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ABSTRACT

When economic competition over time is modelled as a dynamic game, the
appropriate formulation of the players' strategy spaces is an important
issue. Two approaches have been adopted: the use of path strategies, which
corresponds to the assumption that players make binding commitwents that
extend over the entire horizon of the game; and the use of decision rule
strategies, which corresponds to the assumption that no commitments at all are
possible. Here it is shown that intermediate choices are possible as well,
and, by example, that the choice of the period of commitment can be crucial.

Oligopoly extraction of a nonrenewable, common property resource is
analyzed as a noncooperative game in extensive form, by examining a family of
discrete-period games in which the players are firms and their strategies are
extraction plans. This family of games is parametrized by the length of the
period over which firms can make commitments about their extraction rates. It
is shown that the aggregate rate of resource depletion varies dramatically as
the length of the period of commitment varies, approaching instantaneous

depletion as the length of the period of commitment approaches zero.






I. Introdaction

The theory of noncooperative dynamic games has provided an extremely
powerful framework for studying many of the classic questions in industrial
organization——for example, questions about advertising, research and
development, investment in new capacity, and barriers to entry—--where
interactions over time among a small number of firms are involved. However,
an important methodological issue arises when economic competition over time
is modelled as a dynamic game. The issue is the appropriate formulation of
the players' strategy spaces.

Two approaches have been adopted. One is to model players as choosing
path strategies and to look at Nash equilibria; the other is to model them as
choosing decision rule strategies and to look at subgame perfect Nash
equilibria, (The resulting equilibria are also called "open loop™ and "closed
loop"” equilibria.) However, it is not the equilibrium concept that
distinguishes these two, since all Nash equilibria in path strategies are
(trivially) subgame perfect. Rather, the difference is in the choice of the
strategy space.

These two formulations correspond to extreme assumptions about
players' ability to make commitments about their future actions. The use of
path strategies corresponds to the assumption that commitments extend over the
entire future horizon; the use of decision rule strategies corresponds to the
assumption that no commitment at all is possible. Both approaches have been
used in the industrial organization literature. For example, path strategies
have been used to study investment in a new market (Spence [1979]), the
learning curve (Spence [1981]); the extraction of nonrenewable resources
(Crawford, Sobel and Takahashi [1980], Dasgupta and Heal [1979], Lewis and

Schmalensee [1980], Loury [1980], and Salant [1979]); and cost-reducing



investment (Flaherty [1979]); while decision rule strategies have been used to
study the arms races (Simaan and Cruz [1975]); the extraction of renewable
resources (Clemhout and Wan {1979}, and Levhari and Mirman [1980]) and
nonrenewable resources {(Stokey [1981]); oligopoly theory (Clemhout, Leitmann
and Wan [1973]); and research and development (Reinganum [1981a,b]).l

What is unfortunate is not that different formulations of players'
strategy spaces are used. Since this work covers a wide variety of questions,
this by itself would be neither surprising nor disturbing. Rather, what is
disturbing is that the choice of one formulation over another is seldom
defended or even discussed explicitly. As will be shown below, this choice
can be crucial. Consequently, when formulating a model care should be taken
to choose a strategy space that is appropriate for the situation under
study. Path strategies may be appropriate in some situations, decision rule
strategies in others, and intermediate formulations in still others. But the
choice should not be made casually, since it can—-—as shown in the example
below—-—-dictate to a very large degree the nature of the conclusions.

In section IT "Nash equilibrium” and "subgame perfectness™ are defined,
the distinction between perfect and imperfect equilibria is described, and the
reason for confining attention to subgame perfect equilibria is discussed.

In section III the importance of the choice of strategy spaces is
illustrated by example. Oligopoly extraction of a nonrenewable, common
property resource is analyzed as a noncooperative game in extensive form, by
examining a family of games in which the players are firms and their
strategies are extraction plans. This family of games is parametrized by the
length of the period over which firms can make commitments about their
extraction rates. A stationary, isoelastic inverse demand function is used

throughout, and it is assumed that there are no costs of extraction. We show



that for any given length of period, planning horizon, and number of firms,
there exists a symmetric, subgame perfect Nash equilibrium. We then compare
aggregate extraction paths as the length of the period changes.

