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Abstract. If the return process for a security is modeled as a
semimartingale, then the price process is modeled as the exponential
of the return process in the semimartingale sense. This relation-
ship is examined in some detail, both for discrete-time as well as
very general continuous-time stochastic process models, In addition,
the notion of investment plans (which specify the relative portfolio
proportions and thereby the return process for the portfolio) as
models of investor decision making is introduced and compared with
trading strategy models (which specify the number of shares of each
security that are owned). The two models of investor decision
making are shown to be equivalent in the case of discrete-time
security processes, but an example is given of a continuous~-time
trading strategy for which there does not exist an equivalent invest-
ment plan.
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1. Introduction

This is the second sequel to the paper Harrison and Pliska [2], which
presented a very general and comprehensive stochastic model of a friction-
less security market with continuous trading. The first sequel Harrison
and Pliska [3] dealt with complete markets, This one deals with several
closely related matters involving return processes and investment plans.

Security prices are modeled in the literature as either price processes
or return processes., Indeed, it is common to see both concepts used simul-
taneously, for one frequently sees authors implicitly using the return
process when they write dS/S, where S is the price process. The paper [2]
primarily dealt with price processes, although it did briefly introduce
return processes. A primary objective of this paper is to expand on the
role of return processes by explaining their relationship to price processes
in the general, continuous setting. This is done partly by making an anal-
ogy with the discrete time, finite security market model described in [2,
section 2]. Discrete time return processes were neither described nor
analyzed in [2], so this is another topic covered here.

Just as there are two kinds of models of securities, there are also
two kinds ;; models describing how an investor implements his decisions.

The approach used exclusively in [2] involved trading strategies, which

specify the number of units of each security owned at each point in time,.



Garman and Ohlson [1], for example, is a recent reference using the trading
strategy model.

An alternative model of investor decision making is the investment
plan, which specifies the relative portfolio proportiomns, i.e., how the
investor's wealth is divided among the various securities. Lee, Rao, and
Auchmuty [5], for example, recently used this approach for their particular
situation. A second primary objective of this paper is to describe invest-
ment plans in very general terms, both for the finite, discrete time model
of [2, section 2] as well as the continuous trading model of [2, section 3].
It will be seen that investment plans are closely related to return
processes, Moreover, it will be shown that the trading strategy and
investment plan models of investor decision making are equivalent in the
finite theory but not necessarily in the case of continuous trading: some
contingent claims are attainable with a trading strategy but not with any

investment plans.



2. Return Processes

After briefly reviewing the finite theory of [2, section 2], where
time is discrete and the sample space is finite, the notion of return processes
for this finite theory will be introduced. Attention will then turn to the
relationship between continuous time price and return processes.

The probability space (Q,7,P) is specified and fixed, and the sample
space has a finite number of elements. A time horizon T<w® is specified,
as is a filtration T = {JO,JI,...,JT} that satisfies J,= {#,Q} and Ip=J.
There is also a K+1 dimensional stochastic process S ={St; t=0,1,...,T}

with component processes SO,SI,...,SK. Here S is called the price process,

becauserst is interpreted as the price at time t of security k. It is
required that each component process Sk be strictly positive and adapted
to T (which means St is J£ measurable for all t).

For any scalar-valued stochastic process X=={Xt; t=0,1,...,T} on

(1,7,P), let AX=={AXt; t=1,...,T} denote a second, corresponding process,

called the difference process, defined by setting AXt:=Xt -Xt_1 for
t=1,...,T. Note that Xt=X0+AX1+...+AXt for t=1,...,T. With this
notation it is natural to call AS%/S:_I the rate of return earned by
k
security k during period t. One therefore sets R0==O and
k k,.k .
1 = =
(1) AR =AS /S . for tel,...,T.

N , . k
and calls R the return process corresponding to price process component S .

k k
It may seem unnatural to call R rather than AR the return process, but
the advantages of this system will be seen later when dealing with the
. . 0.1 k
continuous-time model. As usual, set R=(R ,R ,...,R).

Note that upon rearranging (1) and using it in an iterative manner

one obtains



t

k __k k k
(2) st—so+s}31ss_1ARs for t=1,...,T.

