit core
lim Cy(k) if and only if each type of traders is losing (in the weak sense)

k>

relative to the competitive imputation w = 1im C(k). Similarly, an imputation
k>eo
is in the limit core lim Cy(k) of the multimonopolies games if and only if
k>

each type of traders is losing (in the weak sense) relative to w and the

monopolies share the excess income in any way possible. Finally, the only

imputation in the limit core lim Cp(k) of the oligopolistic games is the vector
+o0

(0,w). Namely the oligopoliez, as a result of an internal competition between

them, end up with zero profits and each type i of nonmonopolistic players

gets the competitive payoff wi,
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To state these results precisely notice first that the concavity of the
utility functions ul imply that any imputation in C(k), Co(k), Cy(k) and Cy(k)
treats equally any two traders of the same type. Therefore a vector in Cy(k)
can be represented by a vector in Ei+“ of the form

(BO,a) = (RO,al,.. an)
where B° is the payoff to the monopoly and al,..,an the total payoffs to each
of the n types respectivelyl. Similarly an imputation in Cy(k) or in Cy(k) is
represented by a vector

(B,a) = (BO,..,am 1 ol | | qn)

m+n
in E .
+

We can state now:

Theorem 4. The following characterizations of the limit cores hold:

n n
(I) 1lim Co(k) = {(B%,a)eEl | of < wi and 8O + ) al = 7§ wi}
koo + i=1 i=1
. . m_l 3 n I3 n k3
(IT) 1lim Cy(k) = {(8,&)8Em+“| al € wl and Z gL + Z al = Z wl}
K+ + i=o i=1 i=1

il

(III) lim Cy (k)
ke

{(0,w)}.

The equalities in Theorem 4, in general do not hold for a finite k.
To that end denote
INotice that al is the total payoff to type i and not the payoff to each trader

in type i. Recall that the game vg is normalized and measures the per
replica worth of each coalition.
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Ak = {aeEn| J yecvk for which ol < yi , i=1,2,...,n}.
+

For each k,AK consists of payoff vectors that relative to some imputation y in
the core of vk represent loses (in the weak sense) to each type of players.

It is easy to verify that

n
(11)  Cu(k) D> {(BO,a)eEltn|qeak and g0 + | of = ] wi = yv(W)}.
- + i=1 i=

However the inclusion in (11) can not, in general, be replaced by
an equality sign. To see this consider the nonmonopolistic game (N,v) given

by N

{1,2,3} and v(1,2,3) = 3.4, v(1,2) =v(1,3) =2, v(2,3) = 2.9 and

v(S)

0 for all other SE€ N, It is easy to check that this game is totally
balanced and therefore (see Shapley and Shubik, 1969) is a market game. It is
also easy to verify that the vector (0.2, 0.4, 1.4, 1.4) is in the core C, of
the corresponding monopolistic game. However, there is no vector

(0.4 + €1, 1.4 + €y, 1.4 + €3) in the core of the nonmonopolistic game, where
€] + €9 +e3 =10.2, €1 +e€p3 > 0.2, €1 +€3 > 0.2 and €3 + €3 » 0.1. The
inability to write (11) as an equality suggests that some type might be better
off with the monopoly rather than without it. This indeed is the case.
Moreover, it can be shown that some type might get in the presence of the
monopoly more than the maximum payoff that he can get in the core of the

non-monopolistic game.
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Example. Consider the following 4-person game v:

v(1,2,3,4) = 4, v(1,2,3) = 3 v(1,2,4) = 3,5,

v(1,3,4) = v(2,3,4) = 2.5, v(1,2) = v(1,3) = v(2,3) = 2 and

v(S) = 0 otherwise.

It is again easy to verify that the game v is totally balanced and that
its core consists of just one imputation

a = (1.5, 1.5, 0.5, 0.5).
If v, is the monopolistic game corresponding to v then clearly the imputation

(BO,a) = (1, 1, 1, 0, 1)
is in the core C, of v,. Hence trader 4 who gets 1 in this imputation is
improving upon the unique vector o in the core C of v. Theorem 4 above asserts
that such a phenomena is impossible in the limit. 1In that respect we assert

that a game of not more than three types also has this property. Namely,

Proposition 5. TLet N = {1,2,3} and (N,v) be totally balanced. Denote

al = max al, i = 1,2,3. Then for each (B%,a)eCy, al < al, where C and Co are
aeC
the cores of v and vy respectively.

