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(TOPOLOGICAL) SEMIVECTOR SPACES:

CONVEXITY AND FIXED POINT THEORY

Prem Prakash and Murat R. Sertel

INTRODUCTION AND PRELIMINARIES

In this paper, we first introduce the notion of a (topological)
semivector space. Without speaking too roughly, (topological)
semivector spaces are to (topological) semigroups as (topological)
vector spaces are to (topological) groups. We extend the notion of
convexity to semivector spaces and study consequences of "pointwise
convexity" (i.e., convexity of singletons). This is done in
Section 2, where a structure theorem (2.8) is obtained for pointwise
convex semivector spaces and a sufficient condition is found (2.10
and 2.11) for the embeddability of such spaces in vector spaces.

In Section 3, we identify and briefly study a hierarchy of local
convexity properties in topological semivector spaces. Lastly, in
Section 4, we establish fixed point properties for compact convex
subsets when such sets are locally convex in one or another sense.

In general, we define a semivector space over a left skew
semifield, by which we mean a bimonoid <®, +, .> 1in which
<®, .> 1is a group with zero 0 distinct from its identity 1,

<®, +> 1is a commutative semigroup with identity O, and the
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(unitary) left action of <®, .> on <®, +> is homomorphic:
a.B+Y)=(@.B) + (@.Y). We term a left skew semifield

<®, +, .> simply a semifield when the multiplication (.) is
also commutative. The set R+ of non-negative reals under the
usual addition and multiplication will be referred to as the usual

real semifield. N. B. Unless otherwise indicated, in this paper

the set R of real numbers will carry its usual topology and R+

will carry the subspace topology.

Definition: Let <@, +, .> be a left skew semifield, and
<S, > a commutative semigroup. Let Y:8x S -+ S, where

we denote Y(A, s) = As, be a map satisfying

Axiom 1: A(us) = (A oWs (left actiom)
Axiom 2: s € Bs (unitariness)
" Axiom 3: A(s ®t) = As @& At (homomorphism)

for all A, W €® anl s, t €S, S will be called a

semivector space over ®, convex iff ® contains the usual

real semifield. When S and ® are topological spaces, S
will be called a topological semivector space over ® iff &
and Y are continuous. N. B. Unless specifically indicated
to be otherwise, a topological semivector space will be

assumed to possess Hausdorff topology.

Example 1: Every left skew semifield is a semivector space
over itself.

Example 2: A cone C in a real vector space V (i.e., a



subset C CV with C+ CcC and, for each X € R, AC c C)
forms a (convex) semivector space over R+. In particular, this is

true if C 1is an ordered cone semigroup, i.e., its natural pre-

order is, in fact, a partial order, which is equivalent to saying
that Cc N -C = {Q}. (The cone semigroups studied by Keimel [4,5]
and Lawson and Madison [6] are of this type.)

Example 3: Given a real vector space V, the set [V] of
nonempty subsets and the set 2.[V] of nonempty convex subsets in
V, each forms a convex semivector space (of which .2[V] is
"pointwise convex! -- see 2.3). Radstrom [9] has shown that, when
V 1s a normed space, the set x:z[v] of nonempty compact and
convex subsets of V 1is (a topological semivector space, and)
embeddable in a normed vector space. Then, RCZ[V] is, of course,

a cone, but not an ordered cone semigroup: X]Z[V] = -(Rﬁ2[V]).

Given a semivector sprce S over @, for each A € @,

define the 'A-transition" Yx: S +S by Yk(s) = As., 1In view of
the fact that <®, ,> 1is a group with zero, it is easily seen
that the second axiom of the definition (1.0) above is equivalent
to the requirement that Yl be the identity map of S, i.e., that
ls = s should obtain for each s € S. From Axiom 3 we see that
each transition of S is an endomorphism of S, 1In fact, when

A # 0, Yx is an automorphism of S, so that Aw=w if weSs
is identity or zero in § (L # 0). When Y 1is continuous, then
YK for each A # 0 1is not only continuous but (since YH for

is also continuous) it is furthermore both an open and a

>

H:



closed map. Then {YK| A ¢ B\{0}] is a group of iseomorphisms
of S. Of course, as in topological semigroups, ''s-translation"
s

® : S +S (defined by &S(t) =s @t (t € 8)) 1in a topological

semivector space S mneed not be open.
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2.0

2.1

2'2

CONVEXITY & POINTWISE CONVEXITY

The familiar notion of convexity for vector spaces extends

naturally to semivector spaces:

Standing Notation: We denote the simplex {(XO, sees Km)

m+1 m _ _
€ R, | EO Xi =1} by Am (m=20, 1, ...).

