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Abstract

The Maximum Likelihood (ML) estimator and its modification in the
linear functional relationships model are shown to be third-order
asymptotically efficient among a class of almost median-unbiased and
almost mean-unbiased estimators, respectively. This implies that the
Limited Information Maximum Likelihood (LIML) estimator in the siﬁultaneous
equation system is third-order asymptotically efficient when the number of
excluded exogenous variables is growing along with the sample size. That
is, the LIML estimator has an optimum property when the system of simulta-

neous equation is large.
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1. Introduction

The concept of asymptotic higher order efficiencies has been recently
developed by some theoretical statisticians. Among them, Ghosh
et al [1980], Pfanzagle and Wefelmever [1978j, ana Akahira and
Takeuchi [1979] are basic references and Efron et al [1980] is an
excellent review to find how leading statisticians have different
opinions on this subiect. The Maximum Likelihood (ML) estimator and
the Rayesian estirator with smooth priors have third-order asymptotic
efficiency under some regularity conditions. This means that given an
estimator we can always construct a modified ML estimator which has
the same asvmntotic hias and smaller asymptotic loss than the estimator
to be compared. Hence, there is no reason why we should choose other

estimators except the ML estimator or its modifications.

The purpose of the present article is to show that the ML estima-
tor itself has a third-order optimum property among almost median-unbiased
estimators in linear functional relationship models. We also show that
a modification of the ML estimator has a third-order optimum property
among almost mean-unbiased estimators.

In the linear functional relationship, the number of parameters
increases together with the sample size and so we cannot simply apply
general theorems in the regular asymptotic theory. In fact, the Least

Squares (LS) estimator is inconsistent while the ML estimator is



consistent but the ML does not attain the Cramér-Rao lower bound
in the linear functional relationships. However, Takeuchi [1972]
proved that the ML estimator attains the lower bound of asymptotic
variance among a certain class of consistent estimators (Morimune and
Kunitomo [1980]). Therefore, further comparison: of estimators should
be made in terms of higher-order terms of the asymptotic expansions
of their distributions.
Anderson [1976] first shed light on connections between the estima-

tion problem of linear functional relationships and that of structural

equation in a simultaneous equation svstem in ecorometrics. The M, estimator

of the slope in the linear functional relationships is mathematically equiv-

alent tc the Limited Information Maximum Likelihood (LIML) estimator of a

structural coefficient when the rovariance matrix of the reduced form

is known in simultaneous equation; and the LS estimator in the former
is equivalent to the Two-Stage Least Squares (TSLS) estimator in the
latter. Further, as Anderson [1976] showed, the parameter sequence, in
which the noncentrality parameter increases while the sample size N
stays fixed in the linear functional relationships, is the one on which
the regular asymptotic theory in econometrics has been concentrating.

In this situation, the LIML and TSLS estimators are the best asympto-
tically normal (BAN) estimators, namely, the two methods yield consistent
estimators and the two sets of estimators normalized by the square root
of the sample size T have the same limiting joint normal disiributions
with the covariance of the standardized Fisher information matrix. Here

we should note that the sample size T In the simultanecus equation system



is different from the sample size N in the linear functional relationships.
Since there exist two BAN estimators, several nodifications have been
proposed in order to improve LIML and (or) TSLS in some sense. For
example, see Nagar [1959], Kadane [1971], Sawa [1973], Fuller [1977],
Morimune [1978], Takeuchi [1978], Takeuchi and Morimune [1979].

On the other hand, Kunitomo [1980] clarified the meaning of
another parameter seguence in which both the noncentrality parameter and
the sample size N increase, It may be appropriate in the linear func-
tional relationships. Anderson [1976] showed that the sample size N

minus one is the number of excluded exogenous variables in the structural
equation of interest in the simultaneous equation system, say K2.
{Although Anderson [1976] uses the two endogenous variables case, his
arguments hold in the general case. See Kunitomo [1981 a], for instance))
Since recent macro-econometric rodels are more or less large in their siée
and hence K, is fairly large, the above parameter sequence can be inter-

2

preted as a new asymptotic theory, called the large-K, asymptotics, for

2
large econometric models (Kunitomo, 1981b).

As K2 increases along with the sample size T, the LIML estimator
is consistent and asymptotically efficient while both the TSLS estimator
and the Ordinary Least Squares (OLS) estimator are inconsistent under
appropriate regularity conditions. Furthermore, the modifications of
the LIML estimator by Fuller (1977) and Morimune (1978) are shown to
improve the LIML estimation in terms of the asymptotic mean squared error,
which is defined by the mean squared error of the asymptotic expansion
of distributions. Hence there was some ambiguity on the higher order
asymptotic optimality of estimator in single equation methods when K

2

is large.



The results obtained in Section 2 imply that the LIML estimator is
third order efficient among almost median-unbiased estimators and a
modification of the LIML estimator is third order asymptotically
efficient among almost mean-unbiased estimators. Therefore the LIML
estimation method gives the best estimator if we adjust the asymptotic
bias according to our choice of criterion: the median unbiasedness or
the mean-unbiasedness etc. We note that almost mean-unbiased estimators
when K2 increases are different from those in the usual large sample
asymptotic theory.