The multi-monopolies case is similar. 1t can be checked easily

that
mHn m—-1 n n
(12) Cy(k) > {(B,a)eEx |acAK and J gl + §J ol = § i}
i=o i=1 i=1
and the inclusion in (12) cannot in general be replaced by the equality sign.

Finally it is clear that each oligopoly in cvK should get zero and thus
L

(13) Cp(k) = {(0,a)eEmtn| qeCvk},
+
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Using Theorems 2, 3 and 4 above we can state precisely the asymptotic relations

between the core and the Shapley value of each of the games vk, v; and vk,
o)

Theorem 6. Let ¢ (k), ¢ (k), ¢ (k) be the Shapley value of the games vk, vk
- o M L o] M

and vk respectively then
L

(I) 1lim ¢,(k) is the center of symmetry of the limit core lim Cy(k).
k> k>

(IT) If m > 1, lim Cy(k) does not have a center of symmetry but lim ¢pm(k)
k> k>
is always an element in lim Cym(k).
k>

(II1) If m > 1, lim $ (k) is not an elemeant of the limit core lim Cy (k).

k+co L k+oo

A geometrical example for N = {1,2} is presented in the following

diagram.
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7. Proofs of the Results

In this section we present the proofs of the results stated above.

W.l.0o.g. assume that ul(al) = 0 for all i=1,2,...,n.

Proof of Theorem 2. We follow the notations and the basic arguments of

Shapley (1964) who proved that lim ¢(k) = w.

k>oo

Let F be a function defined on n-tuples s = (sl,..,sN)eEDN by
+

n

(14) F(s) = max{ Zsiui(xi)'xi > 0 and
i=1

[=5
ne-13
n
[
»
e
N
o~
[9)]
[
[\
e
—
.

If s is a vector of non-negative integers then w(s) denotes the competitive
payoff vector of the market consisting of sl traders of the ith type for

i=l,..,n. , i.e.

L)
(15) wi(s) = ul(bl) + J(al - bl)e——mem- (bi(3))
j 3 j Bx%
3

where b is any maximizer in (14) and i(j) is such that bi(3) > 0 for each Al
j

Lemma 7 (Shapley). F is homogeneous of degree one and concave. Furthermore,

F has continuous first order partial derivatives for all s > 0, given
by
oF

— (s8) = wi(s) .
3si
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aF oF F — — oo
Since --- is homogeneous of degree zero --- (s) = ——- (s) where s=s/ Z sl
asl dsl dsl i=1

and hence wi(s) = wi(s). Thus from now on we will refer to w(*) as a function on
n-1 n
the simplex S = {(xl,..,xn)eEnl T xi=1}.
i=1

Let n = (1/n,...,1/n) then wi(n) = wi where wl is the competitive payoff

to type i in a market where all the n types have the same number of traders. Let

Di(s) = F(sl,..,sn) - F(sl,...si-1, si -1, gi+l [  gn),

. . — oF
By the concavity of F, D1(s) » wl(s). Hence, by the continuity of ---, for
dsl
each € > 0 there is § = 6(e) such that

(16) s = nl < § implies Di(s) » wi - ¢ for each i=1l,..,n

(here lIxll denotes max]xi|).

A coalition S E;Nk has a one to one correspondence with a profile (s©9,s)

o

of n+l nonnegative numbers where sl is the number of traders of type i and sO = 0
or 1 depending on the monopoly o being in S or not, respectively. A coalition S
is called "6-diagonal™ (or "§-balanced”) if the profile s of the n types of
traders satisfies I's - nll < 6. Then, given an € and a 6 as above, there is an
integer r, = ro(e) large enough such that for each integer r > ry the probability
is greater than l1-€ that an r-element set is S-diagonal if it is formed by
choosing the type of element at random "without replacement”™ from a finite
collection in which there are k elements of each type 1l,..,n and there is only
one element of type o, namely the monopoly (for more details see Shapley (1964)).