We use as a baseline for comparison the path of aggregate extraction
that occurs if the period of commitment coincides with the planning horizon.
(It happens that for the demand curve adopted here, this path maximizes total
surplus and the price rises at the rate of interest over time. This is
incidental for our purposes.) For any fixed number of firms greater than one
and fixed planning horizon, shortening the period of commitment causes the
reasource to be depleted more rapidly. Compared with the baseline path, the
price is initially lower but rises more rapidly. As the period of commitment
becomes arbitracily short, the resource stock is depleted arbitrarily quickly.

Thus for a common property resource, the length of the commitment period
is a crucial determinant of equilibrium extraction. The fact that the length
of the period is critical in our model suggests that results from other
dynamic game models of economic problems may also be sensitive to implicit

assumptions made about the period of commitment.

II. Strategy Spaces and Equilibrium Concepts

Two alternative assumptions about the period of commitment correspond to
the two strategy spaces commonly used in the literature on dynamic games.
These two strategy spaces represent limiting assumptions about the length of

the period over which players make commitments. The use of path strategies

corresponds to the assumption that the period of commitment is the same as the
planning horizon. That is, at the initial date each player must make a
binding commitment about the actions it will take at all future dates. A set

of path strategies (one for each player) constitutes a Nash equilibrium if for



each player the following condition is satisfied: the path the player commits
himself to must be an optimal response to the paths the other players have
committed themselves to.

The use of decision rule strategies corresponds to the assumption that

firms observe the values of relevant state variables and respond
instantaneously by choosing their current actions. Therefore, the situation
is equivalent to one in which at the initial date each player selects a
decision rule that specifies which action is to be taken at each intermediate
(date,state) pair. A set of decision rules (one for each player) constitutes
a Nash equilibrium if the following condition is satisfied: the decision rule
of each player, when viewed at the starting date of the game and the given
initial conditions for the state variables, must be an optimal response to the
decision rules chosen by the other players. In general there will be multiple
equilibria. However, some of these equilibria can be ruled out.

The definition of a Nash equilibrium states only that each player's
decision rule must be an optimal response when viewed from the initial
(date,state) pair; the continuation of his decision rule is not required to be
an optimal response when viewed from any intermediate (date,state) pairs.

A Nash equilibrium is subgame perfect (Selten [1975]) if the continuation of

the given decision rules constitutes a Nash equilibrium when viewed from any
intermediate (date,state) pair, i.e., if they form a Nash equilibrium in every
subgame of the original game. (From here on, "perfect” will always mean
"subgame perfect.”)

The distinction between perfect Nash equilibria and imperfect Nash
equilibria consists of a difference in the points at which the Nash
equilibrium conditions must hold. These conditions must hold at the initial

node of every subgame in order for the equilibrium to be subgame perfect; they




need only hold at the initial node of the game itself for a (possibly
imperfect ) Nash equilibrium. Thus perfect Nash equilibrium strategies satsify
a sort of "principle of optimality”; imperfect Nash equilibrium strategies do
not. Since imperfect Nash equilibria rely on threatened behavior at some
decision points that players would not have an incentive to carry out if they
arrived at those decision points, they are inappropriate for situations where
commitment (to a particular decision rule) is impossible. 1In any discrete-
period finite—horizon game, the subgame perfect Nash equilibria can be found
by using backward induction.

In the next section we will examine a parametric family of dynamic games
of resource extraction, where the games are indexed by the period of
commitment. Because Nash equilibria will be computed recursively from the

final contract to the initial one, the equilibria will be subgame perfect.