One important approach studied in econometrics in the past is small
sample theory. Anderson and Sawa [1979], and Anderson, Kunitomo, and
Sawa [1981) evaluated the exact distribution functions of the TSLS and
LIML estimators, respectively, with systematic computation for a limited
number of suitably chosen cases with different values of the key para-
meters in the simultaneous equation system. The most important finding
in their studies is that the TSLS estimator is badly biased while the
distribution of the LIML estimator is centered at the parameter value
when K2 is large. 1In this respect, the results reported in this paper can
justify their findings theoretically.

We shall present the model, the assumptions, and the statement of
theorems in Section 2. A general model and some implications of our
results in econometrics will be discussed in Section 3. Proofs of

theorems are given in Section 4 and the validity of asymptotic expansions

are discussed in the Appendix.



Z, Main Results

Suppose (xg yg) is an observation from a bivariate normal dis-
tribution with mean (u_ v ), variance o and o__, and covariance
g g xx yy

cxy’ g=1,...,N, for N > 1, and suppose that the observations are

independent. The parameters (ug vg) are assumed to satisfy a linear

relationship:

(2.1) \)g=a+Bug , g=1,...,0 .

The angle between the line (2.1) and the ug-axis may replace the slope

B = tan 8. It will be convenient to write

(z.2) X =u_ +u_ , g=1,...,N ,
(2.3) Yy =v_+v , €=1,...,N

where ug and vg are normally distributed random variables with means

zero and covariance matrix

o
Xy ¥y



A case of special interest is the model of ny = 0 and
Oy = Oyy = 1. In this case each pair of errors has a normal distri-
bution with vector of means O and the covariance matrix 025. If the
covariance matrix is a function of more than one unknown parameter,
estimation methods are more or less arbitrary. See Anderson [1976], and
Kendall and Stuart ([1973], Ch. 29) for discussion.

The stimator of o in any method here is o = vy - éi, where é
is an estimator of B and
N N

(2.4) x=nw1 ]

X
g2y 8 Cgop’ 8

The estimator of R 1s then defined in terms of deviations from the means

(x ¥). Let

1N
(2.5) s =n) (x -%% |

XX g'-:l g

1X _\2
(2.6) Sy =ng£l(yg -y,

1N
(2.7) Sy = nz (x -xNy_ -¥v) ,

and n =N - 1.



Other notations used here are the standardized estimator

(2.8) e=—2 —(g-38) ,
(1 + 32)

and the noncentrality parameter

(2.9) 22 = (1*3 zm-ag ,
c g=1
where
N
- -1
u =N Zug
g=1

The parameter Ag may be interpreted as a measure of the spread of the
true values about their means. The assumption we shall make here to

derive asymptotic distributions of estimatcrs is the following.

Assumption A: There exists a finite positive number p such that

; (u, = 0)°
g=1

and § = (1 + 32)0, where n = N - 1.
Assumption A means that the noncentrality parameter (the spread

of the true values) increases with the same order as the sample size N.



In the following analysis, Az is replaceable with n§, and Az is
employed instead of N wherever we are able to avoid complexity of
expressions. We note that it is possible to extend our results to
alternative parameter sequences instead of Assumption A, which will

be briefly discussed in Section 4.

Define a class of estimators, called the extended regular efficient

estimator (See Akahira and Takeuchi [1979]), by

(2.10) é=¢(s )+-§-xp(s ),

S S S S
Yy Tyx’Txx Yy yx’ T xx

vhere s__, Sy and s are given by (2.4)-(2.7) and ¢(-) is tour
times continuously differentiable, Y(-) is twice continuously dit-
ferentiable, and both are independent of N = n + 1, and all of the
derivatives are bounded around true parameters.

This class includes the ML estimator; the LS estimator, and

their modifications. Also we define the third-order asymptotic medjan-

unbiased (AMDU) estimator by

(2.12) lim sup n|Pr (é < B) - %ﬂ =0 ,
n-»oo Bl -
$
and
(2.13) lim sup n[Pr (é > B) - %1 =0 ,
n> Bl

S



where UG is a neighborhood |B - BOI < & for some § > 0 and any BO’

Theorem ]: For all gl > 0 and 52 > 0,

~ ~

(2.2¢4) lim n[R{-g, < /alg, - 8)<g,} = Pr (=g, < /n(B - 8) < g} > ¢,
n-<

PN

where B 1is any AMDU estimator and BML is given by

(2.15)

Corollary 1: The ML estimator has a third-order optimum
property among AMDU estimators with respect to any bounded (bowl-
shaped) loss function Ln(B,a) = h(nl/z(a - B8)) whose minimum value is
zero at B8 = a and which increases with [a - g].

Similarly, we define the third-order asymptotic_mean-unbiased
(AMNU) estimator by

(2.16) lim sup nlAMh (é -l =0 ,
_ me el s

where AMh(-) stands for the expectation with respect to the Edgeworth

expansion of g.

