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Abstract

The two-person bargaining solutions of Nash, Kalai and Smorodinsky,
and Rosenthal are generalized to apply to a larger class of games including
most games with a finite set of possible agreements. This results in a
simpler list of axioms for two of the theories. Several probability
measures over bargaining games are stated and the three solutions are
compared with each other on the basis of the expected payoff of a player
and the expected minimum payoff between the two players, Other arbitration
schemes such as the utilitarian rule, the maximin rule, and the choice of a
Pareto~optimal point at random are compared with the bargaining models,

Sample calculations for a probability measure with the disagreement
outcome a fixed value and the feasible set a random variable suggest that
the Nash and the Kalai-Smorodinsky solutions are superior to the Rosenthal
solution, but when the disagreement point is randomly chosen and the feasible
set is fixed, the Rosenthal solution is superior. This is related to the
axioms of the models and it is shown that there are practical as well as

philosophical grounds for choosing these axioms.



§1. Introduction

Nash (1950) portrayed two-person bargaining as a pair (d,S), where
d =(d1,d2) is a point and S is a set of points in the players' utility
plane. Set S contains the possible agreements the players can make and d

is the outcome that occurs if no agreement is reached. A solution function

£(d,S) associates a point x* = (xi,x;)‘to the pair (d,S). Point x* is
called the solution of the bargaining game.

Nash showed that under certain assumptions of f and S a unique solution
function exists. Later, Kalai and Smorodinsky (1975) and Rosenthal (1976)
modified Nash's axioms and derived two more solution functions.

These authors chose their axioms on philosophical grounds. For ex-
ample, Nash accepted the axiom of independence of irrelevant alternatives
whereas Rosenthal argued against it. Both authors resorted basically to
intuition to justify their positions.

No decisive arguments have appeared for or against the axioms in the
three systems, so one can say that all three solutions are plausible
answers. The existence of several solutions is an embarrassment to bar-
gaining theory as a whole, since players need a single point to agree on.
Each of the authors took care to show that their axioms produced a unique'
solution but with several models and no guide to tell which one is most
appropriate in the situation, the bargainers are still confronted with the
problem of non-uniqueness.

Instead of asking which model has intuitively reasonable axioms, this
paper will ask: for which types of bargaining problems will each of the
models give the bargainers high utilities on the average? The question of
the intuitive rationality of axioms is replaced by that of the average

effectiveness of the solution, in a given class of situations.



Of course, the optimal model depends on the probability measure over
bargaining games used, and there is no measure that is uhiquely appropriate
on a priori grounds, but the issue of which measure is best can be compared
with empirical evidence. Within a specific bargaining context one can
investigate which types of gémes are most likely to arise, The unsolvable
philosophical question of which axioms are most ''rational" is replaced
by the decidable empirical question of which probability measure ovef bar-
gaining games is most realistic.

The three original theories assumed that the feasible set S is convex
and compact, but in this paper the requirement of convexity is dropped. In
§2, the theorems of Nash, Kalai and Smorodinsky, and Rosenthal are general-
ized to apply to compact but possibly nonconvex sets of outcomes.

The aim of this extension to nonconvex sets is to allow the calcu-
lations in §3. If S is nonconvex it may possibly contain a finite number
of outcomes, so we can define a simple probability measure over the set
S and calculate or estimate various statistics concerning the resulting
solution payoffs., We will be able to answer questions such as: Which
bargaining model gives a player the highest average utility in a long
series of games? If utilities are comparable, how well on the average
does each bargaining model treat the worse-off player in the game? How
do the three bargaining models compare in these respects with other arbi-
tration schemes such as choosing the agreement that maximizes total utility,
that maximizes minimum utility, or choosing an agreement at random from

the Pareto-optimal set?



§2. Generalizations of Existing Solutions
The solution functions of Nash, of Kalai and Smorodinsky, and of

Rosenthal will be labelled fN’ f and fR.

KS
The set & is defined as those bargaining games (d,S) with S compact,
convex.and with X 2 d for every x € S and some x € S such that x > d. (This gives
the players an incentive to bargain.) In the original papers each so-
lution function had the set /@ as its domain. In this section the domains of the three
solution functions are extended to three larger domains 2, Eks and Ek,
which are supersets of the set £3.
The first step in generalizing Nash's solution is to define the
function Wy

(x1 - dl) . (x2 - d2)’ ifx2d

wN(x,d) =
0, otherwise

This can be regarded as a social objective function to be maximized,
an indicator of the desirability of an outcome as a solution from Nash's
viewpoint. (This claim will be substantiated by Theorem l1.) The curves
of constant Wy form rectangular hyperbolae in the players' utility plane.

The domain of the generalized Nash solution function, the set Eh,
is defined as those bargaining games (d,S) such that

1) (compactness) S is compact

2) (incentive to bargain) for some x € S, x > d

3) (uniqueness) a unique x € S maximizes wN(x,d) over S.

Comparing Nash's domain /? with 5, Nash's requirement of convexity
has been replaced by 3) which ensures that the solution using wy will be
unique. It may seem ad hoc to restrict the domain of fN in this way
but for practical purposes it is not a limitation on E& since /3

N

contains "almost all" bargaining games satisfying 1) and 2).



The following is a version of Roth's simplification of Nash's axioms
(Roth, 1975). Whereas Nash and Roth applied the axiom system to the set /3,
here it is applied to Eﬁ. For f: Eﬁ =iR2 and (d,S) € ﬁﬁ,

N1 (individual rationmality). £(d,S) > d.

N2 (symmetry-1l). If (d,S) is invariant under an interchange of players,

then £(d,S) gives the players equal payoffs.

« N3 (invariance under affine transformations). Let A((xl,xz)) = (clx1 + dl’
X, + d2) for some positive Cps Cye Then it is required that
f(A(),A(S)) = A(f(d,S)).