III. Oligopoly Exploitation of a Common Property Resource

Firms j = 1,2,...J are engaged in the noncooperative extraction of a
nonrenewable, common property resource. Exploitation begins at date t = 0 and
ends no later than date T € », and the stock of the resource at date t = O,

Xy, is known with certainty. Each firm can costlessly extract from the common
pool. For any date t € [0,T], let yj(t) 2> 0 denote the extraction rate of
firm j, and Y(t) = f y .{(t) the aggregate extraction rate. We do not impose
any upper bound on izéividual firms' extraction rates or on the aggregate
extraction rate. Let X(t) denote reserves at date t € [0,T]. Hence X(t) is
described by:

X(0) = Xy ; X(e) = - (), for all t.

Assume that storage after extraction is impossible, so that the rate of

sales at any date is equal to the rate of extraction at that date., The market



price is determined by the stationary inverse demand curve:

p(Y) =Y ', 0<y < 1.
Since Y < 1, it follows that |-1/y]| > 1; the price elasticity of demand
exceeds one in absolute value, and demand is elastic. The rate of interest,
r, is constant over time, and interest is compounded continuously. Define
p = r/Y.

A crucial feature of the model is the following assumption: firms can
make binding commitments about their extraction rates over a limited
horizon. Define a period to be the length of time over which firms can make
such commitments, and let z be the length of a period. Thus, the extraction
rates for each firm are chosen as follows. At date t = 0, firm j chooses
[yj(t), 0 <t < z]; at date t = z it chooses [yj(t), z < t € 2z], and so on.,
The parameter z may be regarded as the duration of a futures contract. The
firms' decisions consist of selecting a sequence of futures contracts, signed
at the dates z, 2z, 3z,..., which specify deliveries of resources during the
intervals [0,z], [z,2z], [2z,3z],..., respectively. As will be shown below,
the duration of a contract, z, will be a critical determinant of the rate of
depletion of the resource.

First consider a finite-horizon game with K periods, each of
length z € (0,®); thus T = Kz is the terminal sales date. Let k index the
number of periods remaining, so that k = 1 indicates the last period, k = 2
the next-to—-last, and so forth.

At the beginning of each period, each firm chooses its extraction path
for the current period. A firm's choice can depend on the number of periods

remaining, k, the beginning-of-period stock, x, and the length of period, z.



Let {u?(s;x,z), s€ [0,z]} denote the path of extraction planned by firm j for

period k.

Definition 1: 1In a X-period game with length of period z, a strategy for

. A . K _ k K
firm j is a sequence of functions Uj z {uj.[O,z] x R %z > R+}k=1’

k . , . , . .
where u, is piecewise continuous in its first argument, for k = 1,...,K.
J

Let U?(z) denote the space of all such strategies, and let

K

Rk

K
UK(z) = Uf(z) X eee X UJ(z). Define uk = (uT,...,u?) and UK = (UT,...,U
We will refer to UK as the strategies for a K-period game and to uk as the
strategies for period k.
. k, k , .. . .
Define Vj(U ,X,Z) to be the payoff of firm j in a k-period game with

length of period z if the strategies Uk are played and the initial stock is x.

k 0
Vj is defined recursively by letting Vj = 0, all j, and then letting:

Z —rsy J k =Y k
f e -[ Y ui(s;x,z)] uj(s;x,z)ds
0 i=1
z J
+ rzv? l(Uk l,( / ) u?(s;x,z) ds),z),
0 1i=1
Vk(Uk,x,z) =
z J K
if [ [} ui(s;x,z)]ds < x,
0 i=1
0, otherwise

for all Uk = (Uk—l,uk) € Uk(z); x20; j=1,e00,J; 22 0; x =1,2,....

Note that if in period k of a k—-period subgame the firms adopt extraction



paths that are mutually inconsistent, i.e., if they collectively plan to
extract more than the available stock, then every firm's payoff in that
subgame is zero. Technically, this will ensure the existence of equilibria
composed of mutually consistent plans. Economically, it might correspond to a
situation in which the extraction of a common property resource is “regulated”
to the extent that the extractors are required to agree on mutually consistent
flans or else forfeit all claims to the resource. Alternatively, it might be
interpreted as a situation in which firms establish temporary property rights
to shares of the resource.