Theorem 2. For all El > 0 and 52 > 0,

(2.17) Lim n[pr{-¢ < /alg*-8) < gob - Pro{-g, < /(g -8) < 511 > 0,
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where R 1is any AMNU estimator and g% 1is given by

. 2sXy
(2.18) B* = N 5 > 172
- - + 4
Sex ~ Syy + 2c + [(sXX Syy) Sxy]
and
- 21
(£.19) ne = 1 + 7 Z R
2" "1

where Zl and 22 are the smaller and the larger characteristic roots

Sxx ° 2
of the equation: s Sxy - g I} =0,
Xy yy
Corollary 2: The estimator Bg¥* has a third-order optimum

property among AMNU estimators with respect to any bounded (bowl-shaped)

loss function Ln(B,a).
Turning to the estimation of the angle, the following theorem holds.
Theoren 3. For all gl > 0 and 52 > o,

(2.20) Limn[Pr{£, < /H(éML-e) < Epl = Pro{-g, < /a(e -s) <Exr> 0,

-~

where 8 1is any AMDU or AMNU estimator.

Corollary 3: The ML estimator of angle has a third-order

optimum property among AMDU and AMNU estimators with respect to any
bounded bowl-shaped loss function whose minimum value is zero at 8 = a

and which increases with |a - 8].
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3. A Generalization of Takeuchi-Theorem and Simultaneous Eguations System

The model we have been considering so far may be unrealistic in
practical situations since the covariance matrix is assumed to be known
to a proportionality constant. However, this assumption is not essential
in our results. In this section, we shall discuss the linear functional
relationships model with an arbitrary (known br unknown) covariance matrix

and its connnection with simultaneous eguatior systems in econometrics.

For an arbitrary covariance matrix Q = (wij), the likelihood is

given by
N ¥ 22 2 1 q
(3.1) log L = - = log (21) - 5 1log {005(1 =17)] - ————
2 2 172 2y .
. 2(1-17) i=1
X, -U, 2 X, =W, Vy.-0a-Bu, Yy, -a-Bu, 2
D e A N
1 1 2 2
where w = 02 w = 10,0 and = 02
11 1* "12 7 12 22 2°
Then the information matrix for (B,a,ul,...,uN) is
(3-2) I(B’a,ul)"',uN)
o 5 -
9 log L 3 log L 32 log L 32 log L
328 383a SBaul SBSuN
2 2
3 _log L log L 2 log L 2 log L
dR3a 32a aaaul BaauN
2 2 2
= _8& 88130g L - laog L Jéog L 2 log L
ul a ul 3 “1 SulauN
2
9 log L 32 log L 32 log L 32 log L
9833 3
_ o8dny daduy Ouy My 3%




iz

- -
c c
2 2 2
Zui Zui Ul(B—Ta—) UN(B_TB_)
i i 1 1
o o
Tu, N B-1-2 B-1—2
it - °1 %
R S
= ’
(l-—rz)o2 o o
1 2 2
ul(B-r——— B-E—
1 - 1
) o 02 ) %
2 2 2
IJN(B-TO—Z) 8—1-0—2— (8 +'—2——28T-0—)' ;N
1 1 o 1
— l -
and so the partial information for B8 1is
N
-2
Y (w, - 1)
i=1 *
(3.3) I(8) = 5
(wllB - 28m12 + w22)

Here we note that the partial information for £ when @ 1is unknown is

the same as I(8) because (32 log L/Bsamij) = (32 log L/aaamij)

2
(37 log L/aukamij) =0 for i, j=1,2 and k = 1,...,N.

Now we can prove the next theorem by using arguments similar to

those in the proof of Lemma 1 in Section 4.

),

Theorem 4: Let an estimator of B8 be B = ¢(s__,s_,s
e vy Xy xx
where ¢ 1is continuously differentiable.

(i) If n is fixed and )\2 goes to infinity, or alternatively

n << )\2, then
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(3.9 m IENB - 807> 1,

and the equality holds for the ML estimator.
(ii) If both n and A2 go to infinity while the ratio goes

to a constant, then

(3.5) AM (/I (6 - 8))° > 1 +§L- ,

and the equality holds for the ML estimator.

(iii) 1If X2 is fixed and n goes to infinity, or alternatively
K2 << n, then there does not exist any consistent estimator.

Takeuchi [1972] proved (ii) for the case Q= 02; (Morimune and
Kunitomo [1980]). 1In the case of (i), which corresponds to the parameter
sequence Anderson [1976] considered, the ML attains the Cramér-Rao lower
bound. However, the regular asymptotic properties of the ML estimator
such as the Cramér-Rao lower bound cannot be applied to the case of (ii)
and (iii) since the number of parameters increases along with the sample
size. For the parameter sequence of (ii), which Kunitomo [1980], and
Morimune and Kunitomo [1980] investigated, the ML estimator attains a
possible lower bound which is larger than the information quantity. For
the parameter sequence of (iii), a consistent estimator cannot be cons-
tructed since the number of parameters grows too fast to give enough
information for estimation. Hence the ML estimator loses even consistency
in this situation.