1

Definition: Let S be a convex semivector space. Given any

7

two points x, x' € S, their segment [x:x'] is defined to

be {s =ix®A'x’| (A, A)) ¢ Al}. A subset T C S 1is called

7

convex iff [X:x'] C T whenever x, x' € T.

Thus, what we call a convex semivector space (see 1.0), indeed
checks to be convex accoring to the above definition.

The following are plain: if A 1is convex in a semivector
space S, then WA = {ua| ae€ A} also is convex (U € R+); if

too, is convex in S, then so are A ® B = {a & b| a €A, be B}

and all convex combinations AA ® A'B  ((A, \') € Al). Of course,

the intersection of any family of convex sets is convex. Again,

as one is accustomed to in topological vector spaces, we have

Proposition: In convex topological (not necessarily Hausdorff)

semivector spaces, topological closure (Cl) preserves

convexity.

Proof: Let Q be convex in S, a convex topological



semivector space. If Q = ¢ there is nothing to prove, so
let q, q' be adherent points of Q. Suppose Aq & \’q’

=g ¢ C1(Q) for some (A, \') € Al. Then there exists a nbd
V of q disjoint from C€1(Q). Then map (: S x S =+ S,
defined by ((x, x’) = Ax ® \'x’, being continuous, there is
anbd Ux U’ of (q, q') such that QU x U’) € V. Since
q and q’ are adherent points of Q, there exists (y, y’)
€ Ux U’ such that y, y’ € Q. Then, by convexity of

Q, Xy, v’') €Q, a contradiction. Hence, q € Cl(Q) and

Cl(Q) 1is convex, as to be shown.

Not all aspects of convexity in (topological) vector spaces
carry over, however, to (topological) semivector spaces. We give
the following examples of convex (topological) semivector spaces

so that we may discuss som¢ of the pathologies which they allow.

Example 4 ('Max Space'): Take §S = R, with s @ t
= Max(s, t), and define scalar multiplication V¥: R, x § 48 as
the usual multiplication. Then S 1is a convex semivector space,
topological when R, has the usual topology. Here [x:x']
= [;EEL;7; Max(x, x')], unless x = x' = 0; and [0:0] = {o}.
Example 5 ('Min Space'): 1In the above example define,
instead, s ® t = Min(s, t), leaving all else as is. This too

gives a convex semivector space, topological when R+ has the

usual topology. Here [x X ] [0, —————7] unless x = x = 0;

#
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and [0:0] = {0}.

Example 6: Take S to be the set
subsets A, BC R with A & B =

as usual (\ €

AA = {Xal ae€Al,
semivector space, topological when
[a:8] = faa e x'B] (A, ) e}
Example 7: In Example 6 set
leaving everything else unchanged.
semivector space, topological when

however, [A:B] = R} U {xa 8 \'B|

The first ''pathology' to note

[x:x'] with x, x’

[x:x'}

Segments are all copnvex in

convex (e.g.,
space where every segment

4
X, X W

and 7.

neither of their generating points:

[x:x'] with x, x’ > 0;

any two-element set A = {a, a'} €

{a + bl a €A, be B}

and in Example 7, consider

[R] of all nonempty
and
R).

This yields a convex

all spaces are discrete. Here

0OA =R for every A € [R],
Again, we obtain a convex

all spaces are discrete. Here,

A=( -2 e (0, DI

is that segments need not be

> 0 in Max Space), even in a

owns its "'generating points,"

the spaces of Examples 5, 6

But even so, Examples 5 and 7 allow segments which own

in Min Space consider any

[A:A]

Finally, while in

for

(R

Example 6 segments are all convex and own their generating points,

even then singleton sets need not

A CR 1is convex.

be convex: {A}> [A:A] iff

The discussion so far already motivates the following

definition

Definition:

Given a convex semivector space S

and a subset



TcS, T will be said to be pointwise convex iff each

{x} Cc T 1is convex.

Given a convex semivector space S over a semifield @ (containing

R+), the largest pointwise convex subset T C S 1is evidently a

semivector subspace: if x, y € T, then A(x ®y) @ A'(x ® y)

]

Ax ® 2'x) ® 0y @ \'y) =x @&y, and for any 8 € B, A(8x)

(=)

ABx) = A.B)x 8 (\V.8)x = B.M)x ® (B.ADx = 8(Ax & A'x)

Bx (O, A e Al). From here on we will be concerned with
semivector spaces which are pointwise convex.

