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ABSTRACT

The inductive solution applies to non-cooperative games in normal
form, played once. Each player has a probability distribution
over the possible strategies of the other players, and uses this dis-
tribution to select an expected-utility-maximizing strategy. The players
may use their own choices as inductive evidence about what others'
choices will be, by using act-dependent probability distributions.

Various axioms are introduced to constrain the set of possible
probability distributions, The axioms are based on a concept of rational
probability assessment and on the fact that the players are involved
in a game of strategy. It is shown that for symmetric 2-strategy-per-
player gaﬁes with a large number of players, rational players will hold a
Beta distribution for the probability that a given proportion of players
will choose each strategy. For larger symmetric games they will hold the
generalized Dirichlet distribution.

The inductive solution provides an alternative rationale for the
minimax zerosum solution and for the theory of Nash equilibria, and justifies
these solutions as extensions of standard utility maximization without
introducing equilibrium assumptions, It avoids certain logical difficulties

inherent in their previous justifications,






According to the accepted theory, players of a non-cooperative
game will choose an equilibrium point. This is a stronger assumption than
expected utility maximization, in that an equilibrium is to be chosen in a
one-shot game even if other strategies could give as high an expected utility,
assuming the strategies used by the other players are fixed.

The principle of simplicity prompts us to construct a
solution based solely on expected utility maximization, without adding the
assumption of an equilibrium choice. This would unify game theory and indi-
vidual decision theory, It is the basis of the inductive solution described
here, which applies to non-cooperative games in normal form that are played
only once and thus is an alternative to the von Neumann and Morgenstern
minimax solution for the two-person zerosum games (von Neumann and Morgenstern,
1953), and to the theory of Nash equilibria (Nash, 1951). In some cases it
coincides with these solutions and provides an alternative justification for
their conclusions, For other types of games the inductive value can lead to
expectations for the players that are different from the traditional theories.,

In Section I the argument for the inductive solution is developed through
an example. In Section II axioms are given that state the theory more generally
and precisely, Finally, in Section III the inductive solution is compared with
the traditional concepts.

I.. 2 x 2 Symmetrical Games

The game of Matrix 1 is to be played once non-cooperatively, i.e., without
communication or enforceable agreements between the players., It is a symmetrical
game of the Apology type according to the classification scheme of Rapoport and

Guyer (1966) as modified by Harris (1968).

Player 2
C1 C2
Ry 1,1 5,4
Player 1
R, 4,5 0,0

Matrix 1



We will look at the game from the viewpoint of Player 1. He
wishes to maximize his expected utility and thus needs a set of
utilities for the outcomes with associated probabilities. The util-

ities are given in Matrix 1, but still lacking are the values of

Pr(CllRl), Pr(Cz\Rl), etc., as shown in Matrix 2, (where R, R, and
Cl’ C2 are Player 1's and 2's moves). The corresponding matrix for
Player 2 is Matrix 3,
|
Pr(CllRl) Pr(Cz|R1) Pr(Rllcl) Pr(Rzlcl)
Pr(C, \RZ) Pr(C, ]Rz) Pr(Rl | Cy) Pr(R, \cz)

Matrix 2 Matrix 3

To £fill in Matrix 2, Player 1 needs evidence about what Player 2 will
do. He notes that he and Player 2 are in identical positions since the
game is symmetrical, so he regards his own move as relevant evidence
as to what Player 2's move will be. The symmetries of the game make R

1

and C1 alike, and R2 and 02 are alike, or '"corresponding', so the use of
one is evidence that the other will be used.

A problem in using'his own move as evidence is that he has not as
yet decided what move to make., His approach appears to be circular --
how can he use his own move as evidence to estimate what Player 2 will
do, as a step in deciding what his own move will be? However, there is
a simple way to avoid circularity. Player 1 assigns conditional proba-

bilities according to which each move of Player 2 is more likely given

the use of the corresponding move by Player 1. An example is given in



Matrix 4, In this matrix Pr(C1|R1) = ,6 > Pr(Clle) = ,5, etc., so that

there is a relationship of evidence between corresponding moves.

.6 A .6 .5
.5 .5 A .5
Matrix 4, Pr(Cile) Mattlx 5. Pr(Ri]Cj)

Note that according to Matrix 4 the event of a column choice is proba-
bilistically dependent on the row. This is in contrast to the usual
decision-making situation in which the rows of Matrix 4 are identical.

Our discussion so far is summarized by the following assumption:

Al. A playver assigns probabilities to the opponent's moves. These

probabilities may show dependence on the player's own move,

There are three ways the meaning of probabilities Pr(Ci\Rj) could
be misinterpreted, and we will make a short comment on each.
First of all, the fact that Pr(CllRl) > Pr(CliRz) is not intended to

suggest a causal relationship between R, and C,. Neither player's move

1 1
can take a part in causing the other's, since moves are made simultan-
eously, The relationsixip is only an evidential one, in the same sense that
if a series of specimens of a certain substance is found to conduct electricity,
it is more likely that the next one to be examined is also a conductor,
No causal relationship is implied from the conductivity of the previously
examined specimens to the new one. The probability of the new
specimen's conductivity is higher since "probability' is here to be
interpreted as "justified degree of belief."
Secondly, we must distinguish between "Pr(CllRl)" and "Pr(Cl\R1 and

both players know R, is chosen)". In the latter interpretation Player 2 would

1

choose C2 because of the payoff structure of the matrix, so that the condition-



al probability of Cl would be zero. But we intend thé former
interpretation, under which neither player is informed of the other's
moveé. In this case we can consistently state that Pr(Cl\Rl) is greater
than Pr(Cl\RZ).

Thirdly, Matrix 4 does not represent a strategic choice on the
player’'s part. Its entries are not chosen by the player on the basis of
maximizing his gain. Instead, it represents the player's viewpoint
concerning the evidential relevance of the similarity between his role in
the game and that of his opponent.

What constraints must conditional probability matrices like Matrix %
satisfy? We will now show that Player 1's set of possible matrices is
tightly constrained-- most matrices, including our example Matrix 4 are
inconsistent with the assumption that Player 1 is facing an informed
rational opponent,

Since the players are rational in their judgments, we assume that
they assess the strength of evidence in a similar way. Neither player
has any privileged information about the strength of evidence of one

move for another, This leads to:

A2. The conditional probability matrices assigned by the plavers

have the same symmetry as the game.

This means that if Player 1 assigns Matrix &, for example, Player 2 will

assign the transpose, Matrix 5.
Player 1 knows this and thus is able to calculate Player 2's choice

of move: according to Matrix 1 and Matrix 5, player 2 will choose C, since its

utility is 2-6 and is greater than C,'s utility of 2:0. But this

2
conclusion contradicts the original assumption that Player 1 holds Matrix

4. By Matrix 4 | whatever Player 1 does, Player 2 will choose C2 with

probability of at least .4. Therefore, Player 1 must believe that un-

conditionally the probability of C2 is at least .4, But he has also



concluded on the basis of Matrix 5 that the probability of 02 is O since its
utility is submaximal, This is a contradiction, Matrix 4 is therefore inad-
missible as an assignment of conditional probabilities,

Which conditional probability matrices are admissible? The following

principle is a direct consequence of the arguments presented above,

A3 A conditional probability matrix is inadmissible if it implies a

positive unconditional: probability for a move that has submaximal ex-

pected utility,

Thus, for example, in the 2 x 2 game of Matrix 1, if the prob-

abilities of C1 and 02 are positive, their expected utilities must be equal.

The set of matrices for Player 1 consistent with this principle is given

by Matrices 6 and 7.

1 3
q+4 ! 1 0
l1-4 q l-q q
3o 3 3
w1th85q54 with4<qsl
Matrix 6 Matrix 7

These matrices are not difficult to derive. Using the notation of
Matrix 2, we use the fact that Pr(CllRl) lies in the interval [0, 1] and
equals 1 -Pr(Cz!Rl) and the analogous fact for Pr(Clle)
is used. Matrix 6 represents a situation in which both moves for a
player offer equal expected utility. The form of the matrix is found by
letting p==Pr(CllR1) and q==Pr(CZ!R2), equating the expectations of the two
rows, and then eliminating p. The restriction §1§q follows from the

premise that the evidential relation between corresponding moves is non-

negative and therefore Pr(CllRl) = Pr(ClIR ).

2



Matrix 7 reflects the alternative situation to Matrix 6, one in which
the expectations of the rows are not equal. It is derived as follows. If
the rows' expectations are unequal, then the columns' will be unequal, too.
The conditional probability matrix must allow that the unconditional proba-
bility of one of the columns be zero. The eight possible matrices of this type

are Matrices 8 through 15.

8. {1 O 9. 11.

= O
—
o
o
(=

1
0

12. 1p 1-p B[ 1 o .| o 1 15.:p 1-p

E p
‘1 0 ‘1 -q a l-q q l 0 1

Matrices 8 - 15. p,q € (0,1)

Several of these are inadmissible because they violate the principle
of non-negative evidence, that Pr(Cl‘Rl) - Pr(Cl\Rz) and Pr(CZ\Rl) < Pr(CZ\RZ).
This eliminates Matrices 10, 12 and 14, Other matrices, namely 8, 11, 15
and some values of Matrix 13, allow a conditional probability of zero for one
column, but it is the column that would have greater rather than lesser expected
utility, so these matrices must be eliminated.1 Matrix 9 remains, and
Matrix 13 remains with the stipulation that q > %. These possibilities are
summarized by Matrix 7, so Matrices 6 and 7 give all admissible probabilities.
Note that Matrices 6 and 7 form a family indexed by one parameter q.
This solution can be compared with traditional Nash equilibrium theory.