Let a structural equation in time period t 1in a simultaneous

equations system be
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1

(3.6) Yoy = BYy¢ * kzl Yor 2kt T Vg 0 P LeeeT

where (ylt y2t) are two endogenous variables and u is an unobservable

1t

variable with mean zero and variance 12. The reduced form of the system

of structural equations includes

(3.7) v, =

W2k) are the coefficients of the reduced form, and
(vlt v2t) are unobservable random variables with mean zero and unknown

covariance matrix
(3.8) Q=0

The variables 2z

142002

Kt (K > Kl) are nonstochastic exogenous variables

which may include a constant term. We define K2 =K ~ Kl, which is the

number of excluded exogenous variables in the structural equation of
interest. Then a similar result can be obtained for the simultaneous

equation systen.

~

Theorem 5: Let an estimator of B be B = ¢(s _,s _,s _;
—_— vy Txy’Txx

~ A ~

wll’wl2’m22)’ where ¢ 1is continuously differentiable. Let q =T - K

be the degrees of freedom for wij'
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(i) If n is fixed and A2 goes to infinity, or alternatively

n << A2, then
(3.9) ae (/IET(E - B)}% > 1,

and the equality holds for the LIML estimator.
(ii) If both n and A2 go to infinity while the ratio goes to

a constant, then
., . ~ 2 1
(3.10J am {VITg) g - 811" > 1 + =

for q >> n, and

2

1 Y
+ = + —
6(1 5)

§-

(3.11) AM (/ITgT(s - s)}2 >

for q = 0(n), where v2 = lim A2/q. The equality holds for the LIML
q-‘rco
estimator.

(iii) 1Ir A2 is fixed and n goes to infinity, or alternatively
A2 << n, then there does not exist any consistent estimator.

The proof is similar to that of Lemma X in Zection 4. In the
simultaneous equation systems one can estimate the covariance matrix by
using the residual matrix of the regression estimates of the reduced form
parameters ﬂij- Therefore, if we have enough observations (or equivalently

the sample size T) to estimate the covariance matrix consistently,

the results for the linear functional relationships are still valid.



So far we discussed the first-order efficiency of the ML and
LIML estimators in this section. Further, the thirdforder asymptotic
optimality of the ML and LIML estimators can be proven with some
minor modifications of the proof in Sectioné for the alternative
parameter sequences we discussed. In the more general case where the
parameter of interest is a vector or matrix (such as some subsystem of
simultaneous equations), the Edgeworth expansion of distribution is

very complicated. However, in principle, similar results can be

obtainable.

4. Proofs of theorems

Measuring all xi, yi, and My from their means, we construct the

following vectors: x' = (xl,

u' o= (ul,...,uN)P vhere P = I, - (1/N)gg' and e' = (1,...,1). Since

' = . »
...,xN)g, y (yl,.. ,yN)?, and

~ ~ ~

there exists an N x N an orthogonal matrix R such that

1/2

(4.1) R(L+8%) == (2,0,...,0)"

Qaf =

where the N-th row is (l//ﬁ)g'.

We define N (= n + 1) vectors

2)—1/2 X + BY)

(4.2) (=

o
%
|

= 13?(1 + B

(A,0,...,0)" + (u

ceeou,0)!
l, ’un, ) bl



(4.3) €

<
*
i

= ??(l + 8

1

where 8(ui) = &(vi) = &(u§V§)

y can be written in terms of

17

-1/2 -gx + y
) (——=)

(¢

(v, yeee,v ,0)"
n

2
0, and 8(u§) = 8(V§)2==l. Then X and

u¥ and v* as follows.

-~

s -1/2

(4.4) x=g(1+g") R'(u* - gv¥)

(4.5) y = o(1l + g7) R'(gu* + v¥*)
Defining Sou = u*'u*, S v¥'v¥* and Suv = u*'v*, we have

1 s + 825 28s
: 2 2\~ ~
(4.6) Sy = oS(1 + g%) (== vy AT
1 325 + s + 2Bs
(4.7) Sy = of(1 + %) (—2 - =0,
. 2
-18s -8s__ +(1-2387)s

(4.8) Sey = o2(1 + g8) (e A4 — 27

In this section we shall

derive formal asymptotic expansions of

the distributions of estimators in two lemmas.

expansions will be seen in the Appendix.