N4  (independence of irrelevant alternatives). If (d,S) and d,s")

are bargaining games such that S < S’ and £(d,5S’) € S, then

£(d,s) = £(d,s’).

The generalized Nash solution fN(d,S) is now defined to be the outcome

maximizing wN(x,d) for x € S.

Theorem 1 characterizes the functions that satisfy thésé axioms, Parts 1)
and 2) of Theorem 1 state that fN satisfies the axioms and is unique in doing so.

Parts 3) and 4) state that fN is a generalization of Nash's so-
lution, and that fN cannot be further generalized to any reasonably rich
set of compact games that is a superset of Eﬁ. By ''reasonably rich'" we
mean a set of games that is closed under three operations: a switching
of the players, an affine transformation of theutilities, and the forma-
tion of certain sum games using games already in the set.
Theorem 1. (Generalization of Nash solution)

1) £, satisfies N1 through N4.

N
2) Any f: Eh = RZ satisfying N1 through N4 is identical to fN'



3) 1If (d, S) € B, then fN(d, S) is equal to the standard Nash solution.
4) Let B’ be a set of games (d, S) such that
i) S is compact and there is an x € S such that x > d,
ii) B’ is a proper superset of £,
it1) for any (4, 5) € B', (T(d), T(S) , € B’ where T(d), T(S) are the
points generated from d and S by interchanging the players,
iv) for any (d, S) € B’, if (d, S’) € B’ then (d, S U S’) € 7/,
v) for any (d, S) € B’ and affine transformation A, (A(d), A(S)j € 5
Then there is no f: B’ = Ilz satisfying N1 through N4,
Theorem 1 is essentially saying that fN is the right function to use in
gengrglizing Nash's theory to non-convex games. It is proved in the appendix.
Turning now to the Kalai-Smorodinsky theory, the same steps are followed:
we state an indicator function Vg define the domain, Eks, of the generalized
solution function; fKS’ give a set of axioms defining the solution function, and

then prove a theorem about the appropriateness and uniqueness of f

KS*
The iandicator function is d?fined:
X, = d x, - d
. 1 1 2 2
W, (x,d,5) = Min ~ s ~
Ks ‘fl dp 7 by -4y

Here b(S) is defined as the outcome (b1’b2) in S such that b2 is a maximum for

all outcomes in S, and b, is a maximum given a maximal b The definition of

1 2°
c(S) is analogous with the players' viewpoints interchanged. The desirability
of an outcome is thus judged by the minimum of its payoffs, where the payoffs
are normalized with respect to d and the extreme points, b and ¢, of S.

Since x > d for some x € S, it follows that Sy # d1 and b2 # d2 so there
is no possibility that the denominators appearing in the definition of w

KS

will be zero.



The set of points x giving a constant value of wKS(x,d,S) is a hori-
zontal half-line extending rightwards and a vertical half-line extending
upwards, as shown in Figure 1.

As a step in stating the domain of the solution functiom, f three sub-

Ks)
sets of S will be defined. The set of points in S maximizing wKs(x,d,S) in S
is labelled M(d,S). The set of points M(d,S) lie in two half-lines as depicted

by Figure 1.

Figure 1 about here

The subset of M(d,S) that lies on the horizontal half-line will be labelled
Ml(d,S) and the subset of M(d,S) on the vertical half-line will be labelled
Mz(d,S). |

The domain Eks is then defined as those bargaining games (d,S), such
that

1) S is compact,

2) for some x € S, x> d,

3) ¥M{d,s) = Ml(d,S) or Mz(d,S).

The third condition states that the points x in S maximizing xKS(x,d,S)
must all lie on a vertical half-line or else all lie on a horizontal half-line.
(It follows for example that the bargaining game of Figure 1 is not in Eks.)
Clearly 5 C BKS'

The following axioms correspond to those of Kalai and Smorodinsky except
axiom KS3 which is a generalization of their axiom of Pareto-optimality. This
allows it to be applied to the extended domain Eks. If KS3 is applied to

Kalai and Smorodinsky's original domain /3, it is equivalent to their axiom,



KS1 (symmetry-1)., Identical to N2.

KS2 (invariance under affine transformations). Identical to N3.

KS3 (monotonicity). Define the following function for X < cl(S)

gs(xl) =%, if X, is the least value such that (xl,xz) is not Pareto-

dominated by any point in S,

It is required that if cl(S) = cl(S') and 8 < 8g/ > then f2(d,S) <

f2(d,S') (where fz(d,S) is the second component of £(d,S)).

If set S is compact and convex then the function defined in KS3, &g will
be part or all of the Pareto-optimal boundary of S, If S is finite, then
8g will be a step-function decreasing to the right,.

The generalized Kalai-Smorodinsky solution will be defined as the
highest point in Ml(d’s) or Mz(d,s).

fKS(d,S) = x € M(d,S) such that if x € Ml(d,S), then x, is maximum

1
or if x € M2(d,S) then X, is maximum,

Theorem 2 states that st satisfies the axioms, is the unique function to
do so over Eks, is a generalization of the Kalai-Smorodinsky solution and
cannot be generalized further. It is proved in the appendix.

Theorem 2. (Generalization of the Kalai-Smorodinsky solution) Theorem 1
holds mutatis mutandis for st, E&S

For Rosenthal's solution, the following indicator function i1s used:

and KS1 through KS3,

n
=
[™
[=]

wR(x,S) if b # ¢

if b =¢

|
=
"N
=
—
]
vy
»
N
1



The development proceeds in a way similar to the generalization of
the Kalai-Smorodinsky solution. The sets M(S), Ml(S) and MZ(S) are defined
based on wR(x,S), and the domain Ek is similarly defined. The following
axioms are required of any solution function £(d,S).