There are three Nash equilibria for the game of Matrix 1. Two of these

are the pure strategy solutions (R2, Cl) and (Rl’ CZ) yielding payoffs



(4,5) and (5,4) respectively., These violate A2, since one player's
conditional probability matrix is not the transpose of the other's.

The rémaining Nash equilibrium has the mixed strategy pair [(5/8 Rl’ 3/8 RZ)’
(5/8 Cl’ 3/8 CZ)]. Each player has an expectation of 2.5.

This Nash equilibrium corresponds in our theory to Matrix 6 with q = 3/8,
This is the unique conditional probability matrix with identical rows that
is allowed by our theory, i.e., it is the only admissible matrix having
probabilistic independence of moves.

The locations of the Nash equilibrium and the inductive solutions are
shown in Figure 1. The tetrahedron shows the joint probability of every pair
of moves.

The value q=3/8, like the symmetrical Nash solution, gives each player an
expectation of 2.5, The other admissible matrices have lower expectations, down
to a value of 1 for q = 1.

The physical realization of this game that suggested the name "Apology"
involves two friends who wish to make up after a fight. They can go and apol-
ogize (R1 and Cl) or stay home and wait for the other to visit (R2 and CZ)' Each
wants an apology to be made but would rather the other do it. If they both
visit they will miss each other. Our theory is more pessimistic than Nash's
since the more the evidential dependence of the moves the more likely they will
do the same thing and receive low payoffs.

Probability matrices satisfying Al -A3 for a given game will be
called strategic for the game. If a certain expectation can be achieved

by a strategic probability matrix, it will be called an inductive value

of the game. The set of strategic probability functions and inductive

values is the inductive solution. These terms are chosen to stress the

concept of inductive evidence among moves that forms the basis of the

solution,



2
= |11 54
P(C,IR) !
R, | 45 0,0
0'1

P(C,IRy)
Figure 1. The inductive solutions (solid line) and Nash equilibria (squares)

for the Apology game of Matrix 1, shown in the spaces of unconditional and con-

ditional probabilities. Payoff vectors associated with certain solutions are

indicated.



The Inductive Solution of n-person Games -- Summarv of Results in Section II

The example outlined above, a 2 x 2 game, results in a family of strategic
probability matrices with only one parameter, What happens if a game has
more than two players or more than two moves per player?

Suppose there are n players, player i having m, moves. To be able to select
a move, player i must assign a probability to each pattern of play by the
n-1 opponents, conditional on each strategy of the player himself, It might
seem that the number of parameters required to determine these probabilities
would greatly increase compared to the 2 x 2 case. For general n-person
games there is indeed a large increase, but for symmetrical n-person games the
number of parameters is small, if an additiona2l postulate is introduced. (This
assumption will be stated formally as Axiom IV in Section II.) For symmetrical
mxm... xmgames, the players' strategic probability values are determined
by m parameters or fewer. For example, for 2 x 2 ... x 2 games the set of
values of the probabilities described involves only one parameter, just as
in the 2 x 2 case.

Details will be given in Section II, but for completeness of this summary
we will describe the further assumption now. It deals with the manner in which
players evaluate one move as evidence to determine the probability of

another move, and is a version of what has been termed Johnson's sufficiency

postulate (Goode, 1971), or the )A-principle (Carnap, 1981).

Suppose we have an n-person game that is symmetrical in players and in
which each player's move has a unique move alike by symmetry in each of the
other players' strategy sets. Such moves are said to be corresponding ot
of the same type. The players will hold a probability function that

specifies the probability of a strategy type o by player i



given certain specified moves by the other players. The axiom of
sufficiency states that the value of this probability depends only on a
specification for each of the other players, whether he chooses type « or
not, If certain of the other players do not choose type «, the value of
probability is independent of their particular choices. The number of
players choosing o is "sufficient" information.

The results of Section II will be summarized now. It is shown that a
single parameter A can be defined that measures the degree of evidential
independence of any two moves. On the basis of the axioms A\ can be shown to
be independent of the pair of moves chosen for its measurement (Theorem 1).

In choosing an optimal move, a player needs to know the probabilities of
all (n-1)-tuples of strategies of the other players given each of his own
choices. General formulae for these probabilities are given in Theorem 2.

The well-known two-person Prisoners' Dilemma games have been generalized
to n people in a simple way by defining Commons Dilemma games. These have
been used to model inflation, pollution, energy use (Dawes, 1980) and animal
behavior (Treisman, 1977). Theorems 3 and 4 give the inductive value of these
games, the latter stating that as the number of players becomes large, either each
player's probability density function for the proportion of players choosing
a given move follows the Beta function, or else all players are certain to
choose the same move.

Finally, Theorem 5 of Section II states that a strategic probability

function always exists.



10

II. Formal Exposition

A game G is defined as a triple (N,#,U). The set N is the finite

set of the players, {1,2,...,n}. Vector . consists of strategy sets

(Sl’SZ""’Sn)’ where Si is the set of strategies under the control of

player i, Payoff function U is a vector-valued function from SlXSZX---XSn

n - . .
to R, A strategy n-tuple s, is defined as a vector of n strategies

(sla ,...,snoh) such that sia. € Si for all i. The set of all games of
1 i
this type is labeled £.

The event set of G, £G, is the set of statements that partially or

completely describe a play of G. Examples are "Player 1 uses $11 and

" or Player 4 uses s

Player 2 uses Soq and "Either Player 1 uses s

"
.

11 42

‘can be defined as the power set of X2=lsi' Any e € 6G

n .
will then be a set of strategy n-tuples. Each member of xi=1Si is a

Formally GG

complete description of a play of G. The "occurrence" of event e or the state-
ment that e is "true" means that the play actually used is a member of this
set, If there is more than one n-tuple in e, then the event e will not spec-
ify the play completely, but will mean only that the strategy n-tuple used is

one of the n~tuples in e,

In this notation "'s;, " is to be interpreted sometimes as the name of a

ig

strategy, and sometimes as the event thet it is used, but it should be clear

from the context which meaning is intended. The two events stated above

would then be written and "s11 u 342". All impossible events,

$11 1 893

(e.g., 11 n 512) are regarded as identical and written . All necessary

events (e.g., 311 U 511 ) are also regarded as identical and written U,

The set 6G X (£G - ¢) is the set of conditional events of G. If e’ is true,
then conditional event e‘e’ has the same truth value as e. If e is false

then the truth or falsity of el|e’ is undefined.
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The probability function Pr . is from GG x (£G - ¢) to the interval

G
[0,1]. The number PrG(ele’) is the players' rational degree of belief
in the conditional event ele’, e € 8y = .

Note that PrG is not specific to each player but the same for all,
following the approach that all are rational and so evaluate evidence in
the same way,

In the development of a probability function an unconditional prob-
ability measure would normally be a primitive, and a conditional probability
function would then be defined as a quotient of unconditional probabilities.
However, in the context of games of strategy situations may arise in which
the denominator would be zero. For example, a player may know that he

will not use strategy s, because he knows it has a suboptimal expected

il
utility, vyet he will require values for the probabilities of the others'’
various. strategies given Sia' These probabilities are needed for the

purpose of knowing the expected utility of s even though it is sub-

ia’
optimal. Thus PrG must allow the assessment of probabilities of events
conditioned on an event of measure zero,

This means we cannot define conditional probability as a quotient of
unconditional probabilities, Conditional probability must be axiomatized
directly, and we use the following set of axioms given by Renyi (1955).

Suppose X is a non-empty set, E is an algebra of sets on X, and P is

a function from § x (§ - @) to the real numbers. The triple (X,&,P) is a

finite conditional probability space if for any A € § and B, C€ & - ©

v

1) P(A[B) =0

2) P(B|B) =1

3) P(a|B) + P(Xx-A|B) =1

4) 1ifB NC# @, P(AN3 lc) = P(a|BrC) - P(BIC)

is X

Applying this to the context of games, the first axiom restricting PrG

AT (probability). For GE€Z, <X?=1Si’£G’PnG> is a finite conditional

probability space,
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A justification for AL can be given based on our interpretation of
PrG as conditional degree of belief, based on the use of the "Dutch book"
introduced by Ramsey (1931) and de Finetti (1931, 1964), A person's
degree of belief in the conditional event ele’ is manifest in his decision-
making behaviour, and reflects the stakes the person is willing to accept
for a bet on event ele’. (A bet on a conditional event e|e’ is won if e
and e/ are true, lost if e is false and e is true, and called off if e’
is false.) Suppose the decision-maker's disposition to accept bets is
based on a probability function that violates AL, Carnap and Jeffrey (1971)
have shown that the decision-maker will be willing to accept every bet in
a certain set of bets, among the events of which there are logical
interconnections such that the set is logically certain to result in an
overall loss to the bettor. Accepting the set of bets is clearly irrational,
it follows that Axiom I is & requirement for any probability function. The
next axiom, Axiom II, requires that PrG be independent of the labeling
of the players and strategies.

First we introduce the notion of a permutation of a game G. Per-
mutation ¢ is a permutation of the set of all players' strategies Slu...LSn
with the special property that two strategies belonging to a single player
always go into two strategies belonging to a single player. If ¢ has this

property it leads to a permutation of the players, labeled m, in that player

m(i) in G’ takes on the ''role" of player i in G. Permutation ¢ also defines a
permutation of the strategy n-tuples, which we shall label v. Then G’, the

permutation of the game G under ¢ is defined as the game having player set

7 = r ’ ’ : ’ =
N N, strategy set ./ {s ,...,Sn} with Sn(i) {c(sil),c(siz),...}, and
payoff function U’ such that the m(i)'th element of E’(v(gn)) is equal to the

i'th element of ﬁ(gn).

