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ABSTRACT

The core of market games with continuum of players and
syndicates is studied using the thoery of the value of non-atomic
games. In general syndication tends to enlarge the core of a
market game and the unorganized players are exploited by the
additional elements of the core. Conditions under which the
unorganized players are not exploited are presented. These
results for market games are used to prove parallel results for
markets with transferable utility. In these markets the
conditions under which the unorganized traders are not exploited,
are weaker than the conditions needed for markets without utility

transfers.






1. Introduction

This paper deals with the effect of syndication on the core
of transferable utility markets (monetary markets) with continuum
of traders. Each transferable utility market with continuum of
traders is associated with a non-atomic game in which the worth
of a coalition of traders is the maximal cumulative utility they
can get together by reallocating their initial resources. The
core of the market is the core of this game, namely the set of
all payoff vectors (i.e finitely additive measures on the space
of the traders) that give each coalition not less than its
worth. A payoff vector fails to be in the core if it is blocked
by sowme coalition; i.e. if some coalition is paid less than its
worth. The game associated with the market yields another payoff
vector; the Shapley value of the game. By introducing money into
the market, as a linear factor of the utility functions the
monetary competitive equilibrium (m.c.e.) is defined. With each
m.c.e. a payoff vector is associated, that pays each coalition
its utility-wise value which is the same as its monetary value.
It is shown in [A-S] that under certain differentiablity
requirements, the core of the market contains only one element
which coincides with the Shapley value and the (unique) m.c.e.
payoff.

By a market game we mean a non-atomic game which is super
additive and homogeneous of degree one. The family of market
games contains all the games associated with the monetary
markets,

The introduction of syndicates into either a monetary market



or a market game prevents certain coalitions from blocking payoff
vectors. A blocking coalition can not contain a proper subset of
a syndicate. The generation of syndicates tends therefore to
enlarge the core. The question we study is, how the unorganized
players (l1.e. player who are not members of the syndicates) are
paid by the additional elements in the core. This problem is
discussed, for market games, in the first part of the paper. The
techniques used are those developed by Aumann and Shapley in
[A-S}] for studying the value of non~atomic games. In the second
part of the paper the results for market games are implemented to
monetary market. It is shown that in general the unorganized
players do not benefit by syndication. No coalition of
unorganized players gets more from the additional elements in the
core then it gets in the o0ld core, but such coalitions may get
less than that. In terms of the monetary market, any element in
the core of the market with the syndicates pays coalitions of
unorganized traders not more than they get in the m.c.e. payoff.
The exploitation of small traders (those who are not atoms)
in non-trasnferable utility (n.t.u.) markets with some large
traders (atoms) was proved by Shitovitz who extensively studied
these markets in [S]. In these markets the exploitation is
revealed in the fact that for each allocation in the core there
is a vector of efficiency prices under which the monetary value
of the bundle of a small trader is not greater than the value of
his initial bundle. Although small traders are monetarily
exploited they can still have higher utility of their core

bundles than of their initial bundles as was pointed out by



Aumman {[A]. This anomaly disappears of course in the
transferable utility markets.

The exploitation of the unorganized player can be avoided
under certain symmetry conditions imposed on the set of
syndicates. We prove such results both for market games and
monetary markets. The results for monentary markets are
analogous to the results of Shitoviz for non-transferable utility
markets but achieved under weaker conditions. One of the
differences is that for n.t.u. markets these results are true
only for syndicates in which all the traders are of the same type
(atoms) as was shown by Champsaur and Laroque [C-L], while in
monetary markets this limitation is not needed.

The existence of a big enough sector of small traders of the
same type as the syndicates sector is another condition under
which the unorganized traders are not exploited. The condition
given in Theorem 6.3 is weaker then the condition given by
Gabszewicz and Mertens for n.t.u. markets {[G-M].