. K* K*
Definition 2: The strategies U = (Ul

K*
,...,UJ ) € UK(z) are a perfect Nash
equilibrium of the K-period game with period of length z if:

k, k*

* * * *
Vj(U yX,2) 2 V?(UT k k ok k

U,,U

EXETL T j+l""’UJ ,X,2)

k
for all U? € Uj(z); x2» 0; J=12,...,3; k =1,2,...,K;
k* . . K*
where Uj is the k-period truncation of Uj .

Perfect Nash equilibrium strategies for any K-period game, for
1 € K< © can be found by using backward induction. For an isoelastic demand
curve these strategies can be calculated explicitly; this is done in the
Appendix. As shown there, aggregate extraction at the symmetric Nash
equilibrium can be described as follows. There is a constant ¥Y(k,z)
describing the proportion of the beginning-of-period stock that will be
extracted during period k, given that z is the length of the period of

commitment.



For fixed z, ¥Y(k,z) is described by the first—order difference equation:

J-1 1
Y(k+l,z) = ¥(k,z)/[¥(k,z) + e'pz(l - Y(k,z)) /Y], all k » 1; (1)
. C o . —k - k*
with initial condition ¥(l,z) = 1. Aggregate extraction u (s;x,z) = 2 uj (s3x%x,2z),

at any date s in period k, given the beginning-of-period stock x and period
length z, is:

F(ssx,2) = e PSoxt(k,2z)/(1 - e P%)

, 0< s < z. (2)

How important is the length of the period of commitment? Fix the number
of firms, J > 1, and consider a situation where the stock at date t = 0 is X,
and the selling horizon is T > 0. From (1) and (2) we see that for any period
length the symmetric equilibrium always has the following properties:

i) Aggregate extraction falls at the rate p and the price rises at

the rate r within each period.

ii) The resource is exhausted exactly at date T.
Now suppose that the length of the period is T (so that there is only one
period)3, and consider total extraction over the time interval [0, T/2].

Using (2) and the fact that Y(l) = 1, we see that this is given by:

T/2 _, pX, T/2
f u (s;XO,T)ds = =7 f S ds
0 1-e” 0
T/2
= X,/ + P12y,

Now suppose instead that the length of the period is T/2. Then total

- T/2

extraction over the same time interval is just XOW(Z,T/Z) = XOA/(A + e )y



_10_

where A = ((J—Y)/(I—Y))I/Y. Since J > 1 implies A > 1, it follows that
extraction over [0,z] is greater (and over [z, 2z] is smaller) for the shorter
commitment period. Computations with (1) show that as the length of the
period shrinks further, extraction is increasingly concentrated early in the
interval [0,T], as shown in Figure 1.

Next, consider what happens as the length of the period approaches
zero. For a fixed horizon T, this implies that the number of periods
approaches infinity. Since (1) is stable, for any fixed, positive value

for z, lim ¥(k,z) = ¥Y*(z), where Y*(z) is the solution of:

k>
J-1
(1 - ¥v%(2))" = eP%(1 - == ¥*(2)).
J=Y
Since (1 - W)Y is concave in Y over the relevant range, a solution exists and

it is unique, as shown in Figure 2. Thus, if the horizon is infinite,
aggregate extraction within any period is a constant proportion ¥Y*#(z) of the
beginning-of-period stock.

The effect of letting the period length approach zero can now be seen
from the following experiment. Let [t,t+8] be any fixed interval of time, let
x be the stock at date t, and let h be the number of periods in the
interval {t,t+8}. Thus z = §/h, and as the length of the period approaches
zero the number of periods grows without bound. As the length of the period
approaches zero, the proportion of the stock extracted over the length of
time 6 is given by:

h-1

Lim J ¢*(6/m)(1 - v*/m)) = Lim (1 - (¥*(5/n))") = 1.
hre =0 h»>e

This is true for any 6§ > O. Thus, as the length of the period approaches



zero, virtually the entire stock is extracted within an arbitrarily short
length of time. Note that the limiting equilibrium strategies as z + 0 are a

perfect equilibrium in decision rules.