Hence, if r » ry for a random r-member coalition in the k-fold market with a

monopoly we have
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Prob{iis - nl < §} > l-e.

r
Since Prob{s®=1} = —---- for a random r-member coalition where
nk+1
r-1
r » ro(e)+l, 6=6(e) and k > ——-,
n

_ r
(17) Prob{lls = nll ¢ § and s°=1} > ———- (l-¢).
nk+1

Since all the k traders of type i are symmetric we have by the definition of

vK that for each i, 1 € i < n,
o
. k  nk+l 1 .
(18) of(k) = | ¢o(p,k) = ==== | [E{- Di(s)-s°||S|=r,pesS}]
peNk nk+l -1 g k
i

where ¢,(p,k) is the Shapley value of trader p of type i in the game v%.
Since ul(al) = 0 then Di(s) » 0. Therefore by (17) and (18) for
any psNg
i
1 nk+l

od(k) » ——- 7} [E{Di(s)-s0

|S|=r, peS}].
nk+l r=r +1 S

This together with (17) imply

) 1 nk+1 r ] o
dpL(k) » (l-g)e———- Z --—- [E{D1(s) |S|=r, peS, s°=1 and ls-nl < §}].
o

nk+l r=r0+l nk+1 S
Hence by (16)
. 1-€ nk+1 . (1-€) (wi-¢) (nk+rg+2) (nk+1-ry)
(k) » ——-——- Z r{wl-g) = ————eeeen ¢ e
o (nk+1)2 r=r +1 (nk+1)2 2

or
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(1-e)(wl-¢)
opi(k) » ——---mmmom + (nk+l+4ry) (nk+l-ry) =
o 2(nk+1)2
. 2 ,
(1-e)(wl-¢) (1-€)(wl-¢) ro(l-g)(wl-g)
= e [ (nk+1)2 - rg] = s - e .
2(nk+1)2 2 2(nk+1)2
ro(e) 1
Choose kg = kg(g) = ————— - = . Then if k > kg
e n

2 .
(1-e)(wi-e) e(l-e)(wi-e) (1-e) (wi-e) 1
(19) ¢i(k) » ————mmmmmmm = —mmmmee = e = i ol(e).
[0}

By estimating ¢©(k) we shall prove that the inequality in (19) can be
o
reversed. Notice first that by the linear homogeneity and the concavity of F

(Lemma 7) for each r-member coalition S< NK with profile s we have

F(r-n) ~ F(s) = r[F(n)-F(s)] < r(n - s)¥ F(s)
n n

<roe ) (= =si)(wlte) <red ) (wite),
i=1 n i=1

where € and § are chosen as in (16). Thus

n
(20) F(s) > F(rn) - r+§ | (wite).
i=1

Now by the definition of ¢9(k)
o
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1 nk+1
$O(k) = ———- ) [E{- F(s)]|]|S]| r, o€S}]
o} nk+l p=] S
1-¢ nk+1
> —mmmmee ) E{F(s)||S]| = r, 0eS and lIs-nll < &}.
k(nk+1) r=ro+l S

By (20)
l1-¢ nk+1 _ n .
$O0(k) » —————e—e ) [F(rn) - r+8 ) (wi+e)].
o) k(nk+1) r=r,+1 i=1
Since
— r r r 0
F(r.n) == F(]-,"’l) = - V(N) = - Z wi ’
n n n i=]
we obtain
- nk+l o on n
$O(k) » —————m- ) P- ) wl - 8er ) (wi+e)J
o k(nk+1) r=r 411 j=] i=1
1-¢ f1on n T nk+l
= e e - ) wi-8Y (wi+e). ) r
k(nk+l) _n 3= i=1 . r=rg+l
n
- Lt i
1-€ ! i=1 n ) | (nk+2+ry) (nk+1-r4)
Sl Rt -6 ) (wite) —mmmmmmmmmm e
k(nk+l) . n i=1 - 2
n Iy
) (wi+e)
(1-€)(nk+1l-rg) Twi (1-€)(nk+2+r,)$ i=1
2 m—m—m e @ ——— e e —— L )
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Thus if § = 6(e) is chosen as in (16) and also § < € then it is easy to

