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Abstract

A new asymptotic theory for large econometric models, called
large-—K2 asymptotics, is introduced. The limited information maximum
likelihood (LIML) estimator is shown to be comnsistent and attain
the minimum asymptotic variance. The two stage least squares (TSLS)
estimator is shown to be quite inferior to the LIML estimator when
KZ’ the number of excluded exogenous variables in the structural

equation of interest is large.



1. Introduction

Several methods have been proposed for estimating the coefficients
of a single equation in the complete system of simultaneous structural
equations: limited information maximum likelihood (LIML), two stage-
least squares (TSLS), and ordinary least squares (OLS) estimation
methods, for instance.' Under certain appropriate conditions the first
two methods yield consistent and asymptotically efficient estimators;
the two sets of estimators normalized by the square root of the sample
size have the same limiting normal distributions. Hence, for normative
purposes, it has been difficult to choose oné among these estimators on
the ground of large sample aymptotic theory.

In this paper, we introduce a new asymptotic theory which may
give a good approximation and expose differences between alternative
estimators in contemporary economy-wide econometric models. In our
asymptotic theory, called the large—K2 asymptotics, the number of
excluded exogenous varaibles, K5, or the.degrees of overidentification,
L, increases along with the sample size.

In the early stage of macro-econometric model building, one promi-
nent feature is that the size of model is small. For example, the Klein
Model [1950] consists of three structural equations and several defini-

tional equations. Another example is the Klein-Goldberger Model [1955]

in which X,'s are mch larger, but less than 4O, and so it can be
classified as a medium size model. Afte: these pioneering attempts,
econometric models became larger and larger in the 1960's. A possible
explanation for this phenomenon in econometrics is the belief among
economists that the rore they disaggregated models, the more precisely
they could predict the real economy. Basing his argument on some prac-

tical considerations in economics, Klein {1971] states:



The typical structure of models is presently undergoing
change in well Z2efined directions, with the outcome that the
models of the future are sure to be much larger.

As a resulif, it was not unusual by the late 1960's to find models
which consisted of more than fifty equations. 1In some cases, for
exarple, the Brooxings Model [1969] and the Wharton Annual Model [1968],
the number of equzaticns was more than 100. It should be remarked that
these recent large econometric models have a common property that K,
(or 1} is substantielly large in each structural'equation.

Returning to ths theoretical econo-etrics, there have been several
attempts to develop theories of statistical inference when the model is
large. See Maddala [1980] for the details of these literatures. For
example, Sargan [1975] examined some asyrptotic properties of instru-
mental variables methods. Dhrymes [1971] and Theil [1971] proposed some
modified estimators and proved that their estimators are consistent
using regular large sarplse theory. However, 'since large sample theory
implicitly assumes that ¥, (or 1) 1is sufficiently small relative to
the sample size, it is difficult to justify applying large sample theory
to economy-wide econometric models. 1In fact, well-known good properties
of the TSLS estimator in large sample theory are no lqnger valid when
K, (or L) is very large.

The main purpose of this n- : 1s to investigate the asymptotic
properties of alternative estimators, particularly the LIML, TSLS, and
OLS estimators, when Ky is considerably large. We shall answer the
guestion: what is the best estimation method for large-scale econo-
metric models? However, except in Section 4, we will not explore the

full information maxirum likelihood estimation or the three stage least



squares estimation for several reasons. First, it may not be practically feas-
ible in computation when the complete system of simultaneous structural equations
is very large. Second, it is difficult to formulate the problem in the statis-
tical terminology since the system includes many nuisance parameters. In brief,
the full information methods are interesting subjects but they are beyond the
scope of this paper. Then, in the following analysis, our attention will be
focusing on the limited information estimation approach.

The major result of this paper is that the LIML estimator has an asympto-

tically optimum property in the large-K, asymptotic sense. The LIML estimator

2
is consistent and it minimizes the asymptotic covariance matrix among the R-class
estimators, which includes the k-class estimators, under Assumptions 1-5 in
Section 2. On the other hand, the TSLS estimator loses even consistency. This
striking result, conjectured by Kunitomo [1980], means that the TSLS estimator

is extremely inferior to the LIML estimator when K, is large. Therefore, the

2
asymptotic theory in our sense throws a new light upon the choice of estimator of
the parameters of a single structural equation in large econometric models.
Another result is that the LIML, estimator is inadmissible in terms of

the "higher order" asymptotic mean squared error (AMSE), which is defined to

be the MSE obtained from the asymptotic expansion of the distribution of esti-
mator when K2 is large. We will examine the modifications of the LIML estimation
method proposed by Morimune [1978] (the M estimator) and Fuller [1977] (the F
estimator) and show that their estimators improve upon the LIML method in the

large-K -asymptotics.

2
In Section 2 we define the model and estimators. The main results in the
large—K2 asymptotic theory are presented in Section 3. Then Section 4 discusses

possible interpretations of our results in the complete simultaneous equation

system, and gives some numerical evidence to justify our asymptotic theory.



Some concluding remarks are given in Section 5. The proof of theorems

in Section 6.