The validity of the formal

Lemma 1: A necessary and sufficient condition for an efficilent

estimator among the consistent estimators is
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(4.9) b = o, = —E
1 3 1+ 8%
s l-82
2 (14 8%
where ¢. = 8¢/8hi, i=1,...,3, hl = syy’ h2 = sxy’ and h3 =5
Proof:

Taking the probability limits of

S 'Y S s Aar S

(4.10) 8 =6(1+ 8%, 8o, 1 +p)

Then differentiating (4.10) with respect to B and p gives

¢l Ny
2R 1 0 =
(4.11) oo 1= 17,
2
B8 B 1 0
¢3/
and hence
(L}.lZ) = ¢ + P
5 1
¢3 B8 8
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~

Then the asymptotic variance of B 1is given by

Lg% + 2 280 0 N
: N 2
(4.13) av(B) .= (6, ¢, ¢5) 28p pP+BTp+1 2Bp by
0 28p )-l»p+2 ¢3
2[(1 2) B] - 1 + 1+ 82
- * 8 d>l - 2 0
P
2 -
1 1l + B
> — +
- p2 P
The equality holds if and only if ¢, = g/[(1 + 52)0]. (QED)
Lemma ?7: Any efficient estimator can be expressed in the canonical
form:
Ul U2
(4.14) /g - g) = Uy +—=+-—=+R ,
/— n 1
n

where Ui’ i=20,1,2 are given by (4.20), (4.28), and (4.37), and R

is a remainder term of the order Op(n—l).

Proof: First, define the random variables

n
(4.15) yx - -(ny-l/2 2
11 ( é uy - n) o,

(4.16) Yfe = 172



Zu

_1/2 n

(4.17) * = (n) ZV

Y22 - n)

- y1.2

We shall expand the estimators by Taylor's Theorem in yfl, yfé,y*22, u

l’
and vy in the set Jn for which
(4.18) ly’{i! <2lgn , i=12 |, ly I < 2(1log n)t/2 s
]ull < 2(1log n)l/2 and ]vll < 2(log n)l/2
A Taylor expansion of the estimator yields
(4.19) Ja f 1 f
(G (¢ - 8) h¥ e — ¢, .h¥n¥
i=1 *1M o/m i,i=1 * t
L g
+ = b h*h*h* + R, |,
én i, k=1 ijk i3 1
5 ,
¥ = - - * = - * = - -
where h} /H(hl 1-8%), n} /H(h2 Bo), n% /H(h3 1-9p),
= 52 Z 53 _ 2
and ¢ij =3 d)/ahiahj, ¢ijk =3 ¢/ahiahjahk evaluated at hy =1+ 87p,

h, = Bp, h3 =1+ p, and Rl is a polynomial of degree 3 in hg,

which is O(n_3/2) and is 0[(log /H//H)3] uniformly in Jn.

From (4.9) and (4.19), we have

(4.20) U= 2

where Z2 =s_//n.
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1

Now the differentiation of (4.9) gives

2
_ 1 -8B
(4.21) 23¢ll + ¢12 = ; » 5
p (1 + B7)
2 -8
(4.22) B¢ + B¢ + ¢ =
11 12 22 92(1 + B2)
) B -4
p (1 + 87)
(4.24) 2 82 1
. B d., + B, + ¢ =
12 22 23 p2(l + B2)
2
4.25 -8 -3
( ) 2B + $,q - R
0°(1 + B%)
2 B
(4.26) B d,, +Bb,, + ¢, =
31 32 33 p2(1 + 82)
Then rearranging each term, we have
2
413 8
e 1
(4.27) bop [ = %8 011t >
2 2
3 0(1 + g7)
%23 ~28
h
8

532 - 1

23(1 - 8°)




Substituting (4.27) into (4.19) we have

1 -28 8 h¥
(4.28) U =l{(h* h¥ h¥) 1 -28 4g? 283 h¥ | ¢
: 12 17273 | 2 11
2 o3 g n#
3
0 1 - g° -28 h#
+ ———l——é-(h*le n¥ hg) l-82 23(32-3) 552 -1 n¥ }
02(l+82) 2 2
-28 587 -1 2g(8° - 3) h;
(1482)
1+8 2 1 2 2
= A 70+ {-2.2, + 2,2, - BZ, + BZ_},
2 1173 p2(l+82) 172 2%3 3 2
where z, = /H[suu/n - (1 + 32)p -1}, and Z3 = /E(svv/n ~1).
Next, again the differentiation of (4.27) yields
-2¢ 2
_ 11 28(3 - 87)
(4.29) 28(010) *+ 280y1,) + (9155 + 280y,,) = —== - ; N
p-(1 + B%)
(4.30) 8o +286 . )+B(4,  +286 )+ (0. . +28s ) = _2L§_2_-_l_)__
121 111 127 112 123 113 3 ,2
p=(1+R")
, 2 2 2 2 _ Lg
(4.31) B (0131 = B70111) #8835 =801, 5) +(9155-891,3) = ; 22
p~(1+8%)
8.8 i 2
2 2. 1l 2(B -128° +3)
(4.32) 28007 ~ 48707110 *+ (955 487077 ,) = —7 - ; > 3 ;
p-(1+87)



(4.33)

(4.34)

(4.35)

Hence rearranging each term, we have

(4.36)

2 2 2 2
B (00 ~ 14870111 ) + 80,55 - 487011 5) + (0,55 - 14879, 5)

_ 48(3 - 8°)

2

03(1 + 82)

28 (

2
s(¢33l-e

Lg (8

L
¢331"B ®111

L

- 1)

2

03(1 + 82)