Now, for a convex semivector space S to be pointwise convex
is the same thing as for it to obey the distribution (XA + W)x
= Ax @ ux for A, W € R, (x €8). Clearly, if this distribution
holds for the integers A, U € R,, then it holds for the rationals
A, 1€ RS thus, if furthermore S 1is topological, then the
distributive formula extends for the whole of R+. (In this
context, it becomes interesting to note that if the mentioned
distribution holds for the integers in R+, then S 1is uniquely

% x 1s the nth root of x (cf. [1]).)

divisible:
In pointwise convex spaces, while segments [x:x'] and (by
definition) singleton sets are always convex, segments may fail to

own their generating points: in Example 8 below, the segment

[(O, 2): (1, 3)] fails to own the generating point (0, 2).

Example 8: Take S = {0, 1} x R, with (5, x) & (6', x")

= (Max(6, 6'), x +y), and define scalar multiplication



2.4

2.5

¥: R x S+ 5 by A5, x) = (5, Ax) (5, 8’ ¢ {0, 1};
X, x', A€ R+). S 1is a convex semivector space, topological when

S has the product topology of 2 = {0, 1} discrete and R, usual,

Nevertheless, given a set A C S 1in a pointwise convex semivector
s A .

space S, 1its convex hull A (i.e., the smallest convex set

containing A) -- and, hence, every convex set in S -- has the

constructive characterization of

Proposition: Let S be a convex semivector space, and let

A C S. Denote the set of finite subsets of A by J(A),

and, for each F = {ao, cees am} € #(A), define (the "closed
i " o = LN L L]

simplex') O(F) = fAja, @ e a | (O s A ) et

A
If S 1is pointwise convex, then A = U{O(F)I F e J(a)}.

Proof: Assume that S is pointwise convex., Denote 2(A)

= U{O(F)I F € ?(A)}. 4 < ¥(A) 1is clear. To see the
convexity of Z(A), take any p, p’ € L(A) so that p € O(F)
and p' € o(F') for some F, F' ¢ F(A). Take any

(A, ') e h; and check that Xp & A'p! € o(F UF’') c ).
(Pointwise convexity is used to collect coefficients of
elements, if any, in F N F’.) Taking any convex set Q DA,
one shows O(F) € Q for all F € %(A) by induction on the
candinality of F. This then establishes X(A) € Q and
completes the proof,

#

Remark: Defining the closed convex hull of a subset A 1in a
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convex topological semivector space S as the smallest closed
convex subset of S containing A, from 2.2 we see that this

is nothing but Cl(A).

In a pointwise convex space S whose '"origin" 0S is
singleton, say 0S = {e}, e 1is the identity of S: e & x

=0x ® 1lx = (0+ Dx = 1x = x.

2.6 Proposition: A pointwise convex space S has a singleton

origin iff x, x’ € [x:x'] for all x, x! € s.

Proof: 1If the origin 0S is singleton, say O0S = {e}, then
e 1is the identity, and Ox & I1x’ =x’, 1x 6 Ox’ = x

e [x:x'], showing ''only if." To see "if," take any

0x, Ox’ € 0S and note that their segment [Ox:Ox']

= [Ox & OX'} is singleton, so that {Ox, Ox'} C:[Ox:Ox']
implies O0x = 0x’.

#

Thus, among the convex semivector spaces, it is precisely the
pointwise convex spaces with singleton origin that are free of all
the "pathologies' discussed after Example 7. Furthermore, in such
spaces the characterization of convex sets is the familiar one

which obtains in real vector spaces:

2.7 Proposition: Let S be a pointwise convex semivector space,
and let A < S, For each F = [ao, eany am} € F(A) (see 2.4),

define (the "open simplex'") OF(F) = 1 cee O Xma

an &

m
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' 0, vees A) €A with A, >0 (i =0, ..., m)}. If
m m 1

O 3
A k3
0S 1is singleton, then A = {o (F)l F ¢ 7(a)}.