2. . Model and Estimators

We consider a single structural equation represented by

(2.1) y. =Y. B + Z

where yl and Y2 are T x1 and T x Gl matrices of T observa-

tions on the endogenous variables, Z

Zy is a T x Kl matrix of T

observations on the Kl exogenous variables, 8 and y are column

vectors of G, and K, parameters, and u is a T x 1 column vector

1 1

-~

of unobservable disturbances. The reduced form of the system of struc~

tural equations is defined as

(2.2) Y=20+V |,

where Y = (¥l¥2)’ Z = (%1%2) isa TxK (K= K o+ K2) matrix of

~

exogenous variables, T is a X x (1 + Gl) matrix of the reduced form

-~

(leQ) isa Tx (1 + Gl) matrix of unobserv-

able disturbances. We make the following conventional assumptions.

coefficients, and V

Assumption 1: The rows of V are independently normally dis-

-~

tributed, each row having mean O and nonsingular covariance matrix

Y11 Y0
(2.3) Q= .
= w, Q

~21 .22

are



Assumption 2: The matrix Z 1is of rank K and @ =T~ K > 0.

Tn order to relate (2.1) and (2.2), postmultiplying (2.2) by

(1 - 8")', we obtain u = v, = V,8, ¥ = 7 - M58 and

(2.1) Toy = I8 s
where
™1 Mo
(2.5) I= (m,1,) = oo
To1 122

is partitioned into Kl and K, rows, and iato 1 and G columns,

respectively.

Assumption 3: The submatrix (221322

} is of rank G, and 522

is also of rank Gl'
This assumption implies that

(2.6) L=K, -G, >0 ,

where I 1is the degree of overidentification of the structural equa-
tion. The components of u are independently normally distributed with

mean O and variance

(2.7) 6" = w,. - 28'w . + B'Q



Let 821 and P22 be the least squares estimator for =«

sy and
Ip» and
P
(2.8) G = y' (P B )Y =
R S A o1 Ao (P Ppp)
.22
11 &0
€21 S2o
where A =212, - 217 (212.)"L g1g
«22.1 272 T 01V 1% 4125 And also let
‘11 %12
(2.9) C=7YPY-= ,
%21 Cop
where, for any matrix §, PS =71 - S(S'S)-lS' is the projection onto

the space orthogonal to the column vectors of S. The limited informa-

~

tion maximum likelihood (LIML) estimator of B8 is

A 2
(2.10) Br =% -
1
where b' = (blbé) is the characteristic vector corresponding to the
smallest characteristic root, Amin’ of

(2.11) lc = ac| =0 .



For convenience we define the R-class estimator which includes the

(fixed) k-class estimator and the LIML estimator:

. -1
- * - ¥
(2.12) Br = Gy, = W¥Cpp) gy = M¥eyy)
and
(2.13) A¥ =ax . +b ,

min

where a and b are constants. Then it is clear that this estimator
is identical to the LIML estimator for a =1 and b = 0, and is ident-
ical to the (fixed) k-class estimator for a =0 and b =%k - 1. 1In

particular, it is equal to the two stage least squares (TSLS) estimator

=
o}
~
o
i
o’
(]

0, and is equal to the ordinary least squares (OLS) estima-
tor for a =0 and b= -1. It is also identical to a modification of
the LIML estimator by Fuller [1977] for a =1 and b = ~c/(T - K)
where ¢ 1s some constant. The R-class estimator includes a broad
class of estimator proposed so far, so that we will confine ourselves to

focusing on its asymptotic properties .

The estimator of the coefficients of included exogenous variables

Y 1in any method discussed here is

- .
(2.1%) v = (21207721 (y) - Y8)

A

where B 1is an estimator of BR.

~

The matrix C has a central Wishart distribution with q degrees

a~

of freedom and covariance matrix §. And the matrix G has a non-

central Wishart distribution with Ko degrees of freedom, covariance
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matrix Q, and the noncentrality matrix:

"1 B!
= - '
(2.15) o ] Aap g (g Toy) Moohoo 1 Top (BT )
n, I, G

The exact distributions and asymptotic expansions of distributions of
estimators follow only from the distributions of two independent random

matrices C and G.

~

Let
L 2
2 ., 2
Qon Tanhos 1100805
(2.16) AlQ) = 5 .
- y
where
L L
2 2 2
(2.17) W= tr 9,0 ({ + aa ) n22 00.1000%05 .

which is the sum of nonzero characteristic roots of the population

equation |8 - AQ| = 0 and is called the generalized noncentrality
parameter,
1
_ 1 2 -1
(2.18) = o (B - 9u)
11.2

which is the standardized coefficent and measures the difference between
a structural parameter and a regression coefficient among disturbances,

and



(2.19) = _ -1
“11.2 T W11 T Wofious,

Now in order to assure that the limiting distributions of estima-

tors are proper distributions, we make the following assumption.

Assumption L:

There exists a nonsingular matrix A such that

(2.20) lim A(Q) = A .

oo

This assumption implies that the ratio of the smallest to the
largest characteristic root of A(Q) is bounded uniformly in the

noncentrality parameter p?. Since A is positive definite, we can find a

nonsingular matrix B such that B'B A. Then we define the parameters

which appear in the following arguments:

_ 1
(2.21) F* = B(I + aa') 2 s
and
_ 1
(2.22) f* = ~ ?(l + g'a) 2 a .