The paper has two parts. The first one (sections 2-4) deals
with market games and the second one (sections 5-9) deals with
monetary markets. Section 2 describes the model of market games
and some preliminary results. The main results for market games
are stated in Section 3, and proved in section 4. In section 5
preliminaries for monetary markets are given. The main results
for these markets are stated in section 6. In section 7 we show
how syndicates can be atomized without effecting the market. We prove

the main results in section 8 and discuss them in section 9.



Part 1

The Core of Market Games with Syndicates

2. The Model of Market Games with Syndicates

Let (I;(D be a measure space isomorphic to ([0,1],B) whereB is the
o-field of Borel subset of [0,1]. An elements of Cis called a coalition. A
game is a real valued function v, defined on C such that v(®#) = 0. A non
decreasing sequence of sets in C, Q@ = {p = So < S1 < X Sn = I} is called
a chain. The variation of v over a chain Q, IIvIIQ is defined by:
n
Ivig =iZl|v(si) = v(s;_ -

The variation lUvl of v, is defined by

flvll = Sup lvli

Q Q

-where the sup is taken over all chains f . The linear space of all games with
bounded variation is BV. The function el is a norm on BV. The linear
subspace of BV which contains all the finitely additive set functions is
denoted by FA. The subspace of FA which contains all the non-atomic measures
on (I,C) is NA. Denote by g the set of automorphisms of (I,C). For
each 9 € g define e*v by (e*v) (S) = v(6S) for each S in C. A set of games
Q is called symetric if for each 6 € g, e*Q < Q. Let Q be a symetric linear
subspace of BV. A game v is monotonic if S £ T implies v(S) < v(T). A value

on Q is a mapping ¢: Q + FA such that:



(2.1) ¢ is linear.
* *
(2.2) ¢ is symetric; i.e. for each 8 € g, ¢80 =8 ¢.
(2.3) ¢ is positive; i.e. for each montonic game v, ¢v is monotonic.

(2.4) ¢ is efficient i.e.; for each game v, (¢v)(I) = v(I).

The space pNA is the closed (in the variation norm on BV) linear space
generated by games of the form poy where p is a polynomial of n variables and
u = (ul,...,un) is a vector of n measures in NA. We denote by pNA' the space
of all games that are the limit of polynomials in measures uniformly on C;
i.e. v epNA' if there is a sequence of vectors of NA-meausres (un):= and a

1
sequence of polynomials (pn)z=1 such that SupIPn(un(S)) - v(S)| » 0. The

Se n-»>e
space pNA' is a linear space which contains pNA, since convergence in the

variation norm implies uniform convergence. A family of coalitions is

called a diagonal neighborhood if there is a positive integer k and a vector

of NA-measures y = (ul,...,uk) such that the set u@) = {u(s) | S e}
contains a neighborhood of the diagnoal [0,u{I)] in Rk. The linear subspace
of BV, which contains all the games which vanish on some diagonal neighborhood
is denoted by DIAG. The closed linear space generated by pNA  DIAG is called
pNAD. There is a unique continuous value on pNAD which we shall denote by

é. (The existance of this value is proved in proposition 43.13 of [A-S], the
uniquness is proved in {[N]). Let us denote by F the set of Borel measurable
functions on I with values in {0,1]. By proposition 22.16 in [A-S] there is a

* *
unique correspondence v -+ v which assigns to each v in pNA' a function v

defined on F such that,

% * %
(2.5) (av + Bw) = av + 8v

* % %
(2.6) (vw) =v w



(2.7) W (£) = [ £du

*
(2.8) v » v is continuous in the uniform convergence

where a and B are scalars, v and w game in pNA' and p € NA. The function v*
has also the property

v(S)

%
v (xg)
for each S in C, where Xg is the characteristic function of S. v is called
a the extension of v.
From properties (2.5) and (2.6) it follows that for games of the form
pou where p is a polynomial and p a vector of measures in NA,
* * * *
(pou) = pou . The continuity of v - v implies that for any v € pNA', v is
%

the uniform limit of functions of the form poy . A game v in pNA' is called a
market game if it is superadditive and homegeneous of degree 1.
Superadditivity means,

v(SUT) » v(S) + v(T)
for any disjoint sets T and S.
Homogeneity of degree 1 means,

%

v (axs) = av(S)
for each a in {0,l] and each S. It follows that for a game which is
homegeneous of degree 1

% *

v (af) = av (£)
for any a in {0,1] and f in F. The core of a game v is the set C(v) which
contains all the finitely additive set functions v, such that for each S

v(8) > v(8)

and

v(I) = v(I).