Thus the price process can be recovered from S, and the return process,

0
To be more specific about this, as well as to introduce a concept that
will arise in the continuous-time setting, it is convenient to present

some additional notation, For any stochastic process X=={Xt; t=0,1,...,T},

let £(X)=={£t(x); t=0,1,...,T} denote a second corresponding process,

called the exponential process, defined by setting £O(X) =1 and

t
(3) & X)=n (1+aX) for t=1,...,T.
t =1 s

. k . . .
Thus if R is the return process corresponding to the price process
component Sk, then
Sk

(4) =Sl(;<g(Rk) for k=0,1,...,K.

In other words, the expression in (4) is a solution to equation (2).

An important issue is knowing what properties of a return process
give rise via (2) or (4) to a price process. In other words, when is (4)
an adapted, strictly positive process? Let E& be the set of adapted,

scalar-valued processes X such that X, =0 and 1+AXt>O for all t=1,...,T.

0
If Sk is a price process component, then its corresponding return process
Rké?&ﬁl Conversely, if X(EE#, then §(X) is adapted and strictly positive.
We are now ready to turn to the case of continuous trading and the
model detailed in Section 3 of [2]. The basic set-up is the same as in the
finite theory, only ) is not finite and the filtration ¥ and all processes
are defined for all t¢€ [O,T]. In particular, each component Sk of the
price process is adapted and striétly positive, Moreover, by additional

. . . . k . s
considerations detailed in [2], S is a semimartingale.

, . k .
Now if the price process component S were a pure jump process, then

k

) _St- one would have AR%:zASt/St- as the continuous-time

wid1ASi=S



counterpart of (1). But wanting to consider more general stochastic
A . k .
processes, it is necessary to define the return process R in terms of

a stochastic integral, namely

et t k
(5) RS =: (1/s )ds’, 0<sts<sT,
do u- u

This is equation (4.7) in [2], and it reduces to AR:==ASE/SE_ in the
, k . .
special case where S is a pure jump process.
, . . k _k._k .
Equation (5) is equivalent to the statement that dS =S_dR , and this,

in turn, is the same as

ot

(6) S =S .+ ; S dR, 0<tx<T,

k_  k
t 0
which is the counterpart of (2). This is =21so the same as equaticn (4.1)
of [2], although a minus sign there was inadvertantly omitted.

Notice that although equation (2) can be used in the finite case to
derive the price process in terms of the return process, equation (6) can't
be used directly for the same purpose. As explained in [2], however, if the

semimartingale Rk is specified, then (6) always has a unique solution given by

Sk

) =55 8(R"),

where £(Rk) is now the exponential of Rk in the semimartingale sense., Clearly

(7) is the same as (4), and the process 6(Rk) is defined in a manner analo-
gous to (3), as detailed in [2, eqn. (4.3)].
ok, . .
If S 1is a component of a price process, then its return process
k S+ . . + . . .
R €R , where now in the continuous case £ 1is the set of semimartingales
X such that XO=O and 1 +AX >0 (where AX =X -'X_). Conversely, if XEF\’+,
then (X) is a strictly positive semimartingale.

A multidimensional diffusion model, a point process model, and other

examples of return processes are provided in [2].



3. Investment Plans in the Finite Theory

Trading strategies in the finite theory of [2, Section 2] are defined

in terms of predictable processes. Briefly, a trading strategy is a predict-

able vector process ¢=={¢t; t=1,...,T} with components ¢0,¢1,...,¢K.
Predictable means ¢t is 3;_1 measurable for all t. Interpret ¢t as the
quantity of security k held by the investor between times t -1 and t.

A trading strategy ¢ is self-financing if

PS¢ = St
where ¢tSt denotes the scalar product of the vectors ¢t and St' This
means that no funds are added to or withdrawn from the value of the port-
foliqiat any of the times t=1,...,T-1.

Corresponding to each trading strategy ¢ is a process V(p¢) defined by

¢tst’ t=1,...,T

RO
®,50> t=0.

We call V(¢) the value process for ¢, since Vt(¢) represents the market
value of the portfolio held just before time t transactions.

A trading strategy ¢ is called admissible if it is self-financing
and V(¢) 20. The requirement that V(p) =0 prohibits short sales that can
put the investor into a position of debt. Let & denote the set of all
admissible trading strategies.

The purpose of this section is to describe far the finite theory an
alternative, equivalent scheme for modeling how the investor makes his invest-
ment detisions. The next section will then describe the analogous scheme for
general, continuous trading models.