Finally, it is convenient to derive some properties of estimators in

terms of the standardized estimator:
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° B -8
(2.23) e = = T .
Sy -7
where
1/2
] O'
(I 50001 T0p) 0
1
R = =
(2-2’4) -~ [0 _l_ ?
-1 2
| | |
(zi2))72)20, (z)2,)

A

and e is divided into the first Gl and the last Kl elements., We

A ~

shall denote e with the LIML estimator, for example, as eLI'

3.3 Statement of Main Results

In the regular large sample asymptotic theory (referred to as the large-T
asymptotics) for simultaneous equations system, the sample size increases under the
assumption that the noncentrality parameter increases also. For this para-
meter sequence, it is well known that the LIML and TSLS estimators are
asymptotically equivalent: the two sets of estimators are consistent and the
estimators normalized by the square root of the sample size have the
same limiting joint normal distributions. Both are best asymptotically

normal (BAN) estimators. However, in the large-K, asymptotics, this is not

2

the case if we assume the following:
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Assumption 5: There exist finite positive numbers § and vZ such that

(3.1) lim E: 2im Hi 2
n++e n g

Na|

= K,.
where n 9
We call §&§ the reduced noncentrality parameter. We note that under

Assumptions 4 and 5, K. and p? increase at the same rate as the sample size.

2
Lemma 1: Under Assumptions 1-5, an estimator in the R-class estimator
is consistent if and only if

(3.2) (a - 1) §‘+b - 0.

Then
Theorem 1: The LIML estimator is consistent while the TSLS and OLS

estimators are inconsistent in the large-K_ asymptotics.

2

The theorem shows that the TSLS estimator is quite inferior to the
LIML estimator in contemporary large econometric models. Kadane [1971]
pointed out the inferiority of the TSLS estimator in large models using
the asymptotic mean squared error (AMSE) in the small-g asymptotics, in
which the variance -of the distrubances in the model is sufficienctly
small,

Lemma 2: Under Assumptions 1-5, the asymptotic covariance matrix

of the standardized R-class estimator is given by

f*f*' o

A 2
(3.3) Av(ep) = g +% (1+¥) (1- a)2 0 O

~ ~

where
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I, +2(1+Y) perer o
6, 3 A
(3.4) Q= .
2 I

In order to compare matrices, we adopt a strong criterion: A > B

if and only if A - B 1is non-negative definite. Then we can assert

that the LIML estimator is asymptotically efficient.

Theorem 23: The LIML estimator attains the smallest asymptotic

covariance matrix among the R-class estimators, and

A

d
(3.5) e N[Q,CE] .

The first part of the theorem follows directly from Lemma 2 and
the proof of asymptotic normality is given in Lemma 4. We should

emphasize that in the large-K, asymptotics the number of the unknown

2
parameters increases at the same rate as the sample size. Therefore,
the regular asymptotic properties of the maximum likelihood estimator,
such as Cramer-Rao lower bound, do not hold in general. However, we

proved that the LIML estimator is asymptotically efficient in terms of

the asymptotic covariance. It is known that

~ d
(3.6) CIRELRIS

for the large-T asymptotics. Thus the asymptotic variance of the LIML

estimator in the large-K., asymptotics is always larger than that in the

2
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large-T asymptotics.

In recent years, some econometricians have been trying to find
more asymptotically efficient estimators than the LIML estimator. 1In
this context, Theorem 2 implies that it is sufficient for us to focus
on modifying the LIML estimation in order to construct a "higher order"

asymptotically efficient estimator.

Morimune [1978] proposed a combined estimator: (the M estimator)

(3.7 Bw =71 Bt YT Brs

and showed that the AMSE of (3.7) is always smaller than the AMSE of the
LIML estimator. His arguments were based on the asymptotic moments in
the small-o asymptotics. Later, Morimune and Kunitomo [1980] proved
that the ASME of the M estimator is always smaller than that of the LIML

estimator in the large-K,_ asymptotics under the assumptions of known co-

2
variance and two endogenous variables.

On the other hand, Fuller [1977] modified the LIML estimation to the

F estimator:

A
-1
. = - ¥ -
(3.8) Bp = (Gpp = MCo5) gy = Aey)
and
(3'9) A* = )\ . - i »
min = q

Both the M estimator and the F estimator are asymptotically mean-
unbiased up to ™21 in the large~T asymptotics. A similar result can

be obtained in the large-K, asymptotics.
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Theorem 3: Under Assumptions 1-5,

(3.10) AE@M).H < HAE(%LI) I ’

PN

- A' - | B
(3.11) AE(gM gM) < AE(nggLI) y

and

(3.12) IIAE(éF) o< HAE(éLI) i >

~

oAt v
(3.13) AE(gFgF) < AE(JLIQLI) s

where 1.1 is the Euclidean norm and AE(+) stands for the moments of
approximate distribution of estimators.

The proof follows immediately from Lemmas 7 and 3. @ This theorem
means that we can construct more asymptotically efficient estimators by
modifying the LIML estimation method, so that the LIML estimator is in-

admissible in the sense of AMSE. Here it should be remarked that both

~

§M and éF are not asymptotically mean-unbiased in the large—K2 asymptotics
while they are so in the large-T asymptotics.

Unfortunately, we cannot compare the AMSE of these two estimators in
the general case. Since the F estimator has exact finite moments while
the M estimator does not, however, one may assert that the former is
preferable to the latter. /

Takeuchi [1978], and Takeuchi and Morimune [1979] proposed a third
order asymptotically efficient estimator (the T estima-
tor), which turned out to be asymptotically equivalent to the F estimator.

Rothenberg [1978] argues that the F estimator minimizes the AMSE among the

R-class estimators. Both of these results were shown within the framework
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of the large-T asymptotics. Kunitomo [1981] shows that the F estimator
is asymptotically efficient in terms of not only the AMSE, but also the
concentration of probability.