ro(el-1
verify that for k>k,(e) where kg(g) = ———mm—-
ne
n n
Z wi 2 wl
i=1 n . i=1
(21)  ¢°(k) > (l-g) +==—-- +0(e2)s ) (wlte) = ———= + 09(e).
o 2 i=1 2

n n
Now since | o¢i(k) = vk(Nk) = § wl, we have by (19) and (21)
i=o © i=

. wl
oi(k) = == + ) oh(e)
o 2 h#i

for k sufficiently large. Thus

3 wi
lim ¢1(k) = —-
k* O 2

and the proof of Theorem 2 is complete.

Proof of Theorem 3. The proof of this theorem is similar to the previous one.

Therefore we shall only sketch it briefly. First, consider the game vk,
Mo M M- 1
Denote a profile of a coalition SC NKUM by (s , S ,..,s , sl ..sh)

where for h, o < h € m—-1,

Mp 1 if Mpes
i o otherwise .

It is easy to verify that for a random r-member coalition in the k-fold

market with m monopolies
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Mo M Mn-1 m-1 r-h
Prob{s =s = ... =5 =1) = I ——m—--

Using the same arguments used in the proof of Theorem 2 we can show that

for i =1,..,n
(1-e)(wi-e) m-1 nk+m  m-1
oi(k) » ————omm- M ————-- ) T (r-h)
nk+m h=o0 nk+m-h r=ry+m h=o0
) 1 nk+m m-1
2 (1=e)(wl-g) ¢ ———mmmmmmmm f I (r-h)dr.
m—1 ro+tm—1 h=o
(nk+m) I (nk+m-h)
h=o0
m—1
The denominator (nk+m) NI (nk+m-h) is asymptotically (nk)™tl and the integrand
h=o0

is a polynomial of degree m where r™ appears with a coefficient 1. Obviously,
all the other monomials are negligible since their integral is asymptotically

of the order (nk)d for q € m which is small relative to (nk)m+1. Hence since

m+1 m+1
?k+m (nk+m) (rop+m-1)
r TT e et et o o vt cab vt e v 8 iy —ma
ro+m—1 m+1 m
we obtain asymptotically
. (1-e)(wl-e) 1oL
(22) ¢X(k) » —————mm— = ——— wl + ol(e) .
M mt+1 m+1

Similarly it can be shown that

Mp 1 no Mh
¢ (k) » ——= Z wl + o0 (¢€)
M mtl =1
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n m—1 My n
which together with (22) and the fact that Z ol(k) + E ¢ (k) = Z wi

1=1 M h=o0 M i=
imply the result.

Consider now the game vK. For a random r-member coalition in the k-fold

market with m-oligopolies

Lp } m~1 (nk+1-(r-h))
1 _

I
h=0 mk-+m-h

]
—
1
1]
[+
—~
a}

.

Prob{for at least one h,s

Asymptotically
(nk—r)m r n-1 m-2 m—-1
a(r) = 1 = ====—om = ——ee ((nk) + (nk) (nk-r)+...+ (nk-r) )
(n)™ (k)"
r m—
and as in vK, all other terms except ———-- s (nk~-r) are negligible. Thus
M m
(nk)
asymptotically for i=1l,..,n
. (1-€)(wl-g) nk+m n—
(23) ¢L(k) » =—————m—mm f r{nk-r) dr.

(nk)m+1 ro+m-1

Integrating the last integrand by parts we obtain

m m
nk-+m m-1 (nk+m) (-m) (rotm-1)(nk-ry-m+1)
/ r(nk-r) dr = = ———————me—e + e
ro+m-1 m m(m+1)
mt1 m+1
(-m) (nk-ry,—m+1)
m(m+1) m(m+1) )
m+1
All the summands but the last one are negligible relative to (nk) hence by

(23) we obtain that asymptotically
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(1-e)(wi-g) 1
(24) ¢§(k) 3 e = e wi + oli(e).