Let £ be the set of adapted, scalar-valued processes X such that X0==0

and l-FAXtZ:O for all t=1,...,T, and let §(X) be as in (3). Define an



investment plan as a predictable K+ 1 dimensional process 8=={6t; t=1,...,T}

whose components 60,91,...,6K satisfy

0, .l K _ -
(8) 6, +O t...+8 =1, t=1,...,T,

and for which p(6) €R, where the stochastic process p(8) is defined in terms

of the return process R by p0(6)==0 and

t t K kK Kk
(9) p.(8) =72 6AR =7, 2 6AR, t=1,...,T.
t S ) S S
s=1 s=1 k=0

Let ® be the set of all such investment plans., As will shortly be seen, ei
should be interpreted as the fraétion of his wealth that an investor puts

into security k to be carried forward from time t -1. Hence Apt(e) represents
the overall rate of return that he earns on his portfolio during the period
between-t -1 and t, although this interpretation must be taken with a grair
of salt, since individual components ei can be negative or greater than one,

Call p(8) the return process for plan 8§, and define a corresponding

value process

U(8) =8(p(9)).

Interpret Ut(e) as the wealth at time t of an investor who starts with one
dollar and follows the investment plan 6. The restriction p(6) €4 means
that in each period the investor can do no worse than lose all his wealth.

For each admissible trading strategy ¢ € 3, define the stopping time

T(p) = | inf{t < T: Vt(q)) =0}, if Vt(q)) =0 for some t,

T, atherwise.

The following Proposition establishes the correspondence between % and @.
Its hypothesis that the model be viable means there are no arbitrage oppor-

tunities; this condition was extensively examined in [2].



Proposition. Let the model be viable. Suppose ¢ € &, and let v=V0(¢)

and

k. .k
¢tst_1/Vt_1(¢) if 1<t<7(p)

1(k=0) if 1(p) <t<T

for k=0,1,...,K. Then 6€® and V(¢) =v U(8). Conversely, suppose €@

and the initial wealth v =0, and let

k=v6kU

¢t tt-1

(6)/81:_1 for t=1,...,T

and k=0,1,...,K. Then ¢ €% and V(¢) =v U (9).

Proof. For the first part, it is clear that © is predictable. By the defi-

nition of V(¢) and the fact that ¢ is self-financing, it follows that

e(t’+ei + ot eIt<=1 for all t. Moreover, for t<7(p),

_ _ kk ok
1+4p, (8) =146 4R, =1 +%¢tst—1ARt/Vt-1(¢)
Kk, k k o k_ck
= Y} = -
LD S /Y1 (9) 1+§¢t (S =S PNV 1 (B

=14V (®) -V, _ @DV, (@) =V @)/, (@),
whereas for T7(¢p) <t<T,
1+Ap, (8) =1+86 AR =1-+ARD.
Hence p(0) €/, in which case 8€®. We show V(p) =v U(8) by induction., If

Vt_1(¢) =vUt_1(9) and t<T{p), then by (3) and the above equation

VU(O) =V (@) (1+4p, () =V (9).
Thus 7(¢) <T and (3) imply Ut(e) =0 for all t=1(¢),7(p) +1,...,T. But

viability and [2, Proposition (2.8)] imply Vt(¢) =0 for the same t, so

V(g) =vU(9).



For the second part of the Proposition, it is clear that ¢ is predict-

able. Since 82 + Gt +...+ GIZ =1, one has

k .k k .k, .k
=/ = U
Vt(¢) ;;qjtst v t_l(e)_/i(etst/st_l

=vu . (0)2e%a +a5
b1 (928 t

=v U, (O (1+4p (8)) =vU_(8).

Hence V(¢) 20, since p(6) € implies U(B) 20, Finally,

k

¢ =vU (e)Es v.(e),

t+ls t t t+1

so ¢ is self-financing, ¢ € &, and this proof is completed,

The first part of the Proposition justifies the interpretation of
investment plans given earlier, 1In brief, 0 specifies the investor's

relative portfolio proportions in dollar terms, with the choice of et for

t>T, i.e., after all is lost, being arbitrary. The second part of the
Proposition shows how an admissible trading strategy ¢ can be recovered
from an investment plan when the initial investment v=V0(¢) is specified.
Observe that the restriction ZGk=1 in the definition of ® corresponds
to the self-financing condition, while the requirement p(8) €R corresponds
to V(¢) 20. In summary, in the finite theory, investment plans and trading

strategies are equivalent models of investor decision making.