In the large-K, asymptotics, however, neither the F estimator nor the

2
M estimator is third-order asymptotically efficient because they are asymp-

totically mean-biased in the term of O(n_l). [See (6.68) and (6.83) below.]
In this respect some ambiguity still remains on the optimality of modified
estimation. Further investigations on the higher-order asymptotic efficiency

of estimator in the large-K_, asymptotics are undertaken in Kunitomo [1981].

2

4., Discussion

4.1 Interpretations of the large-K, asymptotic theory
o
Let the multivariate linear regression model including the structural

equation of interest be

(4.1) =

ZI%(T) + VU=

where Y* and Z are T x G(T) and T x K(T) matrices of observations on
regressands and regressors, respectively, I*(T) is a K(T) x G(T) matrix of
unknown parameters including I, V* is a T x G(T) matrix of disturbances in-
cluding V, and both G(T)(>l+Gl) and K(T) (> K) are monotone increasing functions
of the sample size T. Let us assume (4.1) is the reduced form of the complete

system of structural equations:

(4.2)  YBEZ =V,

it

where R = (bij) and T (yij) are G(T) x G(T) and K(T) x G(T) matrices of un-

known parameters, and U is a T x G(T) matrix of disturbances.
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There are several ways to interpret our large~K, asymptotic theory

9
in the complete system of simultaneous equations. One simple way is to

fix the number of equations and consider a parameter sequence such that

KZ(T) ( = R(T) - Kl) goes to infinity. Since, in this case, the included
exogenous variables in the structural equation of interest are fixed, the

number of exogenous variables in other structural equations is growing along
with the sample size. Another interpretation, which may be natural in many
large systems, is based on the assumptions given by Sargan [1975] that the system

of simultaneous equations is almost recursive and stable. Under his Assumptions

1
1—3 . i i i i n' - a -
) (5) in Sargan [1975] implies that the matrix ~22(T 522.1)322 conver
ges to a constant matrix. . Then, his assumptions together with our Assump-

tion 3 are sufficient conditions for Assumption 5 and Assumption 4. Hence our
formulation of the model and assumption can be justified by considering the
complete system of simultaneous equations.

However, there is a basic difference between our model and Sargan's
model which leads to different results: Theorem 3 in Sargan [1975] implies
that the TSLS estimator is consistent. The key fact is his Assumption 5 that

the speed of increase in T is much faster than the order of K(T), that is,

11
Tiz K(T)/T = 0 for fixed Kl' On the other hand, we assumed

lim 2 . . . . . .
0 < q Kz/q = v4/8§ < + » in Assumption 5. Hence, it is not surprising to

find a different result using different sets of assumptions about the relative

speed of key parameters. It should be also remarked that a similar theorem

1

such as our Theorem 2 can be obtainable under the assumption that T

im
K(T)/T = 0.
It is also the case that the LIML estimator attains a possible lower bound, and

it is efficient. (See Section 6.3 in Kunitomo [1981], for instance.)
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4.2 Numerical Comparison of Densities

Anderson and Sawa [1979] compared the exact distribution of the TSLS
estimator and the LIML estimator when the covariance is known (which is termed
the LIMLK estimator). They concluded that the exact distribution of the TSLS

estimator is extremely biased when K, is relatively large. Another study of

2
the exact distribution of the LIML estimator by Anderson, Kunitomo, and Sawa
[1981] led us to the same conclusion.

In the Appendix, we give nine figures of the estimated density functions
of the OLS, TSLS, and LIML estimators with different values of the key para-

meters: T-K, K,,a, and p2. The estimators are standardized by the asymptotic

97
standard deviation in the large-T asymptotics; this makes it possible to com-
pare the small sample properties of estimators in a systematic way. The esti-
mation method is based on simulation. The procedure of our Monte Carlo experi-
ments and the accuracy of estimation are discussed in Anderson, Kunitomo, and
Sawa [1981] in detail.

Figures 1-3 are for the case T - K = 5. When the degrees of freedom T-K
is relatively small, there is not much difference between the distributions of
the OLS and TSLS estimators. It is reasonable because these estimators are
identical in the extreme case of T — K = 0. The OLS and TSLS estimators are
biased toward their negative values; the distribution of the LIML estimator
is almost median-unbiased. As K2 increases, the biases of the OLS and TSLS
estimators increase, and the dispersion of the LIML estimator increases.

As for Figures 4-6, the TSLS estimator 1is substantially different from
the OLS estimator because T-K is not small (=20). The OLS estimator is always

extremely downward biased (because o is positive) and the density of the LIML

estimator is very close to the standard normal. The distribution of the TSLS
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estimator is always between the distribution of the OLS and LIML estimators.
As K2 increases, the bias of the TSLS estimator increases; the TSLS and OLS
estimators tend to share a similar bias.

As for Figure 7-9, the degrees of freedom T-K is fairly large (=40).
Especially in Figure 7 the density of the TSLS estimator is similar to that
of the LIML estimator: the bias of the TSLS is relatively small. This is
reasonable since the large-T asymptotics may be appropriate in this case.
Again, however, the bias of the TSLS estimator becomes serious as K2 increases.
The distribution of the OLS estimator is extremely biased; the distribution

of the LIML estimator is always median-unbiased and is approximated well by

the standard normal distribution.

5. Concluding Remarks

We initiated the large~K, asymptotics, which may explain the asymptotic pro-

2
perties of altermative estimators when the model is considerably large. Both
the TSLS and OLS estimators lose even consistency when the model is large,
while the LIML estimator is consistent as is seen in Table 1. 1In this sense,
the LIML estimator has a robust property.