We also define e’, the permutation of an event e under ¢c. If e € éG’

e’ is defined as the event in which for each i and each @, any occurrence

of s;, ineis replaced by c(sia)'
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Axiom II can now be stated. It requires that PrG be independent of the
labelling of players or strategies, and also affine transformations of a player's
utilities.

AIl (symmetry). For any game G, any e € 6G and e, €6, - o, let G', ei

é be permutations under o, and let G’’ be derived from G’ by an affine

and e
transformation of a player's utilities. Then PrG(ellez) = PrG,,(ei]eé).
The next axiom states the possible relationships of evidence among the

strategies. First we define the class of games among whose strategies we ex-

pect to find relationships of positive evidence. Suppose G’ is the game per-

mutation of G under ¢, and that the payoff function U’ is identical to U. Per-
mutation ¢ is called a symmetry of G, and G is said to be symmetrical under c.
Every game has at least one symmetry, the identity permutation I, and
some games have additional symmetries. Matrix 1, for example, has I and also
the permutation (R1C1)(R2C2).
For certain games the set of symmetries uniquely defines a correspondence

between any two players' strategy sets, Two strategies, Sia and SjB’ are

regarded as corresponding if some symmetry of G takes sia into sjﬁ' The
class of games ﬁUC ("UC" for "unique correspondence') is those games such

that for all i,j € N and all St € Si there is exactly one B such that a

symmetry of the game takes s into s, ...
o

iB
In Matrix 1 for example, R1 and C1 are corresponding strategies, as
are R2 and C2. Since there is no symmetry taking R1 into C2, or R2 into Cl’

the correspondence is unique and Matrix 1 is in.&UC.
For any game in ﬁbC’ the players obviously will have an equal number of

strategies. The set $ﬁC may be partitioned into &gb, for m = 1,2,..., where

m

&

ue is the set of all games in.&bc with exactly m strategies for each player,

From now on we will assume that for any game in % the players’

uc’

strategies are labelled in agreement with the unique correspondence, i.e.,

sia and sjs are corresponding strategies if and oanly if o = 3.
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Corresponding strategies are "allke." Axiom III states that players
regard the use of a strategy by one player as non-negative evidence for the
use of its corresponding strategy by another player.

AIII (evidence). Let s, be a strategy k-tuple for a set of k players

k
not including player i, and let E#' be like gg except that player j uses
s, rather than s, « If s, is a corresponding strate of s and
ig ja ja p g 8y iev
. is not, then
°is ’

PrG(Sia \sk) > PrG(sia |sk ).

The next axiom, the sufficiency postulate, restricts the manner in
which strategies can be evidence for each other, It states that if we
wish to determine the probability of player i's strategy Sia given the
choices of a set of players not including player i, then it is sufficient
to know for each player whether that player chose strategy of type ¢ or
not, If player j did not choose sja which particular strategy he did in

fact choose is irrelevant.

Since the axiom bases relevance entirely on the relation of correspond-
ence, and since correspondence is determined by the symmetry properties of
the game, thén the axiom is in effect stating that the symmetry properties
of the game are the only basis for claiming evidential links among players'
strategies.

AIV. (sufficiency). Let s. and Eﬂ be defined as in AIII. If neither

k

s, nor s! are corresponding strategies of s,, then
jo i8 ij

PrG(sij |'s

k) = PrG(SiJ l_S—' ).

k

Next we take account of the fact that the players are engaged in a
game of strategy. Axiom V states that each player is certain that the others
will act to maximize their expected payoff, using the probability function
PrG to calculate their expectations.

Player i's expected utility for S.u is defined as

E(s; ) = D Pry (Gpls;) vGy)
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where the sum ranges over all n-~tuples gn containing S; 3 and where
o
ui(En) is the i'th element of vector U(§n).

AV  (strategic rationality). If E(sia) # max E(s),
SES.
i

then PrG(sidlU) = 0, where U is the universal event.

Axiom IV (sufficiency) places restrictions on the players' probability
function only if the game has three or more strategies per player, The
case m = 2 is a "loose end" which is taken care of by the following
axiom. Without this axiom the theorems to follow would be limited to
the case m 2 3,

The axiom states that the players of a two-~strategy-per-player game
must have a probability function identical to one for the three-strategy
game formed by augmenting each player's strategy set with a "dummy' strategy,
i.e., one which all players are sure will not be used.

AVI (extension), Let G3 € &30, and let G be like G3 except that

Si3 is eliminated from each player's strategy set. Then PrG has an ex-

tension on 8, x (8§, - ) satisfying AI to AV,

G, G3 .
It is clear that any extension, Pr., will be such that Pr_ (s, |U) = 0,
(% G3 i3
This completes the list of axioms, If Pr, satisfies AI-AVI, it will

G

be called strategic for the same G.

Theorem 1 states that if a function PrG is strategic it can be as~-
signed a number L(PrG) which measures the degree to which one player's
strategy is evidentially independent of the others, i.e., the "weakress
of evidence" among the strategies, If L(PrG) = 0 a player's move is con-
clusive evidence that the other player will use the corresponding move.

If L(PrG) = @ the players' moves are evidentially irrelevant to each other.

The exact definition of l(PrG) is given in Theorem 1.
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The fact that a single number will do all this is not trivial or ob-

vious, and it will not be true unless Pr_ satisfies AIV, the axiom of

G
sufficiency, since the strategies of the game G will in general be distinct
and the probability of a given event will change if the strategies named
in it are changed. One might think that a long series of indices would
be necessary, but it turns out that only one, k(PrG) is required.4

Theorem 1. Let G € égc and let PrG satisfy AI~-AIV and AVI.
Let i,j € Im with i # j. It is possible to choose «,B such that o # B

and Pa’ are not both O,

Palp

Define X(PrG) PGIB/(PG - Pa]B) if Pa # PQ]B

= if PQ=PQIB¥O

where Pa = PrG(sia]U) and PGIB = PrG(sid]sjB). Then k(PrG) is independent
of the choice of o, 8, 1 and j.

Hereafter X(PrG) will be abbreviated ).

To choose an optimal strategy a player must know the likelihood of
the other players' strategies conditional on =ach strategy of his ownm.
That is, he must know the values of PrG(s-iISia) for all o and all Sy
the latter defined as the (n-1)-tuples of strategies for the other players.

Theorem 2 gives the possible values of PrG(g_ Sia)’ stating that

;|
i
they are determined by at most m parameters, where m is the size of
each player's strategy set.

Of the total set of parameters, m-1 are determined by choosing values
of the a priori probabilities of the m strategies, i.e., PrG(SialU) for
@ =1 tom These values are required to sum to 1, resulting in m-1 in-

dependent parameters. The final parameter is X(PrG), the measure of

evidential independence of PrG.
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Theorem 2. Let G € égc and let §_ be an (n-l)-tuple of strategies

i

for the players other than i, in which n, players choose strategies of

type @. If Pr, satisfies AI to AIV and AVI, then

G
either 1) X €[0,») and for all s_;, all i € N and all s, € S,
nd
I ¢i+p ) n
s L R I HB i-1+P_\
PrG(s_i]sia) = (i- 5 )

(n=141) v o+ (24)) (14)) BFa i=1

where Pa abbreviates PrG(sialU) and where the product is taken to be 1 if
the index set is empty.
m
or 2) A = ® and PrG(s_i lsia) = BElPBnB.
Theorem 2 is deficient in two respects, First, it is supposed to state
a condition on the function Pr_, but the nature of the condition is somewhat

G

clouded by the use of A, The parameter X is a function of PrG so

that conditions on A\ are in fact conditions on Pr but it would be

G’
clearer to eliminate X\ and deal with values of PrG directly. This seems
to be impossible in general, but possible for a specific class of games

as shown in Theorem 3.

The second deficiency is that Theorem 2 does not complete characterize
strategic probability functions, since AV, the axiom of rationality a
component of the definition of "strategic'" is absent in Theorem 2's list
of conditions. However AV is introduced in the next theorem, and strategic
probability functions are characterized by a single formula.

Theorem 2 deals with Commons Dilemma gameé which have generated a
great deal of interest because of their elegent properties and their
implications for sociology and ecology. Values of the strategic proba-

bility functions for these games can be given by a simple expression as

stated in Theorem 3.
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Dawes (1980) has defined the Commons Dilemma games as those in
which each player has two strategies, a cooperation strategy C and a

defection strategy D, and the payoffs functions are linear in the number

of cooperators and have equal slopes. These are written

e

UC(nC) = (a+1) - a (2)
¢

UD(nC) =0 (a +1)

where UC(nC) and UD(nC) are the payoffs for cooperation and defection res-

pectively if n_, players cooperate., (The functions given above are a

c

normalized form such that UD has a minimum of 0, and UC has a maximum

of 1.) 1In order that the games be strategically non-trivial it is required
that a > 1/(n-1). Commons Dilemma games are labelled.écn. Clearly.&CD
is a subset of éﬁc. In the two-player case a Commons Dilemma game

becomes the familiar Prisoners' Dilemma.