IV. Conclusion

It is evident that the length of the period of commitment can be a
crucial determinant of perfect Nash equilibrium bhehavior. The uncritical use
of path strategies, which corresponds to a single period of length z =T,
would lead in this case to implausible conclusions regarding the efficiency of
oligopolistic extraction of a common property resource: that it is perfectly
efficient and is independent of the number of firms. On the other hand, the
uncritical use of decision rule strategies, which corresponds to the
assumption that no commitment is possible (z = 0), leads to results that are
equally unrealistic: instantaneous extraction of the entire stock. The use of
a commitment period that can be varied parametrically permits intermediate—-
and more plausible—-outcomes. It also permits one to study how limitations on
firms' abilities to commit themselves affects industry behavior at
equilibrium.

The sharp results of the simple model above suggest that caution should
be exercised when modeling economic problems as dynamic games. In particular,
care should be taken to investigate the institutional context of the problem,
to determine the extent to which opportunities for commitment are available to

the relevant agents.



FOOTNOTES
1The last four papers describe situations in which the path and decision
rule equilibria coincide. The two types of strategies are compared and
contrasted in Kydland [1975].

2A related issue is that of dynamic inconsistency. 1In our context,

dynamic consistency would require that along the equilibrium path through the

game tree, the continuation of the Nash equilibrium strategies remains a Nash
equilibrium. Subgame perfection is much stronger, requiring that this
property hold at every subgame, not just those along the equilibrium path.

For example, the open—-loop Nash equilibrium is dynamically consistent, but not
subgame perfect (for K » 2). Dynamic inconsistency is frequently a feature of
games with a leader/follower structure. There is a sizable macro literature
on this topic; see Newbery (1980) for an analysis of dynamic inconsistency in
4 resource extraction context.

3For an isoelastic demand curve and no costs, it happens that this path
is independent of the number of firms, and also that it maximizes total
surplus (see Weinstein and Zeckhauser [1975])). Thus oligopolistic extraction
from a common property resource is socially efficient (in the sense of
surplus—maximizing) if resource demand curves are isoelastic and futures

contracts are of the same duration as the planning horizon.
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APPENDIX

Fix the period of commitment z and temporarily suppress it as an
—1)*
argument of all functions. Given Nash equilibrium strategies U(K D for the
(K-1)-period subgame, we can find Nash equilibrium strategies for period K by

using the theory of optimal control, with the discounted value function

- - ~1)%
o rzv? 1(U(K 1)

resource stock x' at the end of period K. Equilibria will be described

,X') describing the value to firm j of having terminal

parametrically in x, the beginning—-of-period stock.

For each firm j, define the Hamiltonian:

—rS/¢
H, (y,X,A,s) =e () v, . . .
] i 1 ] ] 3 1

1
where uj(s;x), X(s3;x), and Xj(s;x) are the control, state and costate
variables respectively, if the initial stock is x. Nash equilibrium

3 * * 3
strategies for period K, uK , must satisfy:

/3 N K, =y B K* K*, _
Hj/ yj . e (% uy ) (1 -y uj / % uy ) Aj 0, (la)
y=u
X, = - anj/ax =0, (1b)
X = - 2 ui*, X(0;x) = x, (Le)
i
xj(z;x) =3(e 7 ?_l(U(K—l)*,x'))/ax' , (1d)

x'=X(z;x)
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Xj(z;x) 2> 0, X(z;x) » 0, Xj(z;x)X(z;x) = 0, (le)

where (le) holds if K = 1, and (ld) otherwise.

First consider the case K = l. Then (le) states that either the
resource stock is exhausted by the end of the period, X(z;x) = 0, or else the
remaining stock is valueless, Aj(z;x) = 0. Since (la) cannot hold
for Aj = 0, it follows that X(z;x) = 0, for all x » 0; the stock is always
exhausted at the end of the last (K = 1) period.