Furthermore, the LIML estimator attains a possible lower bound among a
class of consistent estimators, and its limiting distribution is the joint
normal distribution. Therefore, the LIML estimator is asymptotically effi-

cient in the large-K, asymptotics.

2
According to our numerical analysis, the difference between consistent

estimators (the LIML estimator and its modification) and inconsistent estimators

(the TSLS, OLS estimators, for instance)is significant. On the other hand, the

differences among the modifications of the LIML estimator are mnegligible in many

cases for practical purposes. (See Tables in Kunitomo [1981}.) On the whole, all
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of our results support the practical advantages of the LIML estimation in large-
scale models under the assumption of normality. It can be conjectured that
the comparisons of distributions are approximately valid if the distributions of
the disturbances are not too far from normal.

Although it has been well known that the OLS estimator in simultaneous
eqauations models is inconsistent in the large-T asymptotics, it has been us-
usually used in practice by some applied econometricians. A common justifica-
tion for this is the observation that the TSLS and OLS estimation methods give
almost identical estimated values in large-scale models, and hence the OLS
estimation is preferred because it is the least complicated in computation.

In the context of the large-K, asymptotics, this observation can be easily

2
explained by the fact that both the TSLS and OLS estimators are inconsistent,

and their probability limits are almost the same when the model is large. There-
fore, it can be neither justifiable nor preferable to use the OLS estimator in

large-scale models.

Table 1

Consistency Of Estimators Under Alternative
Asymptotic Theories

Small-o Large-T Large—K2
OLS Consistent Inconsistent Inconsistent
TSLS Consistent Consistent Inconsistent

LIML Consistent Consistent Consistent
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6. Proof of Theorems

In this section we shall give algebraic details. The method we shall
use is an extension of Fujikoshi et al. [1979] and Kunitomo et al. [1980].
First we will give a reduction for the distribution of ¢ and G in closed

form. Let us define a G, x G, matrix

1 1

(6.1) ' =1 +oa'
o ™
1

and a (1 + Gl) x (1 + Gl) matrix

1/o -(1/0)8’
B s / / R /2. -1/2
—-1/2  _-1/2 -1 -
Ay p) el [Icl‘ (L/Vwyy 20158, 1 89y
)
Then
(6.3) Q%@ Q¥ =1, -
1
Let
ce
(6.4) g% = ,
o warEyT
(6.5)  C* = 0% C Q'

(6.6) G* = Q% G Q*'

Then C* and G* are independently distributed as a central Wishart

distribution W (T-K,I ) and a noncentral Wishart distribution
G, + 1
1+1 1
WGl + l(K2,IGl + 13 0%), respectively. We shall use the following
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expression for G#*:

[ '
6.7y gx=qy2 90 0
Lo @rEn
(0 x'F*'_l
+ u -1 -1
F* X ] *l_l + *—l
- -1 XF oK
1
1 1
+ rx R
X'x X'X
where the elements of x' = (xi xé) + 1 x (Gl + L) and
X' = (Xi Xé) : Gl X (Gl + L) are independent standard normal variables.

Next we consider a reduction for the distribution of the standardized
estimator of B and vy defined by (2.23). After some calculation, the last

Kl elements of e are
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6.9) ey =3 @z o - Lz g e® o
=W oL O ) o

where

69 w = o) g

(6.10) M = (gigl)'1/2gi(yeg;;/2 + (c/Z)‘lgg')gl/g ,

510 = -0 P

(6-12) 0 = IE2'2/}22.1{.[22‘/L12 >

(6.13) c =1+ g'g = 02/“11.2 .

We note that M is independent of u¥*, and the elements of u* and M

~ -~ -~

are independent standard normal random variables. Furthermore,

C*¥, G¥, and M are mutually independent random matrices.

The LIML estimator (2.10) may be written as B satisfying

-1
cv) et [ L) =0
- - B

-~

(6.14) (G* - x_.
- min

by using (6.5 ) and ( 6.6), where xmin is the smallest characteristic

root of G*C*_l.

We may write (6.14) as
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A

(6.15) (c* - A 0 o Bt - 1) = (c¥ -xming*)g*"l(l -8')!

Noting that

11 12 21 2
T q 8'q°t + o B1Q°°
-1 -~ - - -~
(6.16) QT = = ,
21 22 /2., 1/2_,
a9 95 f O F

it follows that (6.15 becomes

( * _ * = * _ *
(6.17) (g xming ) e u(G xming ) e

A

where e is the first Gl elements of e with the LIML estimator.

c s
Let
' —1/2 1 _
(6.18) (X3x,) " oxy =y
and
(6.19) T

oo %o T2

then it is easily seen that

(6.20) vy~ N[O,IG I,
- -~
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v‘l Av 1y _— v-l 1)1
minCHIQ (0 B - g = (G A oxIQrr (L —at)r

{6.15) (G* - A

Noting that

JL 12 ere? 4 o 8122
-1 -~ ~ - -~
(6.16) QT = = R
01 22 1/2 1/2_,
¢ 9 O, 95 F

it follows that (6.15 becomes

{ ‘ * _ * = * *
(6.17) (g AinC ) . e u(G Anin® ) R

~

where e is the first Gl elements of e with the LIML estimator.