Rl (symmetry-2). If S is invariant under an interchange of players
then £(d,S) gives the players equal payoffs, fl(d,S) = fz(d,S).

R2 (invariance under affine transformations). Identical to N3.

R3 (monotonicity-2). Let P be that part of the weakly Pareto-optimal
set of S lying between b(S) and c(S). Let P’ be the’corresponding
set for S’ and suppose that b(S) = b(S’), c(S) = e(S’). If the
convex hull of P contains that of P’, it is required that
£(d,S) = £(d,8").

The generalized Rosenthal solution is defined as the highest point on

MI(S) or MZ(S):

fR(S) = x € M(S) such that if x € Ml(S) then x, is a maximum, or if

1

x € MZ(S) then x, is a maximum, for (xl, x2) € S.

2

Theorem 3. (Generalization of Rosenthal's solution).

Theorem 1 holds mutatis mutandis for fR’ Ek and R1 through R3,

One interesting feature of the generalized Kalai-Smorodinsky and Rosenthal
solutions is that the individual axioms given above are fewer in number and
weaker than those in the original papers. Specifically, in our generalized
Kalai-Smorodinsky solution, the axiom of symmetry is weakened, and in the
generalized Kalai-Smorodinsky and Rosenthal solutions, Pareto-optimality is
not required as an axiom but follows from the other axioms. Of course each
system is not weaker as a whole since the solution function must obey the
axioms over a wider domain of bargaining games, but in terms of individual

axioms generalizing these theories has made them simpler,



One aspect of the generalized theories that is more complex than the

originals is the definitions of the three domains E&, Eks and Ek.

The sets EN and Eks include "almost all" finite bargaining games --
those games not included form a set of measure zero. In the definition of

fN for example, the only games that are unsolvable are those in which more

than one outcome maximizes wN.

For the generalized Rosenthal solution, £ it is not true that almost

R’
all finite games are solvable. 1If a game has exactly two Pareto-optimal
outcomes, both will maximize we and there will be no way to choose between
them, How likely is this to happen? 1If the players' payoffs for the m
outcomes better than d are drawn independently from continuous.distributions.

then the probability Pn of exactly two Pareto-optimal cutcomes satisfies the

recursive equation (0O'Neill, 1981)

0

P1

P

[@-1) p,; +1/@m=-1]/m
Some values of P, 8%e Py = 1/2, Ps = 417, Pys =_,218 and Psq =,090.
Thus games with small numbers of outcomes may be unsolvable by fR’ but the

likelihood of this declines with the number of possible alternatives.

§3. Some Probability Calculations

Several probability measures over games will be defined now as a way of
evaluating the behaviour of the three solution methods. Some other solution
rules will be included in the comparison. We define Sr as the strictly individually
rational outcomes in S, that is §_ = {x] x € S and x > d}. We will investigate

the following rules.
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the outcome chosen maximizes x, in S

DICT’ 1 r
fMKMN: the outcome chosen maximizes Mln(xl, xz) over Sr
fMXAV: the outcome chosen maximizes (x1 + xz)/2 over Sr
F_.: the outcome is chosen by sampling from the Pareto-optimal set, guch

that each outcome in the Pareto-optimal set of S has equal
probability,

Using fDICT’ player 1 is a dictator who can select the best possible
outcome, Player 2 has no bargaining power, but only the option of with-
drawing from the interaction if player 1 grants the former .no better than
the disagreement payoff d2. These are the best and worst positions any
bargainers could hope for. All other bargaining models will be between

these solutions so they serve as two extremes for comparisomn.

The function fMXMN is the maximin rule of choice discussed by Rawls

(1971) and others. Function fMXAV is the utilitarian rule of choice.

The final bargaining method, F suggests a situation in which the

PO

players can agree that the outcome should be Pareto-optimal but have no
further guidance in selecting an outcome so they decide to choose a
Pareto-optimal point using a random device. A common approach in welfare
economics is to accept a certain allocation scheme as satisfactory if it

can be proved that it yields a Pareto-optimal distribution, so our calculation

of the expected utility using F can be regarded as testing the validity of

PO

this approach. We want to know if Pareto-optimality typically means high

benefits, at least for the probability measures used here.

Notice that two of the methods, £ and £ rely on interpersonal

MXAV MXMN®

comparisons of utilities, but that the others do not.
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These four rules, plus the three genmeralized solution functions fN’ fKS
and fR will be applied to games and the following two statistics will be
calculated: (Here the solution by each rule is denoted by X*.)

E(X:), the expected value to player i when the rule is in use.

* %
E[Min (Xl’ XZ)], the expectation of the minimum of the two payoffs.

The first statistic measures the effectiveness of the rule, in terms of

the average benefit to a player who will use the rule repeatedly.

The second measures the stability of the rule, since the lower the
benefits to the less contented player, the less incentive will that player

have to stay in the agreement or even to make the agreement in the first

place.

*
Calculation of the average E(Xi) does not assume interpersonal com-
parability of utilities but calculation of the minimum of the two payoffs

does.

Model 1. (Fixed disagreement outcome, exponential and uniform distribution

of feasible set of outcomes.)

Statistics for the seven bargaining rules listed above were determined
for the following type of probability measure over the bargaining games

1) The set of possible agreements has fixed and finite size m,

2) The payoff to player i of agreement j is the random variable Xi"

i=1,2; j=1,...m. All Xij are independent and have a common
probability distribution F(x). The values of the Xij are known to
the bargainers.

3) The disagreement point is (0,0).

These bargaining games have a fixed disagreement point, but the set

of possible agreements varies from game to game,
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Statistics were calculated for the unit exponential distribution,
F(x) =1 - e-x,and for the uniform distribution on [0,1], F(x) = x,
0 £x <1. Two values of the size of S were chosen, m = 5 and m = 15.