Theorem 3. Let G G.&CD with payoff functions as given above. Let PC and

D be the players' unconditional probabilities of cooperation and defection,

i.e., P, = Prg (i uses c|U), P = Pr, (i uses DjU). If Pr

C is strategic

G
for G one of the following holds:

. » el
D Pg =1, By =0, Py € [o, '?E?TSTZITS>

PD[C = 0, so that all players cooperate and have expected payoff 1.
2 =1 -
or 2) P, € [0,1], B, =1 - P,
n R S
Pc]D T (n-1)(a+l) Pe PD}c (n-1) (a+1) PC[D
the probability that i players cooperate,
i n-1ys
i K n T 1 s o
I {5-14p ————) I 35-1+P
. Py M e - 1 5oV D (a-l)a - ;)
Pro(re=) = fa-iy1 n-1

ki . n
il j +-——:—-———:-‘—
5=0 ( (n-1) a 1 >

and all players have expected payoff PC.
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' n
or 3) PC =0, PD =1, PD]C € <Z;:I7E;:I7 . m]

and PC]D = 0 so that no players cooperate and all have expected payoff 0.

Example 1. Suppose an 8-player Commons Dilemma game has payoff

functions
UC(nC) =n. - 8
Up(ng) = ng

where nC is the number of cooperators.

Normalizing so as to follow the format of (2) gives the equivalent
game with payoff functions

Uc(nc) = .25 n, - 1

UD(nC) = .25 n.
so that a = 1,

Theorem 3 gives a set of possible values of P,, P as shown in

c’ D’ Pc]D

Figure 2, To choose some point in the set of inductive solutions, players

might evaluate P of PD to measure the strength of evidence between

c|p lc

thelir own and their opponents' moves.

The next theorem, Theorem 4, gives limiting values of Pr, for a large

G

number of players.

Theorem 4, Let G E'&CD with payoffs as given above, 1If PrG is strategic

for G, one of the following holds in the limit as n - =
1) P, =1, Py =0, PC]D € [0, 1/(a+1)),

PD]C = 0 so that all players cooperate and have expected payoff 1,

r =1 -
or 2) P, € (0,1], py =1 P

Pc]D = 1/(a+1) B, PD]C = 1/(a+l) - Pc]D’ and

the probability density that proportion x of the players cooperate is
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P./a -1 P /a -1
r(1/a) <« C (1-x)

F(Pc/a) F(PD/a)

(o)

f(x) =

i.e., x has the Beta distribution with parameters PC/a and PD/a. All
players have expected payoff PC.

or 3) P,=0, P

c b = 1, PD]C € (1/(a+1), a} PCID = 0 so that all players

defect and have expected payoff 0.

The Beta distribution strictly defined is the one given in part 2) of
Theorem 4, The discrete distributions of parts 1) and 3) are limiting
values of the Beta as one or the other of its parameters goes to zero.

If we generalize the definition of the distribution to include these

extremes, we can make the simple statement that in Commons Dilemma games

the proportion of cooperators will follow the Beta distribution in the limit.
One part of the theory we would like to describe but cannot at this

point, is a method of determining unique appropriate values of Pr However,

G’
we will speculate about some possible directions the theory might take,
Probabilities might be specified by axioms that are a part of the general
theory of inductive logic (Carnap and Jeffrey, 1971) or on the other hand
the further axioms might be like AV (strategic rationality) and deal speci-
fically with game situations. Another possibility is that further axioms
are based not on the abstract game as the axioms here are, but on the
particular physical realization of the game., For example, the evidential
relations among the moves might depend on the actions used to make the
moves or on the similarities of the events yielding the outcomes and not
solely on the payoff values,

Theorems 3 and 4 can be generalized in two ways. First the limiting

Beta distribution for large n is not a property only of Commons Dilemma

games, but holds true for any game in,éUC.
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Secondly if a game in.&sc has more than two strategies per player,

m > 2, then the limiting distribution is the generalized Dirichlet
distribution (Ferguson, 1973), an m-parameter generalization of the Beta
distribution.

We will not prove these two statements since this can be done with
methods almost identical to the proofs of Theorems 3 and 4.

Finally, Theorem 5 guarantees that strategic probability functions
exist for any finite game. This is so since the set of inductive solutions
includes every Nash equilibrium that reflects the symmetry of the game,
and such an equilibrium always exists.

Theorem 5. For all G € %, there exists a Pr_, that is strategic for G,

G
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III, Discussion

Act-Dependent Probabilities and Newcomb's Paradox

The most controversial aspect of the theory, in our view, is that the
conditional probabilities of Matrix 2 may show dependence on the decider's
action. In the terminology of Gibbard and Harper (1978) we allow act-

dependent probabilities., The question of whether such probabilities are

appropriate has usually not been dealt with explicitly by formal treatments
of decision-making, (one exception is Jeffrey (1965)), but usually there
has been an implicit attitude that actions and states of nature must be
probabilistically independent, at least in the context of decisions involving
an inanimate nature,

Recently the issue of act-dependence has arisen in the discussion of
a decision-making puzzle known as Newcomb's Paradox, The Paradox has a
clése relationship to our inductive solution, so we will state one version
of it here. A decision-maker (DM) can choose either 1) the contents of
boxes A and B, or 2) the contents of box A only. Box B contains $1000,
while A contains either $1,000,000 or nothing. The contents of box A
depend on a predictor (PR) who attempted to predict DM's choice. If PR
predicted DM would choose action 1), he put $0 in box A, If PR predicted
action 2), he put $1,000,000 in box A. PR's action was taken before DM's
decision. DM knows the above rules but does not know PR's action. DM is
reliably informed that PR's prediction, be it 1) or 2), is correct with
probability .9, The "paradox'" arises in the following manner. Expected
utility principles lead to a choice of box A alone (its expected utility is
$900,000 versus A & B's expected utility of $101,000) while the Sure-thing
Principle leads to a choice of boxes A and B, since the choice of Box A is a
dominated strategy. The payoff and probability matrices are shown as Matrix

16 and 17.



DM's Box A & B

Box A

States

$1,000,000 $0 in
in Box A Box A
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$1,001,000 $1,000

$1,000,000 30

Matrix 16

Payoffs to DM

Matrix 17

Conditional
Probabilities

A number of authors have advocated the choice of boxes A and B

(Gibbard and Harper, 1976) and others the choice of box A alone (Bar-Hillel

and Margolit, 1972).

The dilemma facing DM is closely related to that of our game players.

A DM who chooses Box A alone is, like our players, assigning act-dependent

probabilities as is clear from Matrix 17.

His subjective probability of
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receiving a large reward in Box A varies depending on his own choice, If
he is permitted to use his own move as evidence about PR's choice, then
box A alone will be the rational choice,.

Those who regard the choice of one box by DM as rational may accept
the logic of the inductive solution, while those who favour the choice of
two boxes will tend not to since it involves act-dependent probabilities.

Comparison with minimax and equilibrium solutions.

It should be clear that our theory involves a different approach than
the traditional solutions. We will make some comparisons now and point
out some of the advantages of the inductive solution,

1) The inductive solution avoids the necessity of introducing mixed

strategies.

The traditional solution concepts require that a player be able to
construct any probabilistic combination of pure strategies, that is, be
able to produce a sample from his pure strategies, each one to be selected
with a specified probability. The sampling must be available at no further
cost above the straightforward choice of a pure strategy. Without this
assumption, Nash equilibria and minimax strategies would not exist for a
large class of games.

How is this assumption to be interpreted in terms of the real world? Clearly
the randomizing device must be either external or internal., People are rarely
equipped with an external device of this type, at least for the conflicts typical
of everyday life. If the device is to be regarded as internal, difficulties arise.
A number of psychological experiments have shown that people are poor generators of
random numbers. When asked to produce a simple uniform distribution, they

have shown systematic biases (Baddeley, 1966; Chapanis, 1953). We believe



that the requirement that a player be able to generate mixed strategies

limits the traditional theories' applicability to real behaviour.

Even if players were usually able to randomize, it would be possible

in principle to specify games in which they cannot, What would

constitute rational behaviour in such games? The traditional theories would
be silent, and so as general guides to rational behaviour they are incom-
plete from a theoretical point of view.

The inductive solution does not require randomization since players choose
one move or another directly. In those situations where two or more
moves have maximal expected utility, the player will be uncertain what he
will do before he makes a decision and will hold a probability distribution
over his own choices. This will not be an objective probability dis-

tribution in the sense of long-term relative frequencies generated by some

device, but will be a statement of the player's degrees of belief. Having

arrived at an appropriate probability distribution consistent with the arguments of
the inductive solution, the player will have to make a final choice if more

than one strategy has maximal utility, but there is no requirement of ran-
domization involved in the final choice.

2) The inductive value admits the possibility of mutual cooperation in

the Prisoners' Dilemma game.

According to the traditional theory, in the example Prisoners' Dilemma
game of Matrix 18 both players would choose outcome (0,0), an equilibrium
point, rather than (1,1), which is Pareto-optimal.

Some writers have regarded this as unsatisfactory on the logical
grounds that rational players should not engage in "mutual punishment”,

and also on the empirical grounds that real players usually do not act

this way.
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Cl C2
R, 1, 1 -3, 5
R2 5,-3 0, 0
Matrix 18

The inductive solution of the Prisoners' Dilemma game includes
mutual ¢€oeoperation as a possible outcome. The game of Matrix 18 for

example has strategic probability matrices for Player 1 given by Matrices

19, 20 and 21.

5 5 ' -
2-74 794-1 P 1-p
1 -gqg q 0 1
with .8 £ gq<1 with .8 £ q=< 1 with 0 < p< .75
Matrix 19 Matrix_ 20 Matrix 21

In the event of Matrix 19, both players are certain of a mutually coop-
erative choice since the utilities of R1 and C1 are higher than those of R2 and

C2. For Matrix 21, R2 and C2 are certain. If the players hold a probability
matrix of the form of Matrix 20, any of the four outcomes is possible since
the utilities of both strategies are equal. The unconditional probabilities
associated with Matrix 20 may be calculated. They are Pr(R1 and Cl) =

(8 -5a)(1-q)/q and Pr(R, and C,) = (5q - 4) and thus the probability

of mutual cooperation can be ppsitive, as shown in Figure 3.