_ -8
Let
1 ‘1/2 1
(6.18) (X3X,) 7 X%, = ¥
and
(6.19) C*—l/zc* z

oo So1 T %o

then it is easily seen that

(6.20) y ~nlo,1. ] ,
d -6,
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(3.21) z ~N[0,I, ] ,
- ~71
' S vy Y=lyy ~ 2
(3.22) X% = XXX TH K, ~ XL - 6))
and
(€= 233 c* - z2'z ~ x°(q - G.)
11 o

where we implicitly assumed L - Gl >0 and q - Gl > 0.

We note that all of these random variables are independently distri-

buted. Also let

(0) (0)

811 €12
(3.24) plim EE G¥ = ,
H (0) (o)
€51 o2
and
(0) (0)
°11 €12
(3.25) plim 35 c* = ]
T c(O) C(O)
o1 o2
Then we obtain
(3.26) (0) _ 1 (o) _ (o) _ (o) _ 1 xrpx) -l
811 =% > B1p =& =0 » Gyt =g I o+ (F*IF¥) ’

1

and
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(0) _1 (o) _ (o) _ (0) _1
(6.27) 110 T3 2 S1p TS 0 5 Cyp 5 g -
\Y v 1
L.emma 3,
2
p ,(0) _ v
(6.28) Ajig > 2 =5 -
Proof:

Note that Xmin is the smallest root of the determinantal equation

|G* - AC*| = 0. Now, dividing by u° gives

{6.29) S e -ai e =0 .
2

This equation converges in probability to

l ~ ] l 1
R 0 T
{6.30) -\ . =0 ,
i ®rpx)TL 1
0 FI *+(FF¥) 0 7 o
1 v 1

so that A . =~ converges to the smallest root of (6.29), which is v2/6.

(QED)

Proof of Lemma 1 : Rewriting (6.17)

N 1
(6.31) (£*F*) (G* - A%C¥*) (f*F*)'eB = pu{r*p*) (G* - A¥C*) .
~ - ~ ~ -~ - - - - ~ 0

~

3

Then dividing by u gives
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> 1 * *ok % 1 (g% * %1 L 2
(6.32) [£* 3 (g}; - A*c}y) + F¥ =5 (g8 - A%ey))] (£*' e - 1)
+ [f* . 1 (g%, - A%¥c¥X_) + F¥ L (gx_ - axcx )]F*'-l e
- 2 221 21 - 2 .22 2200 u .B
H M

= o L]

Equation (6.32) converges in probability to
A (0) Ay (0)
(6.33) (x - yeReRr 4 [T+ (% - )F*F*'}}e(‘l)
8 2 -G 8 2 B
v 1 Vv
A, (0)
= (L * %
= (F-—
v

where we denote
(6.34) MO 2 a0y
and

N (-1)
6.35 1 - = .
(©:3%) pLim %5 = %

~

Therefore, the estimator BR is consistent iff

L (0
(6.36) 5" "% =0 .
v

Hence,
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2
(6.37) (a_1)‘g—+b=o .

This equation holds if a =1 and b = 0, namely the LIML

estimator. (QED)

Let v and w be independently normally distributed with mean

0 and variance 2. such that

(6.38) u[-1-§ x1x., -%] $
- 0" /5
and
1 .« 1,4dw
(6.39) u[u2 c* - u2l > -

From (6.18) and (6.19)

(6.40) —I-Xéx2 ¢, .
U /E ~
and
1eox ¢1,
(6.41) Sk T -

Lemma 4 :
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(6.42) éB g N[O,Ql] for the LIML estimator
where
1 v2
¢ = — - Xpe? .
(6.43) 7, t3 (1 + F)E*F

Proof: From (6.17), we obtain

* * ®'a  _ . * ®¥'a = .
(6.44) (g3) = Ayin S3p) (f*'eg —w) + (G8, - A, C3,)F*'e, =0
. 2 .
Dividing (6.4%) by ugives
~ 1 o« L % yexr 1 = 1 ok Ypetle

(6.45) (= &%) - Muin 2 cE )L+ (uz G232 = Amin 2 CE,)F*! leg

_ (1) ~(1)

=87 = Auin %01 ¢

By virtue of (6.40) and (6.41),
6.46 (1) _ 1 . o)y g (1) _ 1 er-1
(6.46) gy = w85 -8y ) > 8y Yy P,
u vé

and
6.47 (1) _ ol _ (0)ya (1) 1
( ) Co1 “(uz Bl -Co1 ) TS SUE -

Then using Lemma 3, equation (6.44) converges to



-31-

(0)
(6.48) [(rorpe)~t w11 _A 1 jpxrel0)
- - § G 2 .G,'. B
1 v 1
(0)
/‘6— - - 1 A" ~
where we denote
A
(6.49) eq g ?((30) .
Rearranging (6.46), we have
(0) 1 1 (0)
(6.50) e = x, + F¥(=1y - z) . (QED)
-8 ~1 - /5 - \Y -
Lemma 5:
(6.51) ;l)=‘“¥un' y(0)y ¢,0),
where
L 2
(6.52) (1) L N[0,2 %— (1 +-§—)1

and is independent of X15 Y and =z.

Proof: From (6.17) we obtain

N A

) (£%'e ) + (g*, - A c* JF¥'e_ =0 .