Results are shown in Tables 1 and 2.

Tables 1 and 2 and Figure 2 about here

Some of the values could be calculated analytically (formulae are given
in the appendix) but others had to be estimated by Monte Carlo methods. Each
of the simulated values is marked by a dagger in the tables, each is
based on 20,000 trial games, which were enough so that each is at least three
standard deviations away from the nearest value in the column.

In the case of fR sometimes the game happened to have exactly two
Pareto-optimal points and was thus unsolvable. In these instances one of the two
was chosen as the solution randomly assigning each probability 1/2.

The tables suggest that the ranking of the rules by their effectiveness,
E(X:), is independent of the number of outcomes m and almost independent of
the choice of underlying distribution. The same can be said for the ranking
according to minimum payoff. The Nash solution is more effective, but the
Kalai-Smorodinsky solution is more stable, i.e., has a higher expected value
of min(xi, X:). Both are preferable to Rosenthal's solution for effective-
ness and stability, as shown in Figure 2.

The Rosenthal solution is not always inferior as the next example shows.
Model 2. (Fixed feasible set, variable disagreement outcome)

Here the feasible set is the unit disc xl2 + xz2 < 1, and the disagree-
ment point is chosen from this set at random, from a uniform distribution

over the disc.
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Some of the statistics were calculated analytically as detailed in
the appendix, and others had to be simulated. The results are shown in

Table 3.

Table 3 and Figure 3 about here
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§4. Discussion

In the fixed disagreement point example, model 1, the Nash solution
does extremely well. As shown in Figure 2, it is a good compromise between
maximizing payoff and maximizing the minimum of the two payoffs.

We would like to know if this is a general property of the Nash solution,
true for a wider class of situations than the probability models specified
here. Perhaps it is, for the following reason. Each of the three methods
in effect lays down a family of curves in the utility plane and chooses the
outcome on the highest curve. The utilitarian solution, fMXAV’ uses straight
lines of slope -1. The maximin solution lays down right-angled corners,
each curve comprising the points directly above and to the right of a point
on the diagonal x, = x

1 2°

with the utility plane axes as the axes of each hyperbola,

The Nash solution uses rectangular hyperbolae

If the Nash solution gives outcomes between fMXAV and fMXMN’ it may be
because its curves combine features of the latters' curves. For "unfair"
points (xl,xz) far from the diagonal, Nash's hyperbolae become almost parallel

to the axes, like fMX But if fairer points are available, Nash tries

MN®
more or less to maximize average utility, i.e., near the diagonal X, = %,

the hyperbolae approximate straight lines of slope -1. This argument about
the Nash model does not rely on any specific assumption about the probability

distribution of the points in the feasible set so it may be a characteristic

type of behavior, independent of the probability model assumed.

Another possible general property of the models is shown by the poor
behavior of the Rosenthal solution in model 1, where the feasible set was
a random variable., We might regard the three bargaining models as different
ways of finding a high utility outcome, the three being subject to certain

restrictions like invariance under affine transformations of utility. The



15

Nash solution chooses an outcome according to its position relative to the
disagreement point, The positions of the other possible outcomes are
irrelevant since Nash requires the axiom of independence of irrelevant
alternatives. Rosenthal, on the other hand, adopts the monotonicity axiom,
and makes the solution independent of the position of the disagreement point
for a given feasible set., In his model a solution is chosen because of its
position relative to the extreme vdlues of the feasible set, which in our
model 1 are random variables, An analogy would be that Nash and Rosenthal are
both shooting at a moving object, but Rosenthal is standing on a moving
platform.

It is understandable that Rosenthal's method does better in model 2,
where the disagreement point is the value of a random variable. Nash's
solution does poorly here. The Kalai-Smorodinsky solution depends partly
on d and partly on S, and gives results between the other two.

The axioms of most bargaining models can be divided into two types,

which could be termed basic and novel axioms. The basic axioms are those

such as Pareto-optimality, symmetry and invariance under utility transfor-
mations. These are common to almost all models and essentially define the
system as a bargaining model, The novel axioms on the other hand are variable
from model to model and are more controversial since they reflect each
author's special philosophy about what must be added to the basic axioms

to get a unique solution. The aim of this paper is to show that effective-
ness as well as philosophical considerations play a role in choosing the novel
axioms. The calculations show that the differences in effectiveness are

sometimes quite large and can be related to the content of the axioms,






Exponential Distribution

Solution
Function

DICT. (Player 1) 2.28

MAXAV

NASH

K-S

MAXMIN
RANDOM P.O.
ROSENTHAL

DICT, (Player 2) 1.00

Table 1.

Solution
Number of outcomes Function
m=5 m=15
3.32 DICT. (Player 1)
1.90 2.51 MAXAV
1.82" 2.367 NASH
1.76"  2.22f K-S
1.64 2.16 MAXMIN
1.60 2.05 ROSENTHAL
1.56' 1.91" RANDOM P.O.
1.00 DICT. (Player 2)
Randomly chosen feasible set S -- expectatioms,

Uniform Distribution

a value determined by simulation.

Exponential Distribution

Solution
Function

MAXMIN

K-S

NASH
ROSENTHAL
MAXAV
RANDOM P.O,
DICTATOR

Table 2.

Number of outcomes

m=5 m
1.14

T 1
Lel

1.09Jr
1.08Jr
.952
.875
.833

Randomly chosen feasible set S expected minimum payoff,
tindicates a value determined by simulation.

=15
1.66
1.60.1r
1.56Jr
1.43T
1.28
1.10

.938

Uniform Distribution

Number of outcomes

m=25
.833
.739
.736"
.730"
.723
.679"
.670
.500

e

E(X.).