4, Investment Plans in the Continuous Theory

Trading strategies in the continuous theory (see Section 3 of [2]) are

defined in terms of the discounted price process Z = (Zl,...,ZK), where

Zk=BSk for k=1,...,K, 851/50, and, without loss of generality, BO=1.

It is assumed the model is viable, i.e., there exists a reference measure




10

P*, which is a probability measure on ({1,7) equivalent to P under which
Z is a martingale. For convenience zlso assume (as was done
throughout [2]) that S0 is continuous and VF (of finite variation).

Let L(Z) denote the set of all vector valued, predictable processes
that are integrable with respect to the semimartingale Z (see Jacod (4,

p. 52) for details about L(Z)). An admissible trading strategy is any

vector valued, predictable stochastic process ¢==(¢0,¢1,...,¢K) =

{¢t; 0<ts<T} such that

(10a)  (o1,...,60 €L@2)

* * K kk
(10b) V' (¢) 20, where V (¢) =B¢S=B 2. ¢ S ,

k=0

(10¢) v () =vz(¢>) +G (p), where

% . K .

G (p)= pdz=2 ’.rqskdzk, and

o k=1d

(104) V*(¢) is a martingale under P .

Here ¢i represents the number of shares or units of security k held by the

ot
investor at time t, V (¢), the discounted value process, represents the

*
discounted value of the portfolio, and G (¢), the discounted gains process,

represents the discounted net profit or loss earned by the investments.
Thus (ii) says admissible trading strategies cannot permit the value of the
portfolio to become negative, (iii) says that all changes in the value of
the portfolio are due to the investment rather than due to infusion or
withdrawal of funds, and (iv) serves to rule out certain foolish strategies
that throw away money, as discussed in detail in [2].

The purpose of this section is to describe an alternative model of h;;

the investor makes decisions, a model based on relative portfolio proportions,

as in the finite theory, For the continuous theory define an



11

investment plan to be a K+1 dimensional predictable process 6={Gt; 0<t=<T]}

whose components 80,61,...,6K satisfy

0 1 K
(1) 6t+6t+...+6t—1, 0<t=<T;

this is, of course, the same as condition (8). 1In addition, an investment
plan 6 must satisfy p(0) €&, just as in the finite theory, where the
stochastic process p(8) is now defined, analogously to (9), by

t

! S0tk ok
(12) - p (8) = ests=Z , 6 dR_, 0<tsT,
0 k=0

and £ is the set of semimartingales X such that X0==0 and 1 +AX =0, Thus
p(®) should be interpreted as the return process for the overall portfolio,
and the components of an investment plan 6 should be interpreted as relative
portfolio proportions. These ''fractions" may exceed one or be negative, just
as in the finite theory.

In view of this definition of investment plans and the Proposition
stated in the preceding section for the finite theory, it is both natural
and important to determine whether the investment plan model of investor
decision making is equivalent to the trading strategy model (10). To
analyze this issue, it will first be shown that to each initial market value
v20 and each investment plan 6 there exists a corresponding predictable

trading strategy ¢ satisfying the nonnegativity condition (10b), the

self-financing condition (10c¢), and

(13) V'(8) = vB&(p(9)),
where §(p(8)) is the semimartingale exponential of p(8), as in [ 2 , eqn.

(4.3)].
To see this, simply take

18 e =vee, _(p(8)/sy
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for 0<t<T and k=0,...,K. Clearly ¢ is predictable, Since

S

¢. 5, =08,5._ (Q+aR) =vE & (p(8))(L+AR),

it follows that
Vi(®) = vBE, (p(8))(1+Ap (8) = vBE, (p(E)),

which is (13). Since p(8) €R, one has (10b). To show (10c), by (13)
and the meaning of semimartingale exponentials (see Section 4 of [2]),

one can write

~t

* * * i 0
V(@) = V(@) +V,(9) JO Bs_ 65 (p(9))d(p (8) -R),
SO
* * = rt k. k0
V(@) =V +  vZ o B 8 (p(8)E AR ~R)
k=0 “0
K .t
* Ttk k k _0
= VO(¢) +k§0 JO ¢s Bs- Ss-d(Rs -Rs)
K .t
* r k k
=V (@) +2 ¢ dz
0 k=0 Y0 S s

V(@) + 6 (@),

since Rk-RO is the return process for Zk by [2, eqn. (4.11)]. Hence ¢ is
self-financing, and (10c) holds.