100
®123
%133
®202
223
%233

$333

|

_hge

2p3

)+ (

23

9330 =B 9775

I
1110 *8(8535 = B ) + (0355 - B

®111
9112

%113

) =-

11 N 2(1 -12B2+ 351*)

03(1 +8%)

4

113

)

3

2
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28(82-3)
2(362—1)
28(3-62)
+-——l———3- —6(8h-682+1)
3(l+ 2) 2
pril+B 28(9 - 118%)

2(1-128° + 331*)}

68(382—1)

Substituting (4.36) into (4.19) and rearranging each term, we finally

obtain

5
4.37 - +87) 2
(.30 v, T {3(8% ) + B 5+

+

2 2
3(28y 1y * (1-87)8,,5 - 286, 5+ - 32,25

+

2 .k 2 —_—
((l—)-#B ~ 2B )(blll - 3B¢112 + 38 ¢ll3 = 0 )Z3

_¢
¢ 6L+ B zlr,)
o311 + %)

2
- 232122 - 2212223)

1

2,3 2
(-(1 -8 )22 + 202,

3
03(1 + 82)

In the next two lemmas, we explicitly use the assumption of normality.

Lemma 3: An asymptotic expansion of the distribution of any effi-

cient third-order AMDU estimator as n and A% increase is given bv
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4.38)  pr{<g)

- ele) - sn:ig(a)

L8l (L3 0y 2afgPlact (82 1) v H3 - 21 - eBee Y
2X A T T
+ o(x'3) .
where
2
(4.39) a=p(1+8%) (o, - —2—3)
2 2
p=(1 + §%)
Proof: Let T, = plim w(syy’sxy’sxx)

(4.40)

2
(1 + B p,Bp, 1 + p)
Then from (4.28), the third- order asymptotic median-unbiasedness requires

.- 2,2 28 _
(4.41) (l+8)¢ll--——-———-———+T =0

02(1 + 62) 0

Then differentiating (4.41) with respect to B and o,

2
p) 48(1 + B°)¢ 2
_ 2(1-87) 11 2
(4.42) eswl + we = ; 5 5 - 5 - (1+8°) (28¢lll + ¢112) ,
p (1 +87)
(4.a3) 82 +8 + = ——————.hB (l+82)2(82 +8 + )
by HBU, g = - 9111 * 8110t 91130 o

03(l+82)



where t,bl = aw/asyy, 1,(12 = aw/asxy, and 1,(;3 = aw/asxx evaluated at

2
= = = + N
syy 1+ B8 p, sxy Bp, and S x 1 o

Hence the conditions can be written as

Vs _28 1 -8 5 [-1
(4. hb) - v + 2 + Le( 1+87) ¢
5 1 3 22 3 o} 11
N 8 p~(1 + 8°) -38 - B 8
,[-28 -1 o %111
2
+ (1 + 89) , 9112
8 0o -1
9113
Then by (4.19) and (4.44)
3
(4.45) Ty = ] .h¥
i=1
_Lg 2., 2
=2 {_;—"""'";_5" (1 +87)(B7% 1) + 8oy, *+ 9730}
p”(1 + B7)
+ 7 {—2-(-l—+—382—) (1+82)(L”3¢ll + 28 + (1 32)
27 S 2 %111 -8)9195
p” (1 + 87)
- 289),5))
Ly .8
+ Z3{(l+82)w - 28 + B(l+82)[—l£—+ 8(82+2)¢
1 3 5 e} 111
p~(1+8°)

* 605 - 8oy 5]



Let
A
- 2
(4.46) Q = 5
4.47 -
( ) QF=U +T,
(4.48) Qg = U, + T,
Then
3
. . 1 5 p7(1+ 8°) 611 -
(4.49) = -—2——-—-2— {22(23—Zl)+822+[ 5 - 3](23 -2)
p“(1+8%)
and
2
23 2 2 L
(4.50)  @f = (z-1)(1+87){z (8 ¢111+B¢112+¢113+‘3_‘__2—§)
p~(1+8%)
LRo
2 11
+2,[280y 7 + (1 - 8700y, = 2By 5 + —5]
2
L3¢ 682
2 11 2
- 623[8(6 +2>¢lll+¢112_8¢ll3+ 0 ]‘ 5 5 3 ]I>
p~(1+8%) J
2, 2 2,3
. 31 (1+8%)8%;; . (1+87) c”111]
3 o) 6
2z
+Z[(l+82)1p - 2B ] + 2
3 o3+ 6% 3 2,2
o (1 + g°)
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¢ o
v 7Pp (— 28 - AL gty
23 3 22 F
p”(1 + B%)
1 2..3 2 2
+ ; 2 {-(1 -8 )22 + 202, - 282,Z; - 2212223}
p (1 + B7)
Also let
- N Q Q
e _ A _ %2
(4.51) T T 3T (B—B)-QO+)\+2+R?_ ,

(1L +87)

where R, is a remainder term of the order Op(n—l).