1

Solution
Function

MAXMIN

K-S

NASH

MAXAV
ROSENTHAL
RANDOM P,O.
DICTATOR

m = 15
.938
.842
.842"
.834"
.833
.790"
744
.500

¥ indicates

Number of outcomes

m=23>5
631
626
623
.609
.563"
.500

476

m =15
.778
.775.
769"
.763
.69ér
.573

496

E (Mi *x*)
(Min (Xl’ 2) .
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Figure 2
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* * %*
E(Xi) E(Min (X1’ Xz))

Solution Solution
Function Function

DICT (Player 1) .924

MAXAY .707 HAXAV .707
MAXMIN MAXMIN

ROSENTHAL 6947 ROSENTHAL 5987
K-S .6897 =S 5627
NASH .679 NASH .518
RANDOM P.O. 645 RANDOM P.0.  .333
DICT (Player 2) .137 DICT 145

Table 3. Randomly chosen disagreement point, d, expected payoff and
expected minimum payvoff. t indicates a value determined
by simulation.
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APPENDIX

Proof of Theorem 1.

1) It may be verified directly that fN satisfies each axiom.
2) For some (d4,S) € 5., let x* be the outcome in S maximizing Wy i.e., x* =
fN(d,S). Outcome x* is uniquely defined by the definition of 5&.
Let A be an affine transformation such that A(d) = (0,0)

*
and A(x ) = (1,1). Define S, = A(S). Define S, as the set such that

1 2

for every (xl,xz) € Sl’ both (xl,xz) and (xz,xl) are in SZ’ i.e.,

82 = S1 U T(Sl)' (This is the crucial difference from Nash's proof.)

Clearly S1 and 82 are in Eﬁ. Choosing an arbitrary £: 5& = liz
satisfying N1 through N4, then by N1 (individual rationality) and N2
(symmetry), f(O,Sz) = (1,1). Thus by N4 (independence), f(O,Sl) = (1,1).
By N3 (invariance), £(0,S) = A-l(l,l) = x*. Thus f and fN coincide.

3) For convex S, the definitions of fN and of Nash's solution are

identical.

4) 1I1If (4,8) € B'-E&, then either no outcomes in S maximize wy or more
than one outcome does. The former situation is ruled out since S is
compact and non-empty.

In the latter case choose two distinct outcomes in S maximizing
W For each, the argument of 2) can be}repeated to show that it is

the value of f(d,S). This is a contradiction so that f must be

undefined for such a game (d,S).

(]

Proof of Theorem 2.

1) It may be verified directly that £ _ satisfies each axiom.

KS
2) 1f (4,S8) € E%S’ it can be assumed without loss of generality that
fKS(d,S) is in Ml(S), i.e., lies in the horizontal half-line containing

the points of S maximizing Vg
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* *
Define x as the solution of (d4,S), x = fKS(d,S) and let
A be the affine transformation such that A(d) = (0,0) and b2(A(S))

* *
= cl(A(S)) = 1. Define S, = A(S) and x ' as the image of x ,

1

L

%, *
x  =A(x).
Define 82 as the strongly Pareto-optimal set of S. By the

*
assumption that x € Ml(S) and by the formula for w,. it follows

KS
* o
directly that xl' p- x;'. Define S3 as identical to 82 but with
% %* * *
(xll, xz') replaced by (x2', xz'). Define S4 as the set of points

- is i i.e., S, =S .
(xl, x2) such that either (xl, x2) or (x2, xl) is in S,,1.e., S, 3 UT(S3)

39
Since the set (d4,S) is in Eks, it follows by the construction

of S, to S, that (0,S,) to (O’SA) are in Eks.

1 4
Let f be some function f: EkS = 1{2 satisfying KS1, KS2 and
* *
KS3. By KS1 (symmetry), f(O,SA) = (xz', x2'). Set S1 dominates SZ’
82 dominates S3, etc., as defined in the axiom KS3, so that by KS3

x, %
2 %2
Since f satisfies KS2 (invariance) then £(d,S) = A-l[f(O,S)] =

o
~t

: s _ ’ = = *y

(monotonicity) f(O,S3) = (x ), f(O,SZ) f(O,Sl) (x1 > X, ).
fKS(d,S) and thus fKS and f coincide,

3) For convex S, the equivalence of the two definitions can be shown

by elementary geometry.

4) This can be shown analogously to Theorem 1 -~ 4), ™

Proof of Theorem 3. The proof is identical to Theorem 2 with the exception that
for Theorem 3, game (d,S) is normalized so that b2(S) = cl(S) =1

and bl(S) = ¢ (8) = 0.

2
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Theorem 4. (variable feasible set, exponential distribution)
For the following probability measure over bargaining games (d,S):
1) d = (0, 0).
2) S contains m outcomes whose payoffs to the players are independent
-X

samplings from the unit exponential distribution, F(x) =1 - e .

Then the expected payoffs for each solution method are as follows (where

* %
Xl, X2 is the solution by each method).
m
- N |
(i) for fDICT' E(Xl) —j;l 3

~logm+Casm=—wo

where C is Euler's constant, .577216 .
* -
E(XZ) =1

and E[Min (x:, x;)] = mo/(m + 1)

*x 101 .1
(ii) for fMXMN: E(Xi) = Ejzl E + 3
1
~3 (logm+C+ 1) asm— =
x % 1Mo

Aa%(log m+ C) as’m = »