Note that the inductive solution sometimes rationalizes cooperation and

sometimes non-cooperation, depending on the players' views of the evidential

Figure 3 About Here




P(C,IR,)

P(C,IR>)

Figure 3, The inductive solutions (solid line) and Nash equilibrium (square)

for the Prisoners' Dilemma game of Matrix 18,
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relationships among the moves. The theory is not an argument for the
cooperative choice, but it explains only the possibility of this choice,

At least two other justifications of mutual cooperation have appeared.
One is the theory of metagames (Howard, 1971) and the other is based on the
theory of infinitely repeated games (Selten, 1978).

Comparing these with the present approach, each stresses a different
aspect of how the Prisoners' Dilemma game is imbedded in real-world situations.
The theory of metagames may be interpreted to suggest that players typically
do not choose strategies in an isolated game, but adopt dispositions to play
such games in a certain way (Robinson, 1975 ). The theory of infinitely re-
peated games suggests that conflict situations may occur again and again in-
volving the same opponents. Our own solution emphasizes relauionsh{bs of
evidence. The three approaches are complementary in explaining people's
behaviour.

As well as the empirical question of how to predict behaviour there is the
theoretical question of what constitutes rational behaviour in an abstract
situation. Here we believe the inductive solution has an advantage. The
other concepts do not (and for some authors were not intendsd to) address
themselves to a one-shot game with the two specified moves. They introduce
either mixed strategies and extra games in the case of the theory of infinitely
repeated games, or extra strategies in the case of the metagames theory.
Rational behaviour is delineated for a situation different than
the one facing the prisoners. The inductive solution, in our view, answers
the question as it is given.

3) The inductive solution avoids certain logical difficulties in the

rationale for the minimax theory.
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The most careful justification of the minimax theory that we know of
is the treatment given by von Neumann and Morgenstern (1953). Except for
the novel approach of Harsanyi (1973), all subsequent justifications seem
to be variations on the original.

They offer two lines of argument, one based on the idea of '

'security
levels", (1953, their section 14.5 for games with saddlepoints, and section
17.8 for games without saddlepoints), and the other known as the "indirect
proof'" (section 17.3). The two arguments complement one another in von
Neumann and Morgenstern's view, the security argument showing that the
minimax solution is satisfactory, and the indirect proof that it is uniquely
so_(p. 148, footnote 5). We will evaluate each argument now.
Regarding security levels, they point out two advantages of the
minimax strategy for Player 1:
A) it guarantees 1 a value v, no matter what 2 does, v being
the highest such lower bound (1953, 14:C:d, 17:C:d).
B) it limits Player 2's gain to -v, no matter what 2 does, -v
being the lowest such upper bound (1953, 1l4:C:e, 17:C:e)
On this basis they assert that the '"'good way for Player 1 to play" is
to use a minimax strategy (1953, 14:C:a, 17:C:a). They regard this as a

"good way' in the context of games (1953, 14:5:2, second

definition of
paragraph).
First of all it is not clear what the innate advantage is of consider-
ation B), limiting the opponent's maximum; Players are not malicious. Any
of the attractiveness of B) to Player 1 is due to the game being zerosum,

so that B) indirectly results in a higher minimum payoff to player 1 himself,

but this has already been stated as consideration A), and thus B) is superfluous.
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Focusing on consideration A), why should Player 1 be concerned with
his minimum possible payoff as opposed to, say, his maximum? He is not assumed
to be risk-averse. Clearly the concern with security levels is a version of the
well-known maximin rule of decision-making under uncertainty.

The maximin rule of decision-making strikes us as. arbitrary in general, and especially
inappropriate in the context of gamés_ Note that by using the maximin decision
rule (i.e., the minimax strategy (%,%)) in a game such as Matrix 22, Player 1

is also, unfortunately, placing an upper bound on his own payoffs,

Matrix.22

the worst possible upper bound. Player 1 can never achieve more than O,

because of his own strategy choice. The minimax strategy is the unique

one for which this is so and thus is uniquely bad from this viewpoint. To be con-

cerned with the lower bound and ignore the upper bound is to be arbitrary or pessimistic.
It seems specially inconsistent for these authors to advocate (%,%) on

the grounds of consideration B), that Player 1 is placing the lowest roof

on the opponent's gain, yet ignore the fact he is at the same time limiting

his own gain in a similar way (Ellsberg, 1956; McLennen, 1977)

This critique applies as well to games with saddlepoints. In the case
of Matrix 23, each player uses his first pure strategy according to minimax,

but each is thereby decreasing his own maximum possible gain.

3 4 5
2 5 0
1 0 6

Matrix 23



The maximin rule of decision-making generated substantial interest at
the time of von Neumann and Morgenstern's writing, but since then its
shortcomings have become well-known. It is odd that the security level
argument which we have argued to be a version of the maximin rule has con-
tinued to be accepted in the theory of games.

A proponent of the argument might respond that a player by deviating
from (%,%) opens himself up to exploitation. But the game is to be played
only once and there is no provision for Player 2 spying on Player 1 or
engaging in any form of precognition about his strategy choice. Player 1
can therefore ignore the exploitation argument.

Von Neumann and Morgenstern themselves explicitly reject dynamic

arguments that assume sequential play (1953, 17:3:1). The "indirect proof",

‘ﬁo which we now turn, was intended to justify such dynamic considerations,
including possibiiities of being "found out", as heuristic guides even
though the game is played only once.

They state the indirect proof as follows:

"[The indirect proof] consists in imagining that we have
satisfactory theory of a certain type, trying to picture the
consequences of the imaginary intellectual situation, and then
drawing conclusions from this as to what the hypothetical
theory must be like in detail . ., . Let us now imagine that
there exists a complete theory of the zerosum two-person game
which tells a player what to do and which is absolutely con-
vincing. If the players knew such a theory, then each player
would have to assume that his strategy had been 'found out' by
his opponent. The opponent knows the theory and he knows that

a player would be unwise not to follow it, Thus the hypothesis
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of the existence of a satisfactory theory legitimizes our
investigation of the situation when a player's strategy is

found out by an opponent.”
(1953, pp. 147-148)

Only the minimax strategy remains sensible after it has been
discovered and thus, it is argued, it must be the rational strategy.
Von Neumann and Morgenstern's view is that the indirect argument
justifies the application of the spyproof argument. Each player
should play as if his strategy were to be found out by the oppo-
nent, but he were not to find out the opponent's.

What have von Neumann and Morgenstern really demonstrated?
They have not shown that minimax strategies must be the unique

solution. They can conclude only that if a unique solution exists,

it must be the minimax. This is a weaker statement since it is
conditional on the solution being unique.
A theory of rational action can fall into one of three cate-
gories:
A) the theory can state that no strategies are rational in
the situation,
B) the theory can specify a unique strategy as rational,
C) the theory can specify a set of two or more strategies as
rational.
The indirect argument shows that the premise B) leads to the
minimax, but to derive the minimax without qualification A) and C) must
be ruled out. Von Neumann and Morgenstern accept the view that the indirect argu-

ment must be complemented by some further proof to show that a solution does exist
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(1953, p. 148). They state that the security level properties of the
minimax and its guaranteed existence for all finite two-person zerosum
games, provide this proof. They have thus attempted to rule out the poss-
ibility of A) but have not attended to C),.
) If the possibility is admitted that two or more strategies are
rational, the argument that an opponent can deduce one's strategy and therefore a
player must act as if his strategy had been found out, cannot be made.
It seems odd to us that von Neumann and Morgenstern use an argument

that involves B) as a premise, since for many games (e.g., Morra) the minimax
strategy itself is not unique, and their own n-person solution is not unique.

- A further clue that something is amiss is shown by Matrix 24, published by

Harsanyi (1964).

3, 1 0, 2

1, & 2, 0

Matrix 24

An argument based on security levels leads to the maximin strategies
(1/4,3/4), (2/5,3/5). An argument based on the indirect proof leads tc s
choice of the equilibrium point (4/5,1/5), (1/2,1/2). The two arguments
lead to divergent strategy choices and thus contradict each other.

Of course Matrix 24 is not a zerosum game, whereas the sections of
von Neumann and Morgenstern's works quoted above are intended to apply only
to zerosum games. However there is no reason why the arguments if wvalid should

not apply to Matrix 24 even though they were not intended tc. The contra-

diction that arises shows that there is a logical fault in the arguments.
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The inductive solution avoids the concept of security levels, and
modifies the indirect proof to a form which we believe to be logically
acceptable.

For zerosum games it leads to expectations for the players identical
to the minimax value. In games such as Matrices 22 and 23, it is appropriate
to regard the moves as providing no evidence for one another. In this
case the inductive value of the games is identical to the von Neumann
and Morgenstern value of the mixed strategy extensions of these games,
The players' degrees of belief in the occurrence of the various outcomes
are numerically identical to the minimax solution's relative frequency
probabilities of these outcomes. In a sense the inductive solution
provides an alternative reason for coming to the conclusions reached by
the traditional theory. This particular application of the inductive
solution does not involve the use of act-dependent probabilities

which some authors have found philosophically objectionable,

4) The inductive solution gives a unified basis for individual decisions

and games

The most significant advantage of the inductive solution in our view
is a philosophical one: the special rationale of an equilibrium and its
use in the context of static games are eliminated, and replaced by consideration
of the probabilities the players can hold given they are in a game situation,
This brings a non-cooperative solution under the domain of regular decision

analysis.
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Appendix - Proofs

We will abbreviate PrG(sia\U) by Pa’ and abbreviate PrG(silal N
® Is. N...s, ., ) where all players {i,,...,i,, j;,...,],} are distinct,
Loy 33 18, 1 k’ J1 )
by P . T le, P . ..) is written P | _.
y A seeer 51,...,Bz hus, for example rG(sla\sJB) is wri n &\B

These are well-defined since by AILI (symmetry) the probabilities are in-
dependent of the particular players using each strategy. The integers {1,...,k]}
will be denoted Ik'

Five lemmas will now be stated for use in the proofs of the theorems.
The first three follow easily from the axioms of probability and the proofs

will be omitted.