On the other hand in a similar way it can be shown that for h = o,..,m-1

Lh ]_ n Lh
p (k) » ———=-- Yowl + 0 ()
L m(m+l) =1
n m—-1 Ly n
which together with (24) and the fact that z pi(k) + Z o (k) = z wi
i=1 L h=o L i=1

imply the result.

Proof of Theorem ﬁ

(I) Clearly lim AK = {aeE0|a < w}. Thus by (1)
+

kv

n
] el -
i=1 i

wi} .
1

Ihe~o

lim Cy(k) 2 {(BO,a)eEl*M|a < w and B° +
+

ke

It is left to show that the reverse inclusion holds. Indeed, let

(B%,a)e lim Cy(k). Then there exists a sequence {B°%(k),a(k)}® in

{Co(k)}; | respectively such that

lim(89(k),a(k)) = (8%,a).

k>o

Let SK be a coalition of traders in NK with a profile sy=(k,..,k,k-1,k,..,k)

i.e. si' = k for i' # i and sl = k-1. Then2

25ee Footnote 1.
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n Slic' 1
(25) BO%(k) + ) - al'(k) » - F(k,..,k,k=1,k,..,k)

it=1 k

and

n
(26) BO(k) + ) ol'(k) =

i'=1

F(kyeeoee,k).

=

Subtracting (25) from (26) and using the concavity of F we have

| 1 1 9F
~ al(k) € = [F(k,ss,k) = F(k,ues,k,k=1,k,e0,k)] € = === (k,...,k,k=1,.0,k).
k k k 9xj

oF
Since 5—— is homogeneous of degree zero

Xi

. oF k k k-1 k k

al(k) < - (_-_* 3oy TTTT 53 TTTT 3 TTTT geey —_-—)-
9xj nk-1 nk-1  nk-1 nk-1 nk-1

Taking the limit of both sides of the inequality as k tends to infinity

oF
we obtain by the continuity of --—-
IxXj
- .
al g ——— (n) = wl’
IxX{

and the proof of the first part of the theorem is complete.

(I1) The proof is completely analogous to the proof of the first part of the
theorem.

(I1I) Follows from the theorem of Debreu-Scarf and from
Cr(k) = {(o,a)eEm+n|aECvk},
+

which holds for each non-negative integer k.
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Proof of Proposition 5. We prove a somewhat stronger version of Proposition 5.

Let (N,v) be a non-decreasing three person game such that
(a) Cv #9¢
(b) v(i) = 0 for 1i=1,2,3.

Then

(27) al = v(N) - v(N-i).

Indeed it is easy to verify that al < v(N) - v(N-i). It is therefore
sufficient to find one imputation o in C such that al = i, W.l.0.g. assume

i=l. Then again it is easy to verify that (al,a2,a3) defined by

al = v(N) - v(2,3)

al = v(2,3) - a3
and where a3 is a number satisfying
Max{0,v(1,3) + v(2,3) - v(N)} < a3 < Min{v(2,3),v(N) - v(1,2)},

is in the core C of v.

Now, let (8°,a) be in C,. Then

BO + a2 + a3 > v(2,3)
and

B + al + a2 + a3 = v(N)
Hence al < v(N) - v(2,3) = al and the proof is complete.

Proof of Theorem 6. Parts (2) and (3) follow directly from Theorems 3 and 4.

We shall prove the first part of the theorem. Let A be a subset of an



29

Euclidean space. A point YeA is a center of symmetry of A iff for each x in

the space, (Y+x)cA implies that (y-x)eA. We claim that

is the center of symmetry of lim C,(k). Indeed, let (b0,e)eEltn and assume
+

Kk >
that ((B%,a) + (b%,e))elim Cy(k). This happens if and only if
k>
0 < 5 wi+ el < wi for all i = 1,2,...,n
(28) and
n I3
o+ Y el =0 .
i=1

This implies that for each i, - - wi < el < - wi or equivalently -
2 2

| . .
- wl < - el < - w1, Thus
2 2

1, . .
0 € —wl - el <yl

and

n
- b0 - ) el =0,

Hence ((B%,a) - (b%,e))e lim C,(k) and the proof is complete.
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