Is the trading strategy ¢ given by (14) admissible? In other words,
are (10a) and (10d) also satisfied? Looking at (13) one sees that (10d)
is satisfied if and only if the investment plan © is such that B & (p(6)) is
a martingale under the reference measure P*. This martingale property is
not automatically satisfggd, so one needs to add this requirement about
investment plans in order for (10d) to hold.

What about the integrability condition (10a)? This is a technical

~

requirement, added to make sure the stochastic integral j¢<1z is well-



i3

defined. Actually, a corresponding requirement about 6 has been ignored,
for in making the definition (12) of p(©) one is tacitly assuming
that the investment plan 6 is integrable with respect to the return process
R. One could make a precise statement about the integrability of 6 and
then show this statement implies (10a), but it is better to table this
matter. Getting bogged down with technical complications that only arise
with the most unusual, esoteric examples would be a time-consuming digression
from this discussion. It is preferable to skip ahead, on the grounds that in the
vast majority of practical examples the integrability of © with respect to
R, defined in a natural way, implies (10a), the integrability of the
corresponding trading strategy ¢ with respect to Z.

In summary, subject to a technicality that is rarely an issue anyway,
each initial wealth v and predictable investment plan 6 satisfying (11)
with p(6) €2 and B& (p(6)) being a martingale under P* gives rise via
(14) to an admissible trading strategy ¢ satisfying (13). Thus one-half
of the continuous version of the Proposition is true. What about the
converse? To each admissible trading strategy ¢ does there exist a
corresponding investment plan 6?7 The following section is devoted to

showing that the answer to this last question is, in general, no.

5. A Counterexample

Consider a continuous model with two securities. The zeroth security

0 .
S~ equals the constant one, while

1 _ 1 2
St-exp(cth 20 t), 0<t<T, .

where W is standard Brownian motion on some probability space (Q,7,P) (this
is the Black-Scholes model discussed in [2, sec, la] with r=p, =0). Then

S =Z is a martingale from the outset, and we can take P itself as the



*
reference measure P .

Consider the trading strategy ¢ defined by
2 if k=0, tsTAT,

o ={-1 if k=1, tSTAT,

0 otherwise,

where 7 = inf{t: St==2]. Thus starting with one dollar, the investor

buys two units of S0 and sells short one unit of Sl, maintaining that
position until time T or time T when his wealth is reduced to zero, which-
ever happens first. It is easy to check that ¢ is an admissible trading

strategy and that VT(¢), his wealth at time T, is given by
1
VT(¢>) = (2-ST)1{T>T]-

Notice that 1>P{VT(¢) =0}>0.
Now S, and hence R, are continuous in this model, implying p(0) is
continuous for all investment plans 8. Thus p(8) E&ﬁ-for all 8 (recall

F' is the set of semimartingales X with X.=0 and 1+AX>0), so by the

0
theory of semimartingale expomentials, &(p(8)) is strictly positive for all
€. In other words, the value process under any investment plan is strictly
positive at all times, so there certainly can be no v=0 and investment

plan 6 such that véT(p(G))==VT(¢).

The moral of this story is that the set of investment plans, as defined
in the preceding section, is not rich enough to adequately model all of the
decisions the investor may wish to make, i.e., all of the admissible trading
strategies ¢. In particular, and using the terminology of [2], only strictly
- positive contingent claims are attainable with investment plans in this

example., It is important to emphasize that this deficiency of the investment

plan model of investor decision making is of a fundamental nature and not



15

simply due to some technicalities such as whether certain predictable

processes are integrable. In order to remedy this situation, one must

enlarge the set of legal investment plans © to allow the possibility

that

pt(9)~-w in a finite amount of time. This would obviously require

some very delicate mathematics, and this subject will not be pursued any

further here. It is worth pointing out, however, that the issue under

discussion has no counterpart when trading takes place at discrete points

in time.

with
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