Lemma 1. Let e and e for i € I, . be events such that e N ej = ¢ for

k
i #jand U e, = e. If PrG satisfies AI (probability), then
i€l
k
b
{€I PrG(ei\e) =1.
k
Lemma 2. If PrG satisfies AL (probability) then
P =P X P eee X F .
apeea e T Falay. o X Foylag.ia o le

Lemma 3. If PrG satisfies AI (probability), if e ¢ e' € §G and

e" €4, -9

then PrG(e\e") < PrG(e'\e").

Lemma 4. Let G € égc. Suppose PrG satisfies AI (probability), AII (symmetry),

AIII (positivity) and AIV (sufficiency). If m = 1, then Pala = Pa =1,

If m = 2 one of the following, L1), L2),...,0or L6), is satisfied:
L1) for all q,8 € Im, o # B,

either 1 > P >P >P >0
ala o aIB

or 1> Pala > Pa = P&‘B =0



L2) for all ,B €I , « £ 8,
a|p

L3) for all o,B € I, # 8

1>PC£\ =POt=POl|ﬁzo’
L4) for all o, € Im, o B

P =P =P =0 1

ala o ML or 5

L5) for all o,B € Im’ o ¥ 8

either 1 = P =P >P >0
a‘d o OllB

or 1>P >P =P = 0,
ala o a‘B
L6) for all ¢,B € I.« £ B

P =1, Pa =0 or 1, and Pa\B = 0,

a\a

Proof of Lemma &:

If m =1, then Lemma 4 is satisfied as a consequence of Lemma 1,

From now on we will assume that m = 2, By AI (probability) for any a,

P = z

- P P +P, P .
¥ eI - [} als”s

oo o

Choosing a fixed R # ¢ it follows from AIV (sufficiency) that

Pa‘é = PalB so that
P, = Pls 6€¥ ) ;G]Pé P lofa
o ]
therefore Pa = PG‘B (1 - Pa) + Pala Pa
and Pa (l-Pa‘a) = PalB(l - Pa)’ for B # a. (3)

It will now be shown that

P = Pa\B for 0,8 € I, « # B. 4)
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1f Pa = 1 the assertion (4) follows from AI (probability). If Pa-< 1

then P = Pa by AIII (positivity) and the assertion (4) follows from com-

cz‘oz
bining this inequality with (3},

Since Py > 0 for some & EIm by AI (probability), and since 1 2 P&‘S
-3 P{5 by AT (probability) and AIII (positivity), the following_ four con-
ditions are exhaustive! (It follows from the present proof that they are

also mutually exclusive, although we will not need to use this fact now.)

) 3 (1> P55 ~ By > 0)

C2) I (1 P6|6>P6>0)
@3) F (1>Pé|5=P5>O)

C4)y 33 (1

Pals = Py > 0),

The rest of the proof of Lemma 4 will be structured as follows.
Under the headings "Cl" to '"C4" we will assume in turn each condition
Cl to C4. It will be shown that C1 , C2 and G 1lead to statements L1,

L2, and L3,respectively of the lemma, and that C4 leads to either L4,
L5 orLé of the lemma. In each case « and B will be two arbitrarily chosen

strategy types with o # B, and 8 will be a strategy type satisfying the

appropriate condition, Cl, C2, C3 or C4.

Cl). First assume § = @. Then by Cl and by (4) we have for all
> P > P > 0.
B #a, 1 Ot‘Ot 012 Pa‘sand Pa 0

Applying (3) shows that P must be greater than zero, so that

a|8
1>P >P >P > 0 and case L1 holds.
cvlcv o cv]B

4

Alternatively assume 8§ # o but Pcv > 0. Then P6 < 1. By this inequal-

ity, by C1 and by (3) with 8§ and « substituted for o and § respectively,

we have P (1 -P,{)=P (1 -P)>0, and 1L - P, > 1 -P and therefore
5 5|6 5| 5

§ &6’
Py > Pé‘cy > 0, (5)

Multiplying each term of (5) by the positive quantity PQ/]P’\ and ex-

pressing Pépalé as PozPozN glves
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PQ/ > PC(‘5 > Oo (6)
By AIV (sufficiency), and (6)
PQ’ > PC!\B >0, (7)

Since P6 > 0, then Poz < 1. This and (7) implies that both sides of (3)

are positive, so P >P . Then 1> P >P >7P > 0 so that case L1 holds.
ol o ala o a|B
The final possibility under Cl is that Pcy = 0 and & # a. By (4)

and AI (probability) for 2l1 8, 1 2 P 2P =P = 0. But since P >0
ol o ol

8 §|a

which may be shown Similarly to the derivation of (3), and since PS{Q’ +
Pozlcy < 1, then PQ,‘Q, < 1.
To show Pcylcy > 0, by AL (probability)

<
P =1,
-~ v
YEI ,P >0
m’y
But if B, > 0, then B, > B/ |y, shown in a manner similar to (7).

Thus
2 P <1.
YEI ,B, > 0

But since Pcy = 0,

=1- 2 P
via

vEI , P >0

m’ y

so that P > 0. Thus 1> P > P = 0 and Lemma 4, case L1 holds.
oo ala

o = Pal_B
C2). Suppose Pcv > 0 and ¢ = 6. Then €2 and (3) imply Pcy> Palﬂ = 0.

™

i d C = P =
By this and C2, 1 Pcz‘a > Pcy > O’,B 0

and Lemma 4, case L2 holds.

1if Pcy > 0 and o # §, then substituting 5 and o for « and_B respectively

in (3) gives Pé‘oz = 0. From P5> 0 it follows that ch < 1.

Also by AIV (sufficiency),

%‘8 = PQ/I@ = Pé|a <PQ//P6) = O. (8)
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Since Pa‘B =0 and P, > 0, then by (3) we have

Pyly = 1, so that 1 = Pylo > By > qus = 0 and case L2 holds.
Alternatively if we assume Pa = 0 then by (4), for all B # «
Falg = 0 ©)
By AI (probability)
P =1,
Z P g,=1 (10)
vGIm
For any term in (10) with Pv = 0, substituting y for 8 in (3) gives
Pvla = 0. By (9) any term in (10) with P = 0 and y # ¢ is zero, so that
Y v

1= Paloz> P_= Pa‘s

= 0, and case L2 holds.

€3. IfP >0 and o =8, then by virtue of L3 and (3) for « # B,

o o

1>P =P =P
al o

and case L3 holds,

If Paf> 0 and & # &, then P
§ for ¢ in (3), P5 = PG‘B for B # §, and by AIV (sufficiency), P

Multiplying both sides of the latter by Pa/Pé’ we have Pa =P

(sufficiency), P =P . Thus
o o8

i>P =P >00
o

olB

By (12) and (3), 1 >'Pa]a =

(11)

> 0 1implies that Pa < 1., Substituting

5 PGIa'

Q’l 5° By AIV

(12)

~ => 0 and case L3 holds.

If we assume Pa = 0, then by (&) PalB = 0. Also by AI (probability)

S Py =
ver vla
m
But since
bd P = 1
P >0 Y
Y

then by (11)and (12)
> P

P ;b e
Y

as)

Qs)



Comparing (13) and (14) shows that Pa[a = 0 if Pa = 0, Thus case
L3 holds.

C4. By AIV (sufficiency) P is constant for all B # §. Suppose

I .
Pﬁls = 1, Then if Pa'> 0 it follows that o = 8§ and case L4 holds, If
Pa = 0, then Pdls =

Alternatively if we assume 1 > P > 0 for all B # §, it follows

§]8
similarly that case L5 holds. If we assume that PﬁlB = 0 for all B # &,
it can be shown that case L6 holds. Lemma 4 is proven. C

For B € Im’ 1 € Nand 0 < kB < k < n-1 let e be the event that of k

specified players other than player i, exactly k_ are using strategy B.

B

Then we define

fB(k’kB) = PrG(si

the probability that player i is using strategy 8 given the evidence of e,

w

The function f_ is well-defined since by AII (symmetry), it is independent

B

of the reference player i, and by AIV (sufficiency) it is independent of

the particular strategy choices of the k - k

B
type B.

Lemma 5. If PrG satisfies AI (probability), AII (symmetry) and
ALV (sufficiency) then for k< n -1
1) if there exists an o € Im such that fa (k-1,0) > 0, then for

all g € Im’ B # o, and all k, k. such that 0 < k6 <k £ n-1,

B

£ (k,0)
g (k-1,k.),

[*4
k) = 1,00 T

g(kokg) =

B

2) if there exists an o such that fa(k-l,l) > 0, then for all

<k-1,and k<n -1

B € Im’ B # o, and all k, kB such that 0 < kB

f (k,1)

-— _—-—a -
£ (k, k) = EGT,D) £ (k-1,k,).