Proof: Define Z*(A) = U{O*(F)I F e J(A)}. Now, recalling
the proof of 2.4, A C Z*(A) c Z(A) is clear. Thus, any
convex set Q 2 A contains Z*(A) as Q O 2(A) already
holds according to 2.,4. This leaves only the convexity of
Z*(A) to show, For this, we assume O0S = e and take any

p, p' € T (A), sothat pe o (F) and p’ € O (F') for
some F, F/ € F(A). Taking any convex combination p

=)\p ® \'p’ with (A, \') ¢ Al, we show that p ¢ O*(F Ur’)
when A € (0, 1) just as in the proof of 2.4. Then, as

! when

0S = e, we see that p=p when A =1 and p =p
A =0, and conclude that ZW(A) is convex, finishing the

proof.

3

The following theorem gives the structure of pointwise convex
semivector spaces in terms of semivector subspaces having singleton

origins.

2.8 THEOREM: Let S be a pointwise convex semivector space and
define the (equivalence) relation 4 €S x S by (x, y) €8
iff Ox = Oy. Then each equivalence class Se € S/8 (where
OSe = ie}) is itself a (pointwise convex) semivector space
with e as its identity, and S/& 1is an "unscaled"

semivector space of idempotents. (Thus, §/&8 is a semilattice.)
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Proof: By definition, for each equivalence class Se’ OSe
is singleton, say, OSe = §e}. Since S 1is pointwise convex,
e 1is identity for Se. Now Se is a semivector space, since
Ox = e implies O(Ax) = e and, if Oy = e too, then

O(x®y) =0x &0y =e & e =e. This much also shows that

S/8 consists of idempotents which are '"unscaled." But & is
a semigroup congruence: Ox = Oy implies that O(x & z)

=0x ® 0z =0y & 0z = O(y ® z) for each z €S (x, vy € S).
Thus, S/8 1is commutative semigroup of idempotents, i.e.,

a semilattice, Since it is "unscaled," calling it a semivector

space is another way of looking at it.

#

Given a pointwise convex semivector space S, R, x for each
x € S 1is an ordered cone semigroup (cf. Example 2), so that S
can always be expressed as a union of ordered cone semigroups; if,
furthermore, S has singleton origin O0S = {e}, them S 1is a
union of ordered cone semigroups with common identity e. All this

should not, however, lead one to believe that S 1is, therefore,

embeddable in a group, since the following is a counter-example,

Example 9: Take X =R, x {0} and Y

+ {0} x Ry, each with

usual coordinatewise addition, and extend this to & on
S =XUY by equating (a, 0) ® (0, b) to (0, a+b) if b # 0
and to (a, 0) if b =0, (Thus, (0, 0) is identity.) Define

scalar multiplication V¥: R, x S-+S by X(a, b) = (ha, Ab).
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Then S 1is a non-cancellative pointwise convex semivector space
with 0S = {(0, 0)}. [N.B. It follows from 2.10 below that there
is no Hausdorff topology for S which yields it operations

continuous!]

In fact, for a convex semivector space S, consider the
properties (1) S 1is (Hausdorff) topological, (2) S is pointwise

fe}. Although 2.10 shows the sufficiency of the

1l

convex, (3) O0S
conjunction (1) & (2) & (3) to yield S cancellative, no two of
these properties by themselves make S cancellative: Example 9
shows the insufficiency of (2) & (3); Example 4 shows the
insufficiency of (1) & (3); and the next proposition shows the

insufficiency of (1) & (2).

Proposition: Let S be a cancellative semivector space. If
X = x ® 0x holds for each x € S (e.g., if S 1is pointwise
convex), then the origin O0S consists of exactly one element,

which acts as the identity element,

Proof: Assume the hypothesis and let x, y € S. Then
(x®y)®d0(xBy) =x@®@y=x6(yo®0y) =(xe&y) e 0y, so
that cancellation gives O(x & y) = Oy. Similarly, O(x & y)
= Ox, showing that Ox = Oy and that this unique element

acts as identity.

i

THEOREM: Let S be a pointwise convex topological semivector
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space with the origin O0S = {e}. Then S 1is cancellative

[and e 1is identity].

Proof: That e 1is identity is a consequence of the formula
x = (0 +1)x = Ox & x. To see cancellation, take any

X, ¥V, 2 €8S, and suppose x @y =x @z, Then x @y &y
=x®z@®y=x®z @&z, By pointwise convexity, we can write
this as x @& 2y = x @& 2z, and repeating the argument, we have

=x ® nz for every positive integer n, so that

b
®
&
1

1 1
X ®z. As n -+« o converges to 0, so that the

|
»
S
«
[

continuity of the operations with S Hausdorff gives Ox & y
= 0x ® z in the limit., Ox being identity, we have y = z,
so that S 1is cancellative.