Since (la) holds for all firms j, summing over j, using (1b), and using

the boundary condition:

z L%

X(z;x) = x - f X u, (s3;x)ds = 0,

03 -
]

one finds that:

-1 J 1% s -pz

u (s3x) = ) u, (s;x) = e’ ox/(1-e " 7], all s,x. (2)

j=1

Over the period aggregate extraction, Gl(s;x), falls at the rate p, so that
the price rises at the rate of interest. Note that the aggregate extraction
rate is homogeneous of degree one in x.

Although (2) is consistent with many sets of extraction paths for the
individual firms, for simplicity we will focus on the symmetric equilibrium.
The value function for each firm then is:

1 1-
Vi(x) = ex Y, all x;

where the subscript j and the equilibrium strategies have been suppressed,



and ¢ = ((l—e_pz)/p)Y/J. Note that the value function V1 is homogeneous of
degree (1-Y) in x.
Symmetric equilibria for longer games can be found recursively. Let
(RK-1)* . s .
U be a symmetric equilibrium for the (K-l)-period game, where K > 1, and
assume that the value function for each firm associated with that equilibrium,

x), is homogeneous of degree (l-Y) in x. We will show that there exists

* -
K* _ (U(K l)*,uK*) is

a unique set of strategies for period K, uK*, such that U
a Nash equilibrium for the K-period game; that symmetry of the equilibrium
strategies persists; and that homogeneity of the (common) value function
persists. Thus the assumption needed to begin the next stage of the ianduction
will be satisfied.

Suppose that symmetric Nash equilibrium strategies for the (K-1)-period

K-1

subgame are given, and that the associated (common) value function, V (x),
is homogeneous of degree (l1-Y). Then we can define v(K-1) by:
K-1 1-
v(k-1) = v () ex ), (3)

Equilibrium strategies for period K must satisfy (la)-(ld). Since the value
functions are identical for all firms, it follows from (1d) that Xj = A, for
all j; from (la) it then follows that the equilibrium strategies for period K
will be symmetric. Moreover, since (3) holds, (lb) and (ld) together iwmply

that:

A(syx) = (1 - Y)e_rzcv(K—l)X-Y(z;x), all s,x,j. (4)

Substituting (4) into (la) and summing over j we find that:
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(@7 = 5 (et

K*

-K
where u (s3x) = ) u
K.

substituting X(z;x) =

0
Z Z
[ Rds = ae”A MY (k-1)(x - 3¥ds),
0 0

where A = ((J—Y)/(l—Y))UY >

l.
extraction over period K,

period stock. Thus we can define ¥(K)

of-period stock that is extracted within the period, ¥Y(K)

(6) we find that:

Aepz

Aepz + vl/Y

¥Y(K) =

(k-1)

Thea, using (5) and (7), we find that:

GK = pe_ps‘i’(K)X/(l - e_pz)

’

cv(K-l)X_Y(z;x),

is homogeneous of degree one in x,

(5)

(s;x) is aggregate exteraction at any date s in period
Raising each side of (5) to the power -l/y, integrating over s, and

f -k
x - [ u'ds, we fiand that:

(6)

-K
From (6) we see that f u ds, aggregate

the beginning-of-

to be the proportion of the beginning-

= f Tds/x. Solving
(7)
all s. (8)

The aggregate rate of extraction at any date during period K is homogeneous of

degree one in x, and within the period

rate p, so that the price rises at the
the equilibrium strategies persists so

. K* .
and since u is homogeneous of degree

vK is homogeneous of degree (l-y).

v(K) we find that:

From (7),(8) and the definitions of V

aggregate extraction falls at the

rate of interest. Since symmetry of

does symmetry of the value functions,

one in x, it follows immediately that

K and
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My + e 21 - v)) k-1, (9)

v(K) =V
Solving (7) for v(K) and substituting into (9) to eliminate v(K) and v(K-1),
we find that Y(K) is completely characterized by the first-order difference
equation:
J- 1/y
),

Y(K+1) = ¥(K)/[¥(K) + e PZ(1 - Tiw(x)

S all K » 1, (10)

with initial condition ¥(1) = 1.
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