. * -
(6.53) ( min €117 (£¥'eq €12 ~ *min S12°%7 g

% _
871 - A



Dividing (6.53) by u° yields

1 1 1 1 ~
.54 L o= L% Ypxr I g% _ I c* st
(6.54) (e Mpin T3 O30T+ (Szel, - Ay, TS )P e
u 11 u u u

C=(1) %11 t(1) L (0)-(1)
=8 -~ A - Ao o

i
where
. (1) _ " (0)y 4 (1) _w
(6.55) €11 T ”(u_z cfp-enn ) Teyy Ty
and
: (1) _ Ll o« (0)y 4 (1) _ v
(6.56) g1y = w558 -g ) v ey = o
B [}

Then in virtue of (6 26) and (6.27), equation (6.54) converges to

(1)
(6.57) 0= A —_ 2w .
/8 v
Hence, we get
2 3
(6.58) W1y - (QED)
/s
Proof of Lemma 2: Applying a similar argument in the proof of

Lerma 5 to (6.32), we get
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A £(0)
(6.59) esgeéo)=xl+F*'(ly-Av 2) + (1 -a) Ao rr |
~ - - ~ '/?S‘ ~ - v -
Thus the asymptotic covariance matrix can be written
AM(e(O) . e(O)') =Q +2 (1 + 12—) (1 - a)2prpss
(6.60) °8 °8 b R § -7

It is easily seen that this matrix can be minimized at a = 1. Then from

(3.2) consistency requires b = 0, namely, the LIML estimator. (QED)

Lemma 6 (Asymptotic Bias):

A Qlf*
Y
(6.61) AE(eLI) = - E( )

for the LIML estimator.

Proof: Let
A (0) (1) (2)
, 8 8 8 o8
1 1 -3
(6.62) = + = + = +0 (y™2) .
A .(0) ¥ (1) W (2 P
Y =Y Y Y

Recalling (6.44)
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(6.63) - (§2§2) _ A(o)Eg) - A(1)3%) _ A(2)5§2’>
#le - %) Salehene® e gl gt

¢ (0{9) - A @cfyperell) 4 (o{1) 5 (c{1) (W0 yprr o (0)

= O .
where
o) mn e ) ey o o) =utron oo
i
(6.65) N TN CONE BN GO
min u 3

and

(2) _ 2 (0) (1)
(6.66) o1 T 31 T M S T HSy

Using Lemmas3and 5, (6.25) and (6.27)

(6.67) ?él) - -f*'féO) . ?éo) . ?*[(géf) _ A(o)sg) _ A(1)22))
(1) (0) .(1) (1) .(0) yy, (0)
- (922 A C - AT, )F* i !
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o

the only possible non-zero contribution comes from the first term.

For » Since expectations of the terms in the parenthesis are zero,

Hence,

(1))

(6.68) AE(?B = -glg* .

Finally, from (3.8).,

(6-69) e(O) = u*

Y - ?
(6.70) e(l) = —(MF*' + u*f*’)e(o)

=Y ~—— -~ -B
(6.71) eiz) = (MF*' + u*f*')eél) .

where u* ~ N(0,I, ) and each row of M 1is independently distributed

K
-k -
as N(O,IG), and they are mitually independent. Therefore, we get
(6.61). (QED)
Lemma 7 : Let
o A
(6-72) w =¥y (ors - o)

where c¢ 1is a positive constant. Then

N A
(6.73) iaM(e 0 < uaM(e )1 if 0<ec<1 ,

and
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A A A A
(6.74 . .
) AM(ey  ey) < aMler,  ep,)

Proof: For the TSLS estimator, write
(6.75) l-e = e(_l) + l-e
U . H .

Then, again using (6.17),

) (£*

*o* * o % N
(6.76) (r¥g}) + F*gly)) (f*'ey oo

- + ¥* ¥
u) + (f*ef,

3

*O% ®1
+ FXGE,)F*'e

B.TS

Dividing by u~ and taking probability limits 1in each term yields

(-1) _1 -1,

(0-77) ?BcTS - 5 13 ‘f: »

where

(6.78) D=1 + l-(f*f*' + F*F®r)
- ~Gl s 'L L - -

Similarly from (6.76),

(6.79) (£* (0) + F* (O))f*,e(O) + (f*gii) + F¥ (l)) (f*'e(-l

- 811 LS ) €01 . -8B
(0) (0) (0) (1) (1) (-1
* * 1] ¥* t
+ (f*g) 0 + FXO, )F* e mt + (f¥g 0 + FXG,, )F* ey

) _ 1)

) _ g

0



g.rg = D {(—— 1% + X, + L pry) (f*'eé'l) - 1)
~Pe -~ /S' -~ -~ /s' ~ - ~ ~
+ ler(peix 2 oy F‘*(xiF‘*"1 + F*—lx1 PR U(l))]F*'eé'l)}
-~ -~ -~ ',g -~ -~ P S -~ -~ /_6" ~ - ~
where

(6.81)

and the expectation of each element of U(l)

is zero. Then the stan-
dardized combined estimator may be expanded

(6.82) 3

_ o) 1 (1) (-1)
eg = eprr * 7 legpr * cdey gl

1 (2) (0) (0)
* ;E egrr * c¥leging - @

-B.LI)] * Op(u—B)

Taking expectations (with respect to the

approximate distribution of the
estimator) gives

6.83 - ) =X (- -1
(6.83) aMleg) =2 (-0, + eD7)EX
and
~ A' ~ AV
(6.84) AM(?B ?B) - AM(?B-L fs.LI)
) lE AM[c252e('1) (-1)"

(-1) (1)
; °g.75  Sg.Ts T °%¢ N

~B.TS ~-8.LI



(1)
+ CG?B.LI

(0)

+ cblegng -

-~

1

)
H

~ o~

+ Gc[D-lQQ +

- clpTherex o, + QDT EReR D

+ rop~lex(p

where

(6.85) V=i %
1

Now

6.8 8107, + g 07

(cPp TergrrpT

—-38-

e(-1)'

8.7S + cGe(o)

~B.LI

(0) (o)
fs.LI)?s.LI]

1

~l o o~

-1

Q2D

- 2Q1]

-1 -1
% + 32D

- 2Q1]

(e

~

- *PRITY”
c[Qlf f ?