% m-1 5 frne i 4. '
(ii1) for £y ,.: E(X)) = 7 (_I)J(m_l) > (i) §k+2)é+3
j=0 37 k=0 (541)
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* % m J -1 ‘ k ~r-2
E[Min(xl, XZ)] = E z ( ) k+1 b (r>(r+1)!(j+1)
= k-O k'( +1)J =0
(iv)  for Foot E(in) = X A(p,q,r) *B(p+g) +C(q+r)
p+tgq+r=m=-1
P,q,r=0
Min(X, X)) =
E[Min(X,, X,)] =
ptq qtr
i+q+ 1 dry____ 1
2 T A(p,q,r) T (-1) H r(Pﬂ) 1.+r+1 z (-1) (q r> 2
Srqbmemel - =0 3 (1+mtr+i-j)
P,q,r20
! I(i,p) T(i,r)
where A(p,q,r) = ,m {44
plqlr! 0<is<p 1+i+j
O<jsr

pHq
B(p+tq) = £ (- 1)"+q+l(p+q L

i=0 1 m-1i
q+r
+r+1 +r 1
C(atr) = £ (-nTTH (4 )'(';;_—J
i=0
T(0,0) =1, T(i,0) = T(O,p) =0 for i,p = 1
and T(i,p) = %1 T(i,p-1) + % T(i-1, p-1)

Lemma 1. Let X be a real-valued random variable with density function
f(x) = e ™ and let Y be a real-valued random variable. Then
E(X-Y) [©>Y) = 1

Proof. Let G(y) be the distribution function of Y.

E(X-Y|%>Y) = I f (x-y) 1_%_}(%7 dx dG(y)

== x=0
Substituting f(x) = e ™ and F(y) = 1-e”7 and integrating,
[~}

E(X-Y |x>Y) =j 1 d6(y) =

y= -=
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Proof of Theorem 4,

s
~

i) Under the solution function fDICT’ player 1 will choose X1 =
Max{Xn, .. .xlm}.

Let X be the random variable Max {X1 X, }. If an additional

1°°° " "im

(m)

value, X. 1s added to a set of m-1, {XH,...X1 m-l}’ the maximum of m, will

1m

be greater than the maximum of m-1 if and only if the new value is greater
i - X .
than x(m—l)' If it is greater it will be greater by the amount le (m-1)

The expectations are related as follows:

E(X(m)) = E(X(m_l)) + Pr(X1m>X(m_1)) . E(le'x(m-l) |x1m>x(m_1))

By symmetry Pr(le?X(m_l)) = 1/m. Then by Lemma 1
ERm) = E&ay) + 1/m,
m
-l
j=17

This is the first m terms of the harmonic series and is approaches by logm

+ C as m = @, leading to the first two formulae in 1i).
%
2

expectation 1, leading to the third formula in 1i).

Player 2's payoff X, clearly has density function f£(x) and thus

x %
To show the last formula in 1), E[Min(Xl, X2)] is

J

*
Under the scheme fDICT’ X1 will be the maximum of m independent random

%* %*
variables, each distributed F(x). Also X2 will be independent of X, , so that
-]

E[Min(Xl*,Xz*) ] = I x [m £(x) F(x)m-l(l-F(x)) + f(x)(l-F(x)m)] dx
x=0

@ % * * *
x[Pr(X1 e(x,xHdx) N X2 > x) + Pr(X2 e(x,x+Hdx) N X1 > x)] dx
x=0

Substituting f(x) = e-x, F(x) = 1-e % and expanding the powers of F(x)

as polynomials,
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* % m-1 j {m-1 ® -2x-jx = -X
EMMin(X, ,X., )] =mZ (-1) ( . ) I xe dx + J. xe — dx
1 2 . J = =
j=0 x=0 x=0

Integrating, and combining the resulting series under a single index

* ok - j-1 1
s = ~13yJ my 1
ek, ", %,01 =2 03N(T) 55
j=1 .
The above sums to m/(m+l) (Gradshteyn and Rhyzik, 1965, 0+155+1), which is the
final formula in i),

ii) Let Yi be the random variable Min(xleZi) and let g(y) be its

density function. Then

g(y)dy = 2 Pr(X;; e (y,y +dy) N (X}; <X,)]
2 £(y)(1 - F(y)) dy

Ze-zydy

Let Z be the random variable Max(Yl,...Ym). Following a method

(m)
identical to Theorem 1, i), it can be shown that E(Z %’Z)%.

(m)? =

The payoff pair with one member equal to Z wili be chosen as the solution.

(m)

The player who does not receive Z will receive a payoff at least as great of

(m)

amount Z/

(m)°
By Lemma 1,

E(Z('m) - E(Z(m)) =1

-The expected payoff of a player in the game is thus

1

: ~l1s1 .1

which is the first formula of ii). The second formula for the asymptotic value

of E(Xi&) follows as in i).
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The third formula for E[Min(th,Xzﬁ)] was derived above as the value

of E(Z(m)).

iii) Define Yi = (X i + X21)/2 with density function s(y). Then

1

s(y) has the gamma distribution:

-2
s(y) = 4ye™ 7

y

The distribution function S(y) is then 1 - 2ye- - e,

The mean

of the random variable Max [Y Ym] is then

17"

[--]
-1
[ yesmismi™lay
y=0
Substituting for s(y) and S(y) and integrating gives the first formula of iii).
To show the second formula of iii) let the joint distribution of

* %
(X1 , X2 ) be g(x,y). Then

g(x,y) = Pr[(Xl*, Xz*) e (x,xHdx) x (y,yHy)]

If the solution function fMXAV is used,
g(x,y) = m Pri(X,;, X,,) € (x,x+dx) x (y,y+dy)
N (Xli + XZi) < x+y, for i=2 to m]

=me T e dx dyf1l - (x+y+1)e-x-y]m-1

Then

® * %
2 [y e, ¢ (voyray) Nx* > y]