The following lemma is proposition 44.28 in [A-S].

Lemma 2,1 Let v be a market game in pNAD pNA'. Then the core of v contains
one element which is ¢v. Moreover for each S and 0 < t < 1
* *
v (th + TXS) -v (th)

(¢v)(S) = lim = .
>0

A syndicate structure is a set of disjoint coalitions, called

syndicates. For a given syndicate structure w = {Al’AZ""} let us denote

Il=U.A
i
unorganized players. An w-coalition is a set in the o—-field Cm defined by

i and IO = I\ll. We shall refer to the players of Iy as the

c. = {s|S> A, or SNA, =@ for each i}
w =71 i
The w-core of v, Cw(v) containes all the finitely additive set functions v,

such that for each w-coalition S,

v(S) > v(S)
and
v(I) = v(I).
Clearly C(v) £ Cw(v). We shall identify any two members of Cw(v) which agree

on all the w-coalitions.

Lemma 2.2 Let v be a game in pNA' and let w be a syndicate structure. Then

each member of Cw(v) is a og—additive measure which has no atoms in Io-

Proof. Proposition 44.27 in [A-S] claims that elements of the core of a game
in pNA' are ¢g-additive measures with no atoms. The same proof with minor

changes is applicable to our lemma.



Since for a given v in Cm(v) we are interested only in the values that
v assigns to w—coalitions, we can assume that v has no atoms in each of the

syndicates and thus by lemma 2.2. assume that v £ NA.

3. Statement of the main results for market games.

Let w = {Al’ A ...} be a syndicate structure. For a market gauwe v, in

2

pNAD (1 pNA' the core C(v) contains only one element namely ¢v. But in general
the w—core Cm(v) may contain other elements (i.e. measures which differs from
¢v on some w—coalition). We claim in the first theorem that for the

unorganized players, ¢v is the best element in Cw(v).

Theorem 3.1 Let v be a market game in pNAD (1 pNA'., Then for each

ral

v in uw(v) and for each coalition S of unorganized players

v(S) < ¢v(S).

Certain symmetry conditions on the syndicate structure guarantee that the
unorganized players are not hurt by elements of Cm(v) with respect to ¢v. Let
¢ be non—-atomic vector measure. A coalition S is said to be of &-type for

the game v, if for any S S, £ S for which E(Sl) = E(Sz) and any T disjoint

12 72
to S; and S, v(TU Sl) = v(TU SZ)'

Theorem 3.2 Let v be a market game in pNAD 1 pNA' and let £ be a non-atomic vector

measure such that I1 = U Ai is of g-type. If there exists O < a < 1 and a
i

subset of syndicates {Ai

}, such that £(U Ai ) = aE(Il) then each v
h| i 73
in Cw(v) coincides with ¢v on each S < Io’ onUAi and on If\U Ai .
j ] i 73



From this theorem we deduce:

Corollary 3.3 Let v be a market game in pNAD /1 pNA' and let £ be a non-atomic

scalar measure such that I; is of g-type. If there is 1 such that

0 < E(Ai) < E(Il) then Cw(v) = {¢v}.

4. Proofs

We prove theorem 3.1 using the following lemmas 4.1 and 4.2.

Lemma 4.1 Let v be a game in pNA' and v € Cw(v). If g is a function which

vanishes on Iy and B ¢ L is an w-coalition then
* *
v (XB +g)>v (XB + g).