Proof of Lemma 5: Consider the probability

0. Since P = 1, then P = 0, Thus case L4 holds,
8] o]

39

players not choosing strategy
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P
QBIB...BY...V (15)
in which g, B and 4 are distinct and in which k-1 strategies appear in

the conditioning event, k_ of which are type § strategies and the remaining

B8
k-l-kB are type vy. Probability (15)may be expanded in two alternative ways

by AI, 4), by including o or B in the conditioning event. Equating the two ways gives

P P =P P
alBB...By...y B\B...ﬁy...y B‘QB...BV alB...By...y
where B appears kB + 1 times in the conditioning event of the first probability,

kB times in the second, third and fourth.

Therefore,
£,06,0) £olkol k) = £ (k,k) £ (s-1,0) (16)
for 0 s kB <k <€ n-1.

Under the assumption that fa(k-l,O) > 0, Lemma S5, case 1) follows.
Lemma 5, case 2) may be proved by expanding the probability

in a similar fashion, d

YaBlag...By.. .y

Proof of Theorem !  FOY some o, i, j, A(Pr;) is well-defined, since for some
R Pai> 0. Thus A takes on at least one value.
We next show that A takes no more than one value. 1In case PrG is such

that Lemma 4, L1 or L5 holds,) wheredefined equals P /(Pa - PQ‘B)' By

a\B

AiV (sufficiency), A is independent of 3. To show it is independent of o,
multiply numerator and denominator by the positive quantity PB/PQ' It follows

that A = /(PS - Pslo), which is independent of « by AIV (sufficiency).

P
Bla
Therefore Theorem 1 is true for these cases.

In the event of Lemma 4, 1,2 and L6 clearly A=0 wherever it is defined. Like-

wise for Lemma 4, L3 and L4, A== where it is defined, and the theorem is proved. [

Proof of Theorem 2 If G is a game in..&2 we may add a "dummy' strategy, one

uc

which all players are sure will not be used, to each player's set so as to
transform G to a game in ﬁﬁc. By AVI (extension) the values of PrG restricted to
events involving the original strategies will be unaltered. We can therefore as-

sume from now on that m > 3.
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1. Assume that PrG is such that Lemma 4, L1 holds. Let T C Im be the

set of strategy types § that appear in E—i i.e., n_ > 0, and that have

&
unconditional probability zero, PrG(sié) = 0. The formula for PrG(E_i \s, )

loa
will be derived for any g under each of the following conditions, which are
mutually exclusive and exhaustive.
i) some § # o is in T,
{i) T is empty,
iii) o« alone is in T, and n = 2,

iv) « alone is in T, and n > 2.

In case of condition i), Péla =0, so PrG(s:_i Isio) = 0 by Lemma 3.
Theorem 2 is satisfied with )\ € [0,¢0 since the product in formula (1) con-

tains a zero factor.

In case of condition ii), let y € Im be such that n > Q. Then
Y

P = fy(0,0) > 0. We will show as a first step, that
Y
f (k,0) >0 an
Y
for all k, 0 <k <n - 1. Substituting v for ¢ in Lemma 5, 1) implies that
for any B € I

B

This is true even if f (k-1,0) = 0, since both sides
Y

f (k,0) f.(k-1,k-1) = £ (k,k-1) £ (k-1,0), (18)
v 8 Y

of (18) will equal zero by Lemma 3.
If we assume that f (k,0) = O we can derive a contradiction. If
Y

f (k,0) = 0 then either f (k-1,0) = 0 or £_ (k,k-1) = O for all B. The latter
Y Y

B
is impossible since by Lemma 1 for 8 # & we can consider an event e as evi-
dence in which k-1 players use type 8 strategies, 1 uses type §, and no other

strategy types are used. Then

£ (k,k-1) + fé(k,l + o S E_(k,0) =1
; €L, - {B,8)
and since by AIII (positivity) if fB(k,k—l)‘= 0 for all B, then

fé(k,l) = fg(k,O) = 0.
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The alternative possibility, that £ (k-1,0) = O can be analyzed in
v

a manner similar to the above to show that

£f (k-2,0) = £ (k-3,0) = ... = £ (0,0) =0,

v Y Y
A contradiction is reached since £ (0,0) > 0. Thus £ (k,0) > 0 for all k,

Y Y

0 £k <n-1. We may apply Lemma 5, 1), so that for B EIm’ 0< kB < k < n-1

£ (k,k.) = £ (k-1,k

8 5 8 )-fy(k,O) /fy(k-l,O), (19

B

From Lemma 1, assuming +#1,2

m
£, (k, k-1) + £,(k,1) + 23 £ (k,0) = 1. {20)
§=3

Setting B = 1 to m, successively in (19) and substituting each ia (20)

£y (k,0) £, (k-1,k=1) + £y (k,0) £, (k-1,1)
£, (k-1,0) £, G 1,0)

m
’fv(kfo) Z £ (k,00 = 1,
£y (k-1,0) &=3

Solving the above for fy(k,O),
m

fv(k,O) = fv(k—l,O)/[fl(k—l,k-l) + £, (k-1,1) + Z £ (k-1,00].  (21)
§=3

Formula (21) is a recursive expression in k for fv(k,O) agsuming fy(0,0) > 0.
Values of £ (k,k ) for k > 0 may be calculated as follows. Choose B€Im such that
Y Y Y
P_ >0 and B # §. Nextshowin amanner similar to the derivation of (17) that

B

fa(k-l,O) > 0, Finally apply Lemma 5, 1) to derive for 1 < ky < k-1,

v Y v vy 8 g

Formulae (21) and (22) must be supplemented by an expression for the
case k‘v = k. The following is a consequence of Lemma 1:

£ (k,k) =1- 2 £, (k,0). (23
M BGIm-fv} ¥



Initial conditions for fv can be stated as follows:

f (0,0) =P (24)

v v

£ (1,0) = PVX/ (1+0) (25)
- 6

fy(l,l) (1+PVA)/(1+A). (26)

Expression (25) follows from the definition of A given in Theorem 1.

Expression (26) follows from that definition together with Lemma 1,

It may be verified that the following function (27) satisfies the
recurgive formulae (21), (22) and (23) and the initial conditions (24),
(25) and (26). Since these completely determine fY, the function (27) is
the only one to satisfy them.

£ (kyk ) = (k + P A) (k+)) (27

Y Y v Y .

Function (27) will now be used to calculate an expression for
PrG(;_i ‘Sio)' We may assume that the players in N-{i} are ordered by
the strategies they cboose, i.e., the first q_players use strategy type

1, the next n, use type 2, etc. By Lemma 2

PrG(;_i |Sna)

= fl(n -l’nl-l) X fl (n‘z,nl-z) LY x fl (n-nlyo)
¥« fz(n-nl-l,nz‘l) - X fz(n—nl'nz,o)
e a1 T g
x £ (n-1 bD g=1 g’ n,) x £ (n-1 - & oog ngs 1)
«ve n-1
x £ (o1 - Ens, o -1 x £ (1,0 (28
=1
where factors fY appear in (28) only for those strategy types v such that
n >0.
v

Substituting {27) in (28) 8ives the formula of Theorem 2, 1).

s,

In case of condition iii), n = 2 so that determination of PrG(E*-l i

involves only the values P and P,y .
Q‘d S
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IfP. =0 and 8 # o then P,|_ = 0 by (4) and therefore P | = 1.
ale ola
If PB > 0 there exists some 6 # B with P, > 0 by Lemma 4, 1). Then

PQ‘Q = Pe‘y by AIV (sufficiency) and we can then define A as in (23) to get

Pole = PoA/(1+1) - (29)
To determine Pd\a’ we have by Lemma 1,
=1 - P
Pa\a 1 éza 8lo
=1-2Zp . (30)
P8>O Blﬁ’
By (23),
Pa‘a =1/ +1). (31)

These values of P and Pdld’ (29) and (31) respectively are

Bla
consistent with Theorem 2, with A € (0, «).

Under condition iv), for any & with n, >0 and 5#« a formula may be

8
derived for % (k,k.), k62 0, analogous to (27). For the purpose of
substitution in (28), we also require a formula for fa(k’ka)’ ka2 1.

Lemma 5, 2) may be used as in the derivation of (21) to give

£k, 1) = £ (k-1,1)/[£ (k-1, k-1) + £,(k-1,1)

m
+ L f (0], (32)
5=3 O

For k°!> 1, fd(k’ka) may be determined by using (22) and (23) sub-
stituted for ..
Initial values of £ are determined as follows.

o
fa(l,l) =1-2 Pe‘a
Pg>0
as shown by (30).
Choosing B, v such that P_, By > 0 we may define X\ as in (23). Then
‘ s

Palg = Paofy= Po A/ (1 + ), so that fa(l,l) =1/(1+).
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Thus fcy(k’koz) is completely determined for k, = 1 and it may be
verified that (27) satisfies the initial conditions and the recursive
formulae. In a manner similar to case ii), (28) is applied to show that

Theorem 2 holds with A € (0,%).
2. Assume Lemma 4, L2 holds. If s ; contains a strategy type B # «

then by Lemma 3, PrG(E 1lsicx) =0. Ifs i contains only strategies of

type «, then PrG(.;_i Isia) = 1 since the probabilities of all possible ;-i

conditional on sia must sum to 1.

Thus the assumption of Lemma 4, L2 leads to Theorem Z with
A =0.