* *
EMin(X, , X, )]
1 2
y=0

[--] [--]
ZI y I g(x,y) dx dy
y=0  “x=y
. . -x-y m-1
Substituting for g(x,y), expanding the factor [1 - (x+y+l)e ]

as a polynomial and integrating gives the second formula of iii).
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iv) Let the possible outcomes in S be {Al,...Am}. Let a(Ai) be a
vector-valued random variable giving the number of outcomes in the four
quadrants centered on Ai’ that is, a(Ai) = (p,q,r,s) means that p outcomes
lie northwest of a, in the two-dimensional utility plane, q lie southwest,
r lie southeast and s lie northeast. The payoffs associated with Ai are

11 XZi)' As before let the coordinates of the outcome chosen by FPo be

1’X2)'
% m - -
E(X, ) =2 I x f Pr(X,.,X.,.)e(x,xHdx)x(y,yHdy)] dy dx
1 . 117724
i=1 "x=0 y=0

Then

Since the outcomes are identically and independently distributed

% - -] -]
E(X1 ) = jx=0x Iy=0 m Pr [FPO = A1 n (Xll’ X21)e(x,xﬁdx)x(y,y+dy)] dy dx

Now if a(Ai) = (p,q,r,s), A1 cannot be chosen unless s = G. Thus

Pr(Fpy = A N (X,%,,) e(x,x+dx) x(y,y+Hdy) ]

= PrlF,, = 4 \ (XH,XZI)e(x,xHX)x(y,yHy)]

© Prl(X;;,X,y;) e(x,xHdx)x(y, yHy) ]

= X PrlFp, = A1| 6<a1) = (p,q,r,0) N (XH’XZI)e(x,x+dx)x(y,y+dy)]
p,q,r 20
ptgtr=m-1

+ PrlQ@a) = (p,q,7,0) | (X)}.X, ) e(x,xHdx)x(y,yHdy)]

. Pr[(Xu,Xn)e(x,xHX)X(y,y*dY)] (1)

To calculate the first factor in the expression above, note that the

solution function F is such that the likelihood that F

PO ro = %1 depends

only on a(al), so that the first factor equals Pr[FPo = alla(a) = (p,q,%,0)].
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Let T(i,p) be the probability that of the p outcomes northwest of a,, exactly
i are Pareto-optimal. The corresponding probability for the r points southeast
of a, will be T(j,r). These functions are well-defined and satisfy the recursive
equation given in Theorem 1,(iv), (0'Neill, 1981).

If there are i and j Pareto-optimal points in the two quadrants specified

above, then outcome a, will be chosen with probability I;%:T, given it is

1
Pareto-optimal. Otherwise it will be chosen with probability O.
Thus

Pr[FPO = al l 6(8) = (P’qsr’o)]

= T T(p,i) T(r,j) — (2)
Osisp i+j+1
Osj<r

The second factor in (1) is calculated as follows. It is the probability
that p specified outcomes lie northwest of a, and q specified outcomes lie
southwest of al, etc., all of this times the number of ways of assigning the
m-1 outcomes to the three distinct cells, lying northwest, southwest and

southeast of ai.

Thus it is

Sm-l}! F(x)P (I'F(y))p F(x)q F(y)q (I'F(x))r F(Y)r (3)

plqlr!
where F(x) = l-e-y, and F(y) = 1-e7
The third factor in (1) is clearly
£(x) £(y) dx dy (4)
where f(x) = e-x, f(y) = e-y.
Performing these substitutions (2), (3), and (4) in (1) and integrating

gives the first formula of Theorem 4,iv).
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To find an expression for E[Min(Xlﬂ,Xzﬂ)] using the method FPO’ we
substitute (2), (3) and (4) in (1). This gives an expression for the joint

% *
density of (X1 ,X2 ). Let this be g(x,y). Then
-] -]
eine,x,0) =2 [ v [ sty ax gy

Performing this integration gives the second formula of iv). . a
Theorem 5. (variable feasible set, uniform distribution)
Under the assumptions of Theorem 4 but with F(x) = 2x, 0 € x < 1,

the uniform distribution on [0,1],

P - * -
i) for fDICT' E(Xl ) = m/(m+l)

E(X, "y =1/2

* o4 m(m+3

E[Min( X1 Xy ) = ) (D)
ii) for fchv E(Xi*) =
o1 3 m -1, ___i+2  _-3-3
2mt1 2“‘+ o ?0 D7 Gy (J+1)(2J+3) 2

1} 2, j=k+g+1

k+2
E[Min(X X, ] = 2m2 ( 5) (m: )Z o (iJ) 7“( -1)~ (kdfz) 31-_(,21( ¥ 7+ 1

1ii) for £

m=-1 1
* . D _qyo=1-3 ,j m-1 2 1 - 3 !
EX; ) =3 1= (-1 270y )[Zm-j T Zm-1-3 2m-j+1J
CIC TR =Y KU %S B S Lk
iv) for FPO
!
* m-1-p-q mel-p-q' \
EX, ) =2 T Af(pqn | & (pimiee 1o
ptgtr=m-1 } i=0 Vi 7 phqhitl)
p,q,r =0 \
/ m-1-q- \
F el r(_l)i {m-1-q-r) 1
— 4 | qtr+i+2 |

i=0 1y /
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Elmincx,",%,0] =2 T AG,q0) 20< - >——+-(;Tq xS ORI

-1
0
1 -
q+r+j+2 p+2q+r+1+3+3
where A is given in Theorem 4.
The proof is almost identical to that of Theorem 4, and will be omitted.
Theorem 6. (feasible set in the unit disc, variable disagreement point)
For the bargaining game (d,S), let the disagreement point be determined
by sampling from a uniform distribution over the unit disc x12 + x22 <1, and

let the feasible set S be those points in the disc that are individually

rational, i.,e., x, 2 d, and x, = d,. Then the expected values and expected -

1 2 2
minimum of the two values are as follows,
, ) * 1.4
i) for fDICT' E(X1 ) = > + 3m
2 1
E(XZ ) =52
* 723 _1L_ _1
B[Min(x,",X,)] = g2 - = - 4
. * 32
ii) for fNASH' E(Xi ) = 1sm
* ok o 32-28/7
E[Min(X1 ,X2 )] = 15
111) for F,.: E(X,”) = Zg_i;§1§
1 m + 4
% % -
T+ 4
%*
iv) for fMKAVand fMXMN: E(Xi ) = 142