By the Cornish-Fisher expansion of x2-random variables (Cornish

and Fisher [1937])

' 2 / 2
| 2, 2, /2 ¥iq * 2/p(1 + B )ul Yo * p{l + 8 )vl
(4.52) = ——p
Zy  Zq Yo * Jol(1 + 8 )vl V2 Yoo
Yq.Y
2,2 5 2 11712
S(ys. -2)+u —_—= 4t u.v
. 1 3711 2 1 /5 11
fa -}:Er—f—lé+uv 2-(2-M+—3-2)+v2
= 11 3 o2 " 212
3 2
yy; - 16vq, (y7; - 10)yq,
) 9/§ 12
= +
* n 3 R3

Yoo = @5Ypp

12 9v2
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where each component of Us Vis ¥y Yqoo and Yoo are mutually

is (1//3)3

independent standard normal random variables, and R3

times a polynomial of degree b or 2 in M y12’ and Yoo plus a
- . — L

remainder term, which is 0(n 2) and is 0[(log vn/vn) ] 1in Jn.

Define a standard normal random variable as

¥
(vl + —jé%)
(4.53) We—2 5
T
where 1 = (1 + l/cS)l/2 "W is independent of wu,, v., ¥y and y and
’ 1’ 1’ Y11° 22°

1/2

z = (vl//g - ylg)/r. Transforming v, by (Y8W + z)/(1 + &) and

1
by (W - V8z)/(1 + 6)1/2,

J12
(4.54) &(QOIW) =4,
2
(4.55) 8(Ql|w) = BTW
(é4.56) | ‘LBLW oW e
4. &(q Iw) = + &9, W _ l -W
2 2 2 2 T
T T T8
-(1 - 82)12W3 + hrew

b
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2 2 bk
2 1 +68W S+ W L 2 2 Ny
(4.57) &) =35 tameey T TR

2
2 a
-2(2+%)W +’—2' ’

]

where the expectations are in terms of Urs Vi

which differs from the expectation in Jn by O(A~h). Finally by Fourier

and 2z 1in the whole space,

inversion formulae we find (4.38). The validity of expansion is seen in

the Appendix. (QED)
Lemma 4: An asymptotic expansion of the distribution of any third-

. ; z . .
oraer AMNU estimator as n and A~ increase is given bhv

-

2
(4.58)  pr {§_<_ £} = a(g) - Bi(%;l—)¢(€)

. __J_g¢2€2) 12 -1) -2+ o*(1+ 8%+ 8%2) - 1g°
2 T T

vefra (B2 v 13- 21 - g%t 007
T

Proof: From (4..&), the third-order mean-unbiasedness requires

2,2 1 1 _
(L +87) ¢ll - BPTS———————-- E] + T, =0

o(l+82) 0

oy
o~
.
n
ol

N
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Then differentiating (4.59) with respeet to B and »p,

2
2 Le(1+8%)¢
(4.60)  ompy v, = —=E—_ L —=
3 2 p
p=(1 + 8°)
2)2 )
(4.61) 32¢l + B¢2 + ‘p3 = _?:_2&__2__'- .8_2
p (1 + 8%)
2.2 2
- (1 +87) (971187 + 41008 + 6193)
Rearranging each term, we have
v 28 1 - g% 1
2 1 L
(4.62) = v, + * 5
v 8° 031+ 8%)" \ee®+3) ° |28
é
2, -1 , [-28 -1 0 111
Le(1 + B 2
* b ] b+ (1+87) 5 %112
3 o -1\,
113
Then substitution of (4.62) into (4.45) gives
_ -28 3] 2 2
(4.63) Ty = %4t 2 52 * 21452 (148708777 + 89175+ 9173)}
p~(1+8%) e
2 2
vp (L3 2B (1467
2 3 2.2 ,%(1+8%)
p~{1+87)
Lge
11 o
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8 ., 8(28% + 1)

3

2

+ 2 {(1 + g9)T. -
0

3 ) 02(1 + 89

h8¢ll

+ (1 + 32)[——0——+ 8(8% +2)s o =8¢ .1}

111 Y %112 - F%113

Also let

(4.64) QF=U +T. ,Q =U 4T

Then similarly by the same transformation of W, "and z, we have

(4.65) &lqylw) =w
(4-00) &(q W) = pr(w’ - 1)

3

Yooow W 1-w 2, 2
(4.67)  &QylW) = -+ F+ 5 - T— - (1 +37)V

T T T O

(021w) = 822 o) s (L sie (s + W) + bR

(4.68) &(qy ) = 877(1 - TUTTs t2zre) T

+ Berhwh -2(2+ %&w2} + 25- ,

T

where the expectations are in terms of Ugs Yy and 2z 1in the whole space,

N

which differs from the expectation in J_ = by 0(A77). Finally by Fourier

inversion formulae we find (4.58). v (QED)
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Proof of Theorem l: For the ML estimator Kunitomo [1980]

gives

S, 25(e)
(4.69 Pr {(—— <&} = olg) - *B—T—%L—g—

2.4 2
LEele) (13 1y, Pt pP o)+ 13- Lo 2t
2.2 2 2 2 2
2T A T T .

to terms of order N-l, where e is the standardized ML estimator.