#

Remark: Let S be a cancellative pointwise convex semivector

space over R Then S 1is embeddable in a real vector

4
space, in standard fashion. Equipping S x S with
coordinatewise addition (a, b) & (¢, d) = (a & c, b & d),
the relation & C (S x S) x (S x S) defined by (a, b)

& (c, d) iff a@®d =Db & c 1is a congruence and G

(S x S)/& 1is a group. Define scalar multiplication ¥,

R X G~ G by setting Y"(K, (a, b)) equal to (ha, Ab) if
A =z 0, and equal to (Illb, |X|a) if A <0, Then G is a
real vector space, and sending x € S to the equivalence class

of (2x, x) embeds the semivector space S into the real
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vector space G.

Remark: The example of the half plane underlines the fact
that a pointwise convex semivector space, even when embeddable
in a vector space, and hence a cone, need not be an ordered

cone semigroup.,

Remark: Combining 2.8 and 2.10, we see that every pointwise
convex (Hausdorff) topological semivector space is a

semilattice union of cones.

Proposition: Let X be a compact and convex set in a
pointwise convex topological semivector space S with
0X = {e}. Then X ® a for some a € S is embeddable in a

topological vector space.

Proof: C(Clearly, X 1lies in the semivector subspace Se

={s e S| O0s = e} for which e is identity (see 2.8).

Thus, by 2.10, Se is cancellative and is embeddable (see
2.11) in a vector space, If X ® X =S, then S 1is a
compact cancellative topological semigroup, thus a topological
group, hence a real topological vector space, so that we just
take a = e. If X & X 1is a proper subset of S, then
either X ® X has an element y such that e ¢ y & X @ X,

in which case we set a = % y; or X @& X has no such
element, in which case we set a = % y' for any

v/ e S\(X ® X). 1In either case, e ¢ X ® a ® X & a, so that



16

the compact and convex X ® a admits a projective ordered
cone semigroup C = ‘i’(R+ x (X @& a)) through itself. Clearly,
C 1is a locally compact ordered cone semigroup, so that,

using the Lawson and Madison embedding theorem [6: Theorem

3.2], C 1is embeddable in a topological vector space,

#



3.0

17

LOCAL CONVEXITY

We just saw (2.14) that a compact and convex set X 1in a
pointwise convex Hausdorff topological semivector space S with
singleton origin 0S can always be embedded through an affine
homeomorphism in a topological vector space., If X were known to
be embeddable in a locally convex vector space, then one of the
benefits of such an embedding would have been that a fixed point
theorem (FPT) of Fan [2] would assure X to possess the fixed
point property (FPP). Note here that the local convexity of X is
a necessary condition for its embeddability in a locally convex
vector space. Indeed, there is a whole hierarchy of local
convexity properties which X would necessarily have to satisfy
if it were so embeddable: Given a subset X 1in a convex

topological semivector space, we consider the following

Hierarchy of Local Convexity Properties

0, For any x € X and any nbd V of x, there exists a

nbd U of x such that U CV with U N X convex.

1. There exists a quasi-univormity & = fEa C X x Xl @ €Al
of X 1inducing its subspace topology, such that, for each
Ea € 8§, there exists a closed EB € 8 with EB C:Ea and

(x) convex for each x € X.

Ea

2. There exists a quasi-uniformity & = {Ea CcXx X| a€al
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of X inducing its subspace topology, such that, for each
Eﬁ € 8, there exists a closed EB € 8§ with EB c Ea and

EB(K) convex for each compact and convex subset K C X,

X 1s convex and there exists a uniformity & = {Ea

C X x Xl a e A} of X inducing its subspace topology,

such that, for each Ea € &, there exists a convex

Eo €& with E, CE_,
8 8 a

X will be called 0°/1°/2°/3° 1locally convex (l.c.)

accordingly as it satisfies 0/1/2/3 among these properties.

(Thus,

0° 1local convexity is the familiar local convexity.)

While for real topological vector spaces X all four of these

properties are equivalent, in general we are able to assert only

the following

Proposition: Given a subset X of a convex topological

semivector space,

1.

In

If X is 1° l.c., then it is 0° 1l.c.;

o

If X is 2 l.c. and pointwise convex, then it is

1° l.c.; and

If X is 3° l.c.,, then it is 2° 1l.c.

anticipation of the fixed point results of the next

section, we recognize an interest in the question of when some of

the implications of 3,1 can be reversed. In particular, we pose
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two embedding problems.