3. Assume that PrG is such that Lemma 4, L3 holds. 1If PB =0

> s = a 3.
for some B such that nB 0, then PrG(s -1 lsia) 0 by Lemma 3. If

P8 > 0 for all strategy types B that appear at least once in s _i

then we can deduce {(21), (22) and {23) as above. Initial conditions

fa(0,0) = fB(l,O) = fﬁ(l,l) = PB lead to Theorem 2 with A = o,

4. Assume that Lemma 4, L4 holds. Let 8§ be the unique strategy

type such that P, = 1. By assumption of Lemma 4, L4, P = 0 for

3 g le

B # § and thus by Lemma 3, PrG(s -i Isioz) =0 if ng # n-1. Since the
probabilities of all s , conditional on s, must sum to 1, then
PrG(-; i lsia) =1 if ng = 1. These values are consistent with Theorem 2 with )\ = =,

5. Assuming that Lemma &4, L5 holds, let 8 be the unique strategy

such that P, = 1. If & = oand n_ = n-1, then Pr (s _ |s, ) = 1. 1If
8 o G -4 io

. < - — - 3
n, n-1, PrG(s_i |sio) 0. These values follow from arguments similar

to those of case 4.
~ 1 < - o = .
If § # ¢ and if n, + n, <n 1, then PrG(g_i lsio) 0 by Lemma 3

If § # « and o, 4+ n_ = 1 we may proceed as in case 1) to deduce

PrG G-i lsi )

o4

na!/ [(n-1+0) ... (n-na-i’k)] .
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This formula and the other values of PrG given previously are consis-
tent with Theorem 2, with \ € (0,=).

6. Assume Lemma 4, L6 holds. 1If §_i contains a strategy § with § # o
then PrG(g_i!sia) = 0 by Lemma 3. The sum of the probabilities of all §_i
conditioned on s must equal 1, so that if n = n-l, then Pr (5 .]s. ) = 1.

i o G -i'"ix

These values are consistent with Theorem 2, with A = e,

Theorem 2 is proven. C

Proof of Theorem 3

It will be shown that whether 1), 2), or 3) holds depends on whether )

n
is less than, equal to or greater than (a-Da -1 °

First we assume

Il

A= aDa - 1

(33)

and derive case 2).
Let En(C) and En(D) be the expected utilities of a player using the

cooperation or defection strategies, respectively. Then

n-1
En(D) = 25 (ngl) PrG(j specified players use C|player i uses D) x UD(j), (34)
3=0

Using the value for PrG given in Theorem 2,

n-1 (G-1H+P A) ... (P M) (n=3=1+P A) ... (P A) 5 4
-1 C C D D J 2 (35)
En(D) - gzz(nj ) (n=1+1) ... (1+0) n-1 2 °

We will assume that n = 3. Abbreviating the lengthy second factor in

(35) as £(j-1,n-j-1,n-1) and combining the first and third factors into the

. n-2 .
single binomial coefficient (j-l) yields

2 A+l

n-1
n- . s - AL
E (D) = El(j_l) £(j-1,n-3-1,0-1) =
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Expanding the binomial coefficient as the sum of two binomial coefficients,

A+l

n-2 n-3
E (D) = Z (5] £(i-1,n-3-1,0-1) 5=

3=

n-1
+ 23D fG-Lnm5-1,00n B
j=2 J- A

We now change the index of summation of the second sum from j to j+1,
and perform the following two substitutions that are derived from the def-

inition of f(j-1,n-j-1,n-1):

n-j '_'1+PD)'
f(j-1,n-j-1,n-1) = ——;:I;K——-f(j-l,n-j-2,n—2)
j+PCX
f(j,n-j-2,n-1) = STy £(j-1,n-j-2,n-2).

This gives

=]
1
N

n-j-1+P_2a

_ D~ ,n-3 : . A+l
E (D) = R Ty (j_l) £(j-1,n-j-2,n-2) x
n-2 j+P )
c* ,n-3 . . A+l
LRy (j_l) £(j-1,n-j-2,n-1) U
ji=1
Combining the two sums into one, and substituting PD = 1-P, yields
n=-2
ED = & (%2 £(3-1,0-5-2,0-2) 22
n . j-1 2
j=1
= n-l(D)'

Thus the expected utility of .a player who defects is constant, indepen-
dent of the number of players in the game. Substituting n=2 in (35) gives

EZ(D) = PC, and thus all En(D) are equal to that value,

It can be shown in a similar way that En(C) = PC’ under the assumption of
(33). This proves the claim of Case 2) of the theorem that all players have

expected value P To derive P,y aud PD{P’ we use (33) and the definition of ).

c’ Cid

and to derive the expression for PrG (nC = i) we substitute (33) in Theorem 2

and use
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PrG(exactly n, players cooperate)

c
= PrG(exactly nc-l other than player i cooperate[player i
cooperates) X PrG(player i cooperates)

+ PrG(exactly n, other than player i cooperates[player i defects)

C
X PrG(player i defects)

If A is assumed less than or greater than the critical value in (33), the
two other cases of Theorem 3, can be derived. C

Proof of Theorem 4

The probabilities of moves by single players, P,, P and P can

¢’ °p’ PD]C’ c|p’

be derived as limiting values of the probabilities in Theorem 3, as n - w,
It must be shown that the probability of proportion x, as derived from the

formula of Theorem 3, 2), approaches that of Theorem 4, 2).

n

From Theorem 3, 2), for finite n and letting X = (n-1)a - 1°
a! (xn=1 + PA) ... (BA) ((1-x)n-1 + Bp)A) ... (M)

f(x)
(xn)![(l-x)n]! (n=-1+) ... Q)

(xn-1+PCX)...(PCx)((l-x) n-l+PDX)...(PDX)

(xn)! [(l-x)n]!

=k

where k is a constant independent of x.
Using T(z) = (z - 1)!,
I'(xn + PCX) I'({(l-x)n + PDX)

L .
(xn + 1) (T'((1-x)n + 1)

f(x) = k
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- o
Using Stirling's approximation ['(z) ~'(2n)%2 277 z, for large n,

xn + PCA-% (l-x)n + PDK-%
(@ + PCX) ((1-x)n + PDX)
f(x) ~ k2
L - L.
o+ DX T E (Qoon + 1y R E
xn + P A-%

( . oM c"

~ k3 L Xxn < PC)‘.1 *
. 1 \Xn + %
(1+=

xn
-x)n + P_A-%
(1 N P\ (1-x)n + PpA-% P o1
. EESTY) ax > .
(1-x)n + %
(1 +___1...__.\‘, B e e
\ (1-x)n/
B , x\n + ¢ x
Since 1lim Kl +-—) = ", we have
n— o
P A-1 P -1
£x) ~ Ky x C (1-x) P

where k., k,, k, and k, do not depend on x.

1’ 720 ™3 4
Thus f(x) is a Beta distribution. Substituting A = 1/a gives

proportionality as stated in Theorem &4, 2).

Proof of Theorem 5

The mixed strategy extension of G, G° is defined as the game in

which each strategy set Si in G is augmented by all mixed strategy combinations
of the strategies in Si' The payoff function of G~, U’, is defined such that
each element u{ is the unique extension of uy that is linear in the weights

determining the mixed strategies.
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Nash's well-known theorem (Nash, 1951, Theorem 1) shows that G possesses
an equilibrium point. If G £ éUC’ let %n be an equilibrium point that
reflects the symmetries of the game. It will always be possible to choose

such an equilibrium (Nash, 1951, Theorem 2). Let P be a function on

5G x 6G-w giving the relative frequency probabilities of the various
conditional events (involving pure strategies) when the players use En.

It can be verified that Axioms I to VI are satisfied by P by
virtue of the symmetry of En or by the latter's equilibrium point properties,

so that P is strategic for G.
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Footnotes

The general principle we are using here, equivalent to A3, is that if
player 1l's strategy s, has maximal expected utility according to the proba-
bility matrix, and player 2's strategy sj does not, then Pr(sj]si) = 0,

2The following formulae calculated from Matrices 6 and 7 give the uncon-
ditional probabilities and payoffs for the game of Matrix 1.

Pr(R, and C)) = (1+4q)(1-q)/(7-8q) 3/8sqs= 3

4
=1 23: sgsl

Pr(R, and C,) = q(3 - 4q)/ (7 - 8q) % < q < 3/4
=0 3/4 < q<1

Pr(Rl and C,) Pr(R, and cl) (3-4q)(1-q)/(7 -sq)

=0 3 <2421
4
Payoff = 4(1 -q) % = q=<3/4
=1 % =g<l1

3This is an overly narrow concept of what constitutes evidence of one
move for another., A development of the theory would include other factors,
such as the idea that if the payoffs of players were numerically close to
being symmetrical we would expect a relationship of evidence to hold.
Another way to expand the concept of evidence would be to base it on
symmetry not in payoffs but in the best reply structure of the game, the
mapping of each strategy n-tuple onto the set of strategies n-tuples where
each player uses a best reply to the original n-tuple.

hThe notation ")\" was introduced by Carnap (1952) who proved theorems
like our theorems 1 and 2 but in the context of inductive logic. A typical
problem in inductive logic deals with an investigator who samples a series
of objects each of which has one of n different possible properties. The
investigator wishes to determine the evidential probability that an object
outside the sample has a given property.

The Greek letter ) stands for the weight given the logical possibility
that the next object will be a new and different one, compared to the
weight the investigator puts on the empirical evidence that it will be
the same as the objects found in the sample.

Carnap dealt with the case in which the a priori probabilities of all
properties (in cur context, of all strategies of a player) are equal.

The theorem is here extended to the case in which PrG(SialU) may vary with

@, including the case in which this probability is zero for some «. Zero
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probabilities like this were rejected by Carnap as inappropriate for in-
ductive logic on the grounds that an investigator should not have a closed
mind toward some logical possibility., Surprisingly, in our context of

the theory of games, the situation that for some o, PrG(siaIU) = 0, arises

regularly as one of the possible consequences of AVI (ratiomality). A player
must assess conditional probabilities on all moves including those that have
suboptimal utility and are therefore certain not to occur.
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