ML

Then from Lemma 3 for any £y 2 0 and €5 2 0,

ém 2
(4.70) Pr {"gl < T _<_ 52} - Pr {-gl < ‘-'[' 5 €2}
a2
= oz legeleg) v eele >0,
2t A

to terms of order N_l, where e is anv standardized AMDU

estimator. The equality holds if and only if a = O. (QED)

Proof of Theorem 2: The asymptotic expansion of the distribu-

tion of the estimator B¥ when n and A2 increase is given in Chapter 5

of Kunitomo (1981a). Then from Lemma 4, for any El >0 axi&z >0,

o¥ 8
(4.71) Pro{-g, <« <&t - Pr{-g, <= <g}
2
_ a.
= =5 {514;(&1) + €2¢(g2)}
2T A

> 0 ,
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-1 ~Z ~ )
to terme of order N (or X 7), where e is any standardized

AMNU estimator. The equality holds if and only if a = O. (QED)

Proof of Theorem 6.3: Let B8 = tan 6. Then putting
2

= X + Brxz/x + T (82 + l/3)x3/)\2 + ..., we have

. 2
(6.72)  Pri(6-e) <x =olx) - S EE gy o 28
2 2,3
p°(1 + 8)
+ O(A-z)

Then the asymptotic median-unbiasedness or mean-unbiasedness requires
¢ll = 28/{62(1 + 82)]. Hence Theorem 3 follows from Theorem 1 and

Theorem 2. ‘ (QED)

Proof of Corollaries: The proof follows immediately from the

fact that

(4.73) &L (8,8) = [ (1 - Pr {/a(8 - 8) < yHan(y)
0

0 -
- [ (pr {/n(g - 8) < yHan(y) . (QED)

[+ o]
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Appendix : The Validity of the Asvmptotic Expansions

The purpose of this appendix is to make our derivations more
rigorous. Following Anderson [19TL], to control the errors of approxima-
tion we define the set Jn as (4.18). Then Anderson showed that

Pr (Jh) =1 - O(n-e), and we shall ignore the tail probability in Jg.

~

A Taylor expansion of B8 about the probability limits of (syy’sxy’sxx)
gives
. Lo .
(A.1) B =8+ ) n=d/2 B(J) +r
J=1

where each element of B(J) is a homogeneous polynomial of degree J

. 2 2
in the elements of Vis U, Vi ulvl,

remainder which is 0[(log n/n)5/2] uniformly in J_ and is o(

and y.., and r 1is the usual
14
n/%)

for fixed U, Vo, and yij'

We write -
. . L1 (@)
(A.2) e=+v/n(g -B)= W ~+ +S—+R ,
T T Yo
where each element of e(J) is a homogeneous polynomial of degree

J + 1 in the elements of U LW, uW, uiand z,uf:and Vg (i=1.2),R is a rermainder
term which is O(n-3/2) and is 0[ﬂogn/n)—°/L]

uniformly in Jn. Let

-~

(A.3) c(t) = &(a exp (it W))
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(1)

where A =1+ (1//n)ite + (1/n){ite(2) + (ite(l))e/E}.

We know that [exp (ite/1) - A(itW)l is bounded by~

[B|3/6 + |1+ B + B“/2 - A] and hence 1is O(n—J/L)) in J_ where

B = it {e(l)//ﬁ + e(z)/n + R}, we have

(A1) 2(6) - (t) = o 2%y

where C(t) is the characteristic function of e/,

To complete the justification of our formal derivations, we need to

show that the Fourier inverse transform of the terms O(n-3/2) in (4 33)

is O(n—3/2). We use the existence of a valid asymptotic expansion for

the distribution function of 2/t such that

(4.5) pr{o/t < ay = [ f(g)ag + o(n~?)

g<a

b1

~

where f(g) = ¢(g) + fl(E)//H + fe(E)/n and fi(E) are éolynomial
multiples of ¢(g) whose coefficients do not depend on n. We omit the
details of the proof of the existence of (A.5), which can be done by
applying arguments similar to those in Anderson [1974], Sargen [1975], and
Phillips [1977]. To sketch the outline, by a valid expansion 2(Y) for
the density function of Y = (yij) from Battacharya and Ghosh [1978], we

can write

(A.6) Pr {§_< al = h(vl)é(x)dvldy + 0(n
T e<a

—3/2)

b1
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where g(g) = go(g) + gl(g)/g + g2(¥)/n, go(g) is the two-dimensional
normal density, and gl(Y) are polynomial multiples of go(g).

(See (4.52)under Assumption A.) Making the change of variables

from (vl Y) to (W,z,yll,yzz)in I with large enough n and then

integrating with respect to (z,yll,yqq), we will obtain (A.5). From (A.5)

we have

~

(A.7) c(t) = &lexp (itg)T(g)) + 0(n™3/?)

for any fixed t. Then (A.4) and (A.7) imply that c(t) = exp (itg)}(a)

and hence f(Z) and the inverse Fourier transform of C(t) are identical.

This gives the validity of our asymptotic expansion.
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