Problem 1: Let S be a pointwise convex topological
semivector space with singleton origin. If S is n° locally
convex, is S embeddable in a locally convex topological vector

space (n =0, 1, 2, 3)? (cf. 6.7 of Keimel [5])

Problem 2: Let X be a compact and convex subset of a real
topological vector space. If X 1is n’ locally convex, 1is X
embeddable in a locally convex topological vector space (n

=0, 1, 2, 3)?2 (cf. 6.8 of Keimel {5])

(Also see the problems listed by Lawson and Madison £6] for locally
compact cone semigroups.) While we are unable to solve these
problems here, in the next section we obtain a number of FPT's for
compact convex subsets with various degrees of local convexity in
pointwise convex topological semivector spaces. Toward that, the
rest of this section collects some basic facts relating to local

convexity,

Proposition: Every 0° l.c. set with T1 topology is

pointwise convex.

Proof: Let X bea 0 1,c. T1 space, and suppose X € X,

As X is 0" l.c., there is a local base 3 = {B | a e A}
at x consisting of convex nbds. Thus, x € B = 2 By and

B 1is convex. In fact, B = {x}, since X 1is Tl.

#



20

O0f course, all the local convexity properties 0°-3° are
inherited by relative topologies on convex subsets. We now turn to
some basic facts relating local convexity properties of Cartesian
products with those of their factor spaces.

Given a family {Sa| a € A} of topological semivector spaces
over ®, we equip S = 2 Sq, with the product topology and define

its operations coordinatewise as follows:

{Sa}aeA ® !ta}aeA - {sa & ta}aeA’

Il

As

where ql stands for the semigroup operation of Sa and

s., t. € S_ are generic (@ € A). Clearly, S is then a

a’> « a
topological semivector space over ®. We call it the product of
ISa| a e A}. Evidently, a set X C S = R Sa is convex [resp.

pointwise convex] only if [resp. iff] each projection Xa

= néa(x) o Sa is so.

3.3 Proposition: The product of a family of sets is 0° l.c.
[resp. 3° 1.c.] iff each of the factors is 0° 1l.c. [resp.

o

3° leca o

3.4 Proposition: Let {Xa‘ a € A}l be a family of 2° l.c. sets
of which all but finitely many are convex, and let & be a
quasi-uniformity inducing the product topology on X = E Xa.
Then, given any F € 8§, there cxists a closed E € § such

that ECF and E(K) 1is convex whenever K is the product
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K = H KG of compact and convex subsets Ka C &a.

Proof: Contained in F, find a basic H € & which restricts
a finite set N C A of coordinates, including (w.l.g.) the
set M CA of indices m for which Xm is not convex. Now

o= Ry G X0

where Hn belongs to the quasi-uniformity 6n of Xn
(n € N). For each n € N, using the 2° l.c. of Xn’ find
a closed E €8 such that E CH with E (K ) convex
n n n n n n
for each compact and convex Kn C:Xn. Write
E=0I1E x [I (X x X.)).
N T AN © c
#

Lemma: The product of a family of 1° l.c. sets is 1° l.c.,

if all but a finite number of the factors are convex.

Proof: 1Imitate the last proof.

#

Proposition: Let S = Il Sa be the product of a family of
A
convex topological semivector spaces, and let X © S be

compact., If the projection Xy = Tlg (X) of X into Sq is
a

Hausdorff, then X  1is 1°/2° l.c., accordingly as X is.
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FIXED POINT AND MINMAX THEOREMS

The sets for which we seek to establish fixed point properties
here are all compact and convex and can be seen, through 2.14, to be
embeddable in a topological vector space. The sets in question
also enjoy one or another kind of local convexity, and it is this
that allows us -- regardless of whether the set can be embedded in
a locally convex topological vector space (cf. Problem 1) =-- to
demonstrate the fixed point properties we aim at,

Given topological spaces X and Y and a mapping f of X
into the set of nonempty subsets of Y, when we say that £ 1is

upper semi-continuous (usc), we will mean that, for each x € X,

given any nbd vV Y of f(x), there exists a nbd U of X such
that f(u) €V for each u € U. For the composition of two
binary relations F CA x B and E CC x D, we will write E-F

for the set (binary relation)

{(a, d)] dx € BN C such that (a, x) € F and (x, d) € E}.