Proof: Let g and B be as in the lemma. For a given ¢ > 0 chose a polynomial

in measures poy such that for each f ¢ F

* *
(4.1) v (£) = p(u (£))] < e.
For the vector measure X = (u,v) as a non-atomic vector measure defined on Iys

there exists by Lyapunov's theorem a coalition S £ Io such that

[ gdv = v(S)
I
o
[ gdu = u(s)
I

and since g vanishes outside I,



*
v (g) = f gdv = v(S)
I
*
w(g) = [ gdu = u(s).
I

Since BU S is an w-coalition and BN S = § we conclude by (4.1) that

v*(xB + g) = w(BUS)) » v(BU S) > p(u(BU 8)) -e = P(u*<XB +g)) -e >

%*
> v (XB + g) - 2¢

Since this inequality holds for any € > 0 the lemma is proved.

Q.E.D.

Lemma 4.2 For a market game v is pNAD pNA' there exists the limit

* %*
v (xI + rxs) -v (xI)

1lim

- T
7+0

for each S, and it is equal to (¢v)(S).

Proof The proof is a variant of the proof of lemma 27.2 in [A-S] and we omit
it.

Proof of Theorem 3.1 Let v be in Cm(v). For S < Io and -1 < 1 € O the

function X1 + TXg is in F. Since
xp ¥ T™xg = xp + (XI + TXS)
1 0
we can use lemma 4.1 for B = I; and g = X1 + 1S and get
0

* *
(4.2) v (XI + TXS) > v (XI + TXS).



Also

(4e3) VT (x) = Vi) = v(D.

From (4.2) and (4.3) we have for -1 < 1 < 0

* *
- v (x; + txg) - v (xy)
w(s) = v(I) + :\)(S) v(I) - 1 ; S 1 <

* *
v (xI + th) - v (xI)
< .
T

When T + 0 we get by lemma 4.2

v(S) < ($v)(S)

Q.E.D.
The last inequality was proved using the fact that for t =1
o K *
(*) v (tXI + TXS) > v (tXI + TXS)

*
and by differentiating v (l-X_ + TXS) with respect to T, when T gets only

1
negative values. When the inequality (*) holds also for 0 < t < 1 we can

*
differentiate v (tX_  + TXS) using also positive values of t proving in that

I
way that v(S) > (¢v)(S) and so v(S) = (¢v)(S). The condition in theorem 3.7

enables us to do it.

Lemma 4.3 Let & be a non-atomic vector measure such that I, is of E-type. If
% *
3] and g, are two functions in F which vanish on I; and satisfy £ (g,) = & (g,),

and £ is a function in F which vanishes on I then



* *
v(f, +g)=v (f, + g).
1 2
Proof: For € > 0 chose a polynomial in measures pou such that
* *
(4.4) |v (h) = p(u (h))]| <€
for each h is F. By Lyapunov's theorem for 81 (i=1,2) and the vector measure

(E£,u) as a non-atomic vector measure on L there exist

sets Si < Il(i=1,2) for which

*
£(8;) = [ gydg = [ g;dE = £ (g;)
I I
1
fa) * 3
u(s;) = { g;du = {gidu = u (g;) i=1,2
1

Again by Lyapunov's theorem there exists T < I0 such that

W(T) = [ £du = [£du = ¥ (£)

IO I

Now

(4.5) b (f +g) = p(u(TUS)  i=1,2
and by (4.4),
(4.6) [p(u(T Us.)) -w(T Us)| <e 1=1,2
But
Since I; is of g-type if follows that

v(T US;) = v(T USy)



and by (4.5) and (4.6),
* *
lpu (£ + g)) - p(u (£ + g,))] < 2
From the last inequality and (4.4) we have:
* *
v (£ +g) - v (f+g)] < e

which is true for any € > 0, and thus the lemma is proved.

Q.E.D.

Proof of Theorem 3.2: Denote A' =U A; and A" = I \A'.
i 73
We have:

E(A') = a E(Il)

and

£(A™) = (1-a)E(I)).