%*
ElMin(X,",X,")] = 1¥/3
Proof: 1) for fDICT:

Suppose the disagreement point has coordinates (s,t). Then player 1l's

J o

1 will be maximal given that player 2's payoff, XZA, is

% *
greater than t, and (X1 , X2 ) is in the unit disc, that is,

solution payoff, X
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*
X, =1 ift<O

1
=/1 - t2 if t =2 0.

Thus, letting the random variable yielding the disagreement point be

(5,T)
0 1
EX *) = f Pr(T =¢t) x 1+ I Pr(T =t) /1 - t2 dt
1
t=-1 t=0
0 1
=I %1-t2dt+I a - t3) dt
-1 0
=1/2 + 4/3n

This is the first formula in i).

*
Concerning player 2's payoff, X2 , under £

DICT’
X2 = 0 ift<O
* =t ift220
Xy
* 0 1
E(X2 ) = f Pr(T - t)x0 +I Pr(T - t) + dt
t=-1 t=0
1
= _f = 2t dt
0 1-t
=2/m - 1/2

The second formula in 1i).

x %
To calculate E[M].n(X1 X, )] under fyrop» three cases are possible:

* * *
= 0, and Min(X; ,X, ) =X, =0

* *
1) if t < 0, then X =1, X 9

1 2

* * * * *
2) if 0 <t <1/Z, thenX, =/, 7, X, =t, and Min(X; ,X, ) =X

e
~

. . * * * *
3) if /2 <¢, then X" =/777, X,” =t and Min(X," ,X,") =X~ =/7 7

1-t 2 1
Therefore,
E(Min(X, ,X, )] = I 0 dt + S' z == dt + J' - anyi dt
1 2 t=-1 t=0 m 1-t tﬁ7?ﬂ 1-t

23/6m - 11/3/2n - 1/4

the third formula in i).
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As a step in calculating formula ii) the expected value of the Nash
solution, we will calculate for a general point on the Pareto-optimal set,
the set of disagreement points d, which yield that solution, The Nash
solution has the attractive property that this set is always a straight
line segment.

For a Pareto-optimal point (x, /q:;EB, x € [0,1], the set of disagreement
points which would result in that solution is a line segment of slope xA/I:;E,
extending from the solution point (x, /E:;ib, to the far side of the unit disc.
This length of the segment can be calculated to be 4x\/T:;7.

In a similar manner it can be shown that the set of disagreement points
vielding a solution between (x, /ET;E) and (x + dx, /E_t—z;IE;;T) is a thin
trapezoid, with height 2x dx near the Pareto-optimal set, 6x dx on the opposite
boundary of the disc. Thus player 1's expectation is

1

f X (% X Area of trapezoid )
x=0

1
J % (4x) (x,/l-xz) dx

x=0

32/15m
which is the first formula of iii).

x %
The minimum value of X1 ,X2 under fN can be calculated:

* * * *
E[Min(x1 X, )] = X, if X s 1//2

ots
~

*
= X, if X1 =21//2

Wz
| ; x L (ax) (x /1-x7) dx
xX=

1

+ J (/1-x2 % (4x) (x /1-x2) dx

x=1/2
= (32 - 28 /2)/15m

verifying the second formula in 1ii).
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Concerning F

PO’ formulae iii), the probability of player 1 receiving

a payoff in (x,xH+dx), is proportional to the length of the arc of the
Pareto-optimal surface lying between x and x+dx and also proportional to the
1 w2
area of the disc lying below and to the left of the point (x, /1-x4).
The length of the arc is dx//1-x2 and the area below and left of the
. : 2 : .
point is m/2 + 2x /1-x“. To determine the constant of proportionality we use

the fact that the total probability must sum to 1,

k fl (/2 + 2x /1-x2) / f1-x2 ax = 1
0

which yields k = 4/(n2 + 4),

To find the average payoff

1 —
k J. x (/2 + 2 x /l-xz) !V l-x2 dx
0

*
E('X1 )

(2n + 8/3)/ (% + &)

verifying the first formula in iv).
To find the expectation of the minimum payoff
E[Mi * % ]
n(Xl ,X2 )] =
1//2
kf x (/2 + 2x /1-x2 dx
0
1
+ k I Vv ].-'x2 (/2 + 2 x 1_x2)/ /l-xzi dx
1/2

= In(4 - 2/2) + 2/3/3)/ (7% + &)

which is the final formula of iii). C



30

References

1. Gradshteyn, I.S. and I.M. Ryzhik., Tables of Integrals, Series and Products
Academic Press: New York, 1965.

2., Kalai, Ehud and Meir Smorodinsky. (1975) Other solutions to Nash's
bargaining problem.Econometrica, 45, 1623-1630,

3. Nash, John F. (1950) The bargaining problem, Econometrica, 28, 155-162,

4, O'Neill, Barry (1981) The number of outcomes in the Pareto-optimal set
of discrete bargaining games. Mathematics of Operations Research.

5. Rawls, John. (1971) A Theory of Justice. Harvard University Press:
Cambridge.

6. Rosenthal, Robert W. (1976) An arbitration model for normal-form games
Mathematics of Operations Research, 1, 82-88.

7. Roth, Alvin E. (1977) Individual rationality and Nash's solution to the
bargaining problem. Mathematics of Operations Research, 2,