FIXED POINT THEOREM I: Given a pointwise convex topological
semivector space S, let X = {Xoao & ... @ Xmaml A
= (XO, cees Xm) € Am} be the "closed simplex'" of a finite set

{ao, cesy am} < S. Then X has the FPP for upper semi-
continuous point-to-set transformations f: X ..(Lz[x] into

its nonempty, closed and convex subsets,

Proof: Denoting O(aO ¢ ... @ am) = e, OX = {e}, so that
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h
2.14 applies and there is an embedding X + X' of X in a

real topological vector space. Now X'’

is the closed simplex
O({h(ao B e), eon, h(am & e)}), so it lies in a Euclidean
space, and Kakutani's FPT (4.2) applies.

i

Corollary (Kakutani's Fixed Point Theorem [3]): Let

f: X 4(32[X] be an upper semi-continuous transformation of
. . . nt+tl |
an n-dimensional closed simplex X C R into CLQ[X]. Then

there exists a (fixed) point x* € X such that x € £(x').

FIXED POINT THEOREM II: Let S be a convex (Hausdorff)

topological semivector space, and let X © S be a nonempty
convex subset. If X is compact and 1° l.c. with OX
singleton, then X has the FPP for continuous transformations

f: X X,

Proof: Assume that X satisfies the hypothesis. By 3.1 and

3.2, X 1is pointwise convex, so, recalling the discussion
following 2.3, X 1lies in some pointwise convex semivector
subspace of S; and, as O0X 1is singleton, by 2.8 we may
assume this subspace to have singleton origin. Thus, w.l.g.,
we assume that S 1is pointwise convex with 08§ = {e}.

Since X 1is compact, there exists a unique uniformity
on X compatible with its subspace topology. Since X is

o

1" l.c., we assume that {Ea C X x X‘ @ € A}l 1is a fundamental

system of closed entourages of this uniformity such that
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Ea(x) is (closed and) convex for all x € X. Let f: X 44X
be continuous, Define Ya = {xl x € Ea(f(x))}. We will show
that Ya is nonempty and closed for each @ € A, Then, as
the intersection of any finite collection of Ya's is
nonempty, compactness of X will imply that GQA Y. # 0,
thus proving the theorem, for x* € agk Y, implies

x” £(xF).

To show that Yo is nonempty, let {Da C X % X| acAl
be a family of open symmetric entourages such that Da c Ea
(@ € A)., Thus, for any given Q € A, {Da(x)l X € X} is an

open cover of X, so that there exist X,, ecee, X € X with

0

n
X c igo Da(xi). Denote the closed convex hull f{p = XOXO

® ... 0 xnxnl A= (s eees A) €AY of {xo, eees x 1 by
P. As 0§ = {e}, PO {XO’ cees xn}. Define the map Fa on
P by FG(P) = Ea(f(p)) N P. Then, by symmetricity of

Da C:EG’ for all p e P, Fa(p) is nonempty; clearly, it is

also closed and convex. Thus F, maps P into cafr].
Denoting the graph of an f by Ga’ the graph of EJ is

simply Ta = Gy N (P x P), Since E, 1s usc (by the

closedness of Ea in the compact X x X) and since f 1is

continuous, Ea of 1is usc, i.e., Ga is closed, as X 1is

regular (in fact, compact). Hence, Ta is closed and, by

compactness of P, Fy is usc. Thus, by 4,1, there exists

p € Fa(p), i.e., Pp € Ya, showing that Ya is nonempty.

Ya is obviously closed, since it is nothing but the projection
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ﬂ'X(GCL N A) of the compact set Ga N A, where A 1is the

diagonal in X x X. This completes the proof.

#

Corollary (Tychonoff's Fixed Point Theorem [10]): Let

f: X X be a continuous transformation of a nonempty compact
and convex subset X of a locally convex (Hausdorff)
topological vector space. Then there exists a (fixed) point

x* € X such that x* = £(x¥).

FIXED POINT THEOREM ITI: Let (X, 6 < sal o € A} be a nonempty

family, where, for each a € A, Sa and XCL satisfy the

hypothesis of 4.,3. Let {f_:

o X Xal o € A} be a family of

continuous functions on X = E Xa, and define F: X 2+ X by

Then there exists a (fixed) point x* € X

F(x) = {£,(0} ¢,

such that x* = F(x¥).

Proof: Clearly, the topological semivector space S = Il Sa
A

is Hausdorff, and X C S 1is nonempty, compact and convex with
0X singleton. Since each Xy is 1° l.c., so is X (see
Lemma 3.5). Furthermore, F 1is continuous, as each fa is

so., Hence, the result follows readily by application of 4.3.