~

(0) _
B.TS

1

+ D_lf*f*’QI]

-1
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2
= —D_l(F*F*' + f*f*')Q2 - Q2(F*F*' + f*f*')D‘1 -2 %~ FEp*?

~ -~ ~ ~ o~ ~ o~ -~ ~ o~

< -2D'1f*f*'D'1 .

1 1 -1 1

and D‘lf*f*'D

< Qlf*f*'D_

Because D lf¥r¥tp” <D £x£¥1q, ,

(6.84) is non-positive definite if 0 < ¢ < 8. For éY’ from (6.69)

(6.70).
| ST 1 (1) (1)
(6.87). AM(?YfY) = EKl * 5 AM[EY e,
u
1 1
. e(2)e(o) . e(o)e(e) ]
Y oY YooY
= l_ XTI 1 %!
I *+ =5 [tr(QF¥F*")I, + 3f%'Q, f*I,
1 ! 1 1
- ocf*'DlekT ]
¢
-1
= e &' 1 *1p~Lrx
aM(e 81) 1 - =5 [2ef*'Dr*T, |
B 1
A, ) Ry .
< AM(?Y?Y)LI if ¢>0

>
>

Then using the asymptotic independence of eB and eY, we get (6.74) ,

(QED)

Lemma 8 : Let
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A N\
(6.88) fF = fR
and
(6.89) A=A =S
F min q

where c¢ 1is a positive constant. Then

A A

6.90 i
( ) IIAM(fF)II < tamM(e )i if 0<e<1 ,
and
(6.91 o A

t v 1
-91) AM(?F? F) < AM(?LI?LI) if 0<c<8 .
Proof: Let
- _ (o) .1 (1) .1 (1) -3

(6.92) IS R 8 T VS 2 egp t O (W)

and

_L,(0) .1 .(1) 1 (2) 2 -3

(6.93) Ap = A + 3 A + [x - cv] + Op(u ) .

H

Recalling (6.17),

f¥'e < p
(6.94) (£4F%) (0% - A C¥) ( s ) = 0
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and. the substitution of (6.91) and (6.92) gives

(o) _ (o)

(6-95) ~B r = B LI ’
(1) (1)
6.96 = *
(6.96) ®s.r = g t I
(2) (2) 2 (1) (0) (0)
6. = - e *
(6.97) eg.p = Sp.pr * OV {legy’ —2c) if*re T 0f
(o) 120 (0) (1) xc(0) per (0)
p TFfReg pp * FReyt - TR, FRleg g
(0 b (1) 1 (0),(1) (1) () RN
¢y FHGy - Cop = A TCy  JEXILR} .
Then after some calculation of expectations,
1
(6.98) wileg p) =5 (-9 + CEGl)f* ’
6.99 ot
(6.99) AM(?B reg.r) - AM(?B r1%8.11)
1 2 '
=5 [corer®r _ 3cr*rer 3chf*f*'
W2
- 2cf*'f*Q, - cF¥F¥'Q. - cQF¥F*' - 2c 3— F¥F*1} .

A~

The last term is non-positive definite if 0 < c < 8. Similarly, for ey



(6.100)

—40—

~ Y 1

_1__. k. ank 2
M 2 {tr(q, F*F )EKl

+ 3THIQUERL. - 2efRILRL )

1 R

PN ~ 1
= ' = I ®1 0% .
AM(?Y e') _ + 5 [ 2ef*!f¥] ]

~Y' LI u - -Kl

Finally, using the asymptotic independence of e and e., we

the proof.

complete

(QED)
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Appendix

Figure 1
Densities

2
<K = = A = =
T-K =5, KZ is, 1.0, ).l 200.0
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Figure 2
Densities

2
~K = = x=1. = .
T-K =5, KZ 25, 1.0, P 300.0
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Figure 3

Densities

T-K=5, K,=45, %=1.0, p=500.0

r
-1.0 0
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Figure 4
Densities

- - - 2_
T-K=20 x2-15. %=1.0, p=350.0

.ég -
‘ 5
| oL SIS |
\
o /
s o NORMAL
i ° ! o‘////
4 i o LI
: ./’
: | ;
| ] — T T P
-310 ’2-0 -100 0.0 110 210 3-0
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Figure 5

Densities

T-X=20, K, =25, « =1.0, }12=400.o

 NORMAL
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Figure 6
Densities

T-K=20, K2=45. «=1,0, P2= 650.0

1.0 2.0

3.0
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Figure 7
Densitiles

= 2= = 2:
T-K=40, X2 15, o«=1.0, P 550.0

NCRMAL

-3.0 2.0 -1.0 0.0 1.0 2.0 3.0
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Figure 8

Densitles

= = X = 2-
T-K=40, KZ 25, £=1.0, P 650.0
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Figure 9

Densities

T-K=40, K2=45,C(=1.0, P2=850.0

"100 0.0

3.0
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