#

FIXED POINT THEOREM IV: 1Let S be a convex (Hausdorff)

topological semivector space, and let X C S be a nonempty

convex subset, If X 1is compact, pointwise convex and
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]

2 l.c.,, with O0X singleton, then X has the FPP for upper

semi-continuous transformations f: X *<32{X].

Proof: Assuming that X satisfies the hypothesis, as in the

proof of 4.3, it suffices to show that the sets Ya = {x‘ X
€ qz(f(x))} are nonempty and closed, where, in this case,
{Eal o € A} is a findamental system of closed entourages of
the space X such that Ea(K) is (closed and) convex for
each nonempty, compact and convex subset K C X. The proof

is the same as that of 4,3, except that appeal is now made

to the upper semi-continuity, rather than the continuity, of f£.

#

Corollary (Fan's Fixed Point Theorem [2]): Let X be nonempty,

compact and convex in a locally convex Hausdorff topological
vector space, and let f: X *(32{X] be an upper semi-
continuous transformation., Then there exists a (fixed) point

x* € X such that x* € £(x¥).

FIXED POINT THEOREM V: Let f{X cs | a €A} be a nonempty

family, where, for each a €A, Sa and Xa satisfy the

hypothesis of 4,.,6; and let {fa: X 4(32{Xa]l a € Al be a

family of upper semicontinuous transformations, where

X =1 X . Define F: X »C2[X] by F(x) =1 £(x) (x € X).
Aa A Q

Then there exists a (fixed) point x € X such that

X* e F(X*).
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a is a convex Hausdorff topological
semivector space; X C S 1is nonempty, compact, convex and

pointwise convex with O0X singleton; and F 1is easily seen

to be upper semicontinuous. Although X need not be 2° 1.c.

b

by the 2° 1local convexity of each Xy the uniformity on X

allows a fundamental system {Ei| i € I} of closed entourages
such that, whenever K 1is the product K = R Ka of compact
and convex subsets Ka C:Xa, each Ei(K) is closed and
convex (see Prop. 3.6). Notice that F(x) 1is such a product
of compact and convex sets fa(x) S Thus, as in 4.6,
defining Yi = {x\ X € Ei(F(x))}, it is clear that Yi is
nonempty and closed for each i € I, implying that Q Y, # ¢

and proving the theorem.

The minmax theorems be’ow are fairly straightforward

consequences of 4.1, 4.5 and 4.8. We record them for their

interest in economic theory, optimization and game theory.

MINMAX THEOREMS: Let S and S, be convex topological

1 2

semivector spaces, let X1 c S1 and X2 c 52 with

X =X x X, # ¢, and let u: X # R be a continuous real

valued function, Define

fl(XZ) = fxl € Xl‘ u(xl, x2) = §%§ u(y, xz)} (x2 € X2),

1

f2(x1) {xz e XZ‘ u(xl, x2) = §é§ u(xl, z)} (x1 € Xl).

#
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Each of the following is a sufficient condition for the
equation
Min M;x u(xl, x2) = M;x M%n u(xl, x2).
2 1 1 2
N fl(x2) and f2(x1) are nonemtpy, closed and convex for

each x.,€ X and x_. € X while

1 1 2 2’

(a) s and S are pointwise convex, and the sets

1 2
" . . " -
X1 and X2 are "closed simplices X1 U(Al)
and X2 = U(AZ) of finite sets A1 C S1 and
A, CS respectively; or

2 2
(b) X1 and X2 are compact, convex, pointwise convex

and 2° l.c. with OX1 and OX2 both singleton.

2 X1 and X2 are ccmpact, convex and 1° l.c. with OX1

and OX2 both singleton, and fl(x2) and f2(x1) are

singleton for each X, € Xl and X, € X2.

Proof (Sketch): The inequality M;x u(e, x2) = Min Max u(s, »)
X

1 2 1
= Max M%n u(e, o) 2 M%n u(xl, ») is always true, leaving only

1 2 2
the reverse inequality to show. To do this for (1), use 4.1

in case (a), and 4.8 in case (b), suitably modifying the

argument

ad (2): Assuming (2), check that the functions f1 and f2

are continuous, so that the function F: X + X defined by
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F(xl, x2) = (fl(xz), f2(x1)) is continuous. Then by 4.5,
there exists an x* € X such that x* = (x?, xg) = F(x*).

Hence, Max u(e, xg) = Min u(x?, «), thus proving the
X X
1 2
desired equality.

#