Let v be a measure in Cm(v).

v(A') + v(A") = v(Il) = av(Il) + (l-a) v(Il)
and therefore

v(Aa') < a\)(Il)

or
v(A") < (l—a)v(Il).

Without loss of generality we can assume v(A') < av(Il). Let S £ IO and let

T be a small enough positive real number such that the function ax; * Txg is

in F. (Observe that o < 1).



Let us write

axp * Txg = X + W t TXg
and denote

f = ax; + TXge
IO S
Now, * * * *
(4.7) v (axI + sz) =y (axI + £) = av (xI ) + v (£) »
1 1
* * *
> v (A") + v (f) = v (xA,+ £)

Using lemma 4.1 for B = A' and g=f we get
* *

* *

But £(a") = £(a") = o&(I)) = £ (axq )
1

and therefore by lemma 4.3 (for fl = Xyt f2 = axI)

* *
(4.9) v (XA' + f) = v (axI + f)
From (4.7), (4.8) and (4.9) it follows that
* *
v (axp + 1xg) 2 v (ax; + 1Xg)-

Hence for S < I, and a small enough positive Tt

0 * *
av(I) + tv(S) = av(l) v (axI + sz) -V (axI)

v(sS) = . = - >

* *
v (axI + sz) -v (axI)
> .
T

When T » 0¥ the last expression tends to (¢v)(S) (lemma 2.1) and therefore

v(8) > (¢v)(S).



The reverse inequality holds by theorem 4.1 and thus v(S) = (¢v)(S) for
each § < IO.
We have to show now that v(A') = (¢v)(A') and v(A") = (¢v)(A"). Let
€ > 0 be given, and let pouy be a polynomial in measures such that
* *
|v (h) = p(u (h))| < € for each h ¢ F. By Lyapunov's theorem there are
coalitions S ¢ IO and T Il’ such that S is an a proportion of I

for u and ¢v and T is an a proportion of I, for u,¢v and &.

Therefore
P (axp)) = p(u(SU 1))
and hence
(4.10) v (aX]) - p(u(SU )| < e
Also
(4.11)  |p(u(S UT)) - vw(S UT)| < €.
But by the definition of T,
§(T) = ag(1)) = £(a")
and therefore, since I; is of g-type
(4.12) wv(S UT) = v(SU A").
From (4.10) (4.11) and (4.12) if follows that

(4.13) v (ax) - w(SU AD] < 2e.

By the efficiency of ¢, (¢v)(I) v(I)-and because of the homogeneity of v

a(ev)(D) = av(D) = v'(aX )
and thus
(4.16)  (pvI(SU T = v (aXp).
Since I; is of £ type and £(T) = g(A'), it follows that any

automorphism of (Il,C) that maps T onto A' and A' onto T and keeps all the



other points fixed, does not change v and therefore the symmetry of ¢ implies
(ev)(T) = (¢v)(A").
By (4.14)
(GVI(SU AN = (pv) (SU T = v (X))
Using (4.13) we conclude
|(sv)(SU A") - v(SU A" < 2¢
which proves that for any v in Cw(v)
v(SU A") 3 (¢v)(SU A") - 2¢
Since, by the first part of the proof v(S) = (¢v)(S), it follows that
v(A') > (¢v)(A') -2¢
for each € > 0 and therefore
v(A') > (¢v) (A")
In the same way
v(A") > (¢v)(A™)
which shows (since v(I) = (¢v)(I)) that

v(A') = (¢v)(A")
v(A") = (¢v)(A"). Q.E.D.

Proof of Corollary 3.3 Observe first that for each i with E(Ai) = 0, Ay is a
null coalitioh (i.e for each S, v(S) = v(S\Ai)) and therefore (¢v)(Ai) =0
[Note 4, p 18, A-S]. Demote K = {i|0 < E(Ai) < g (Il)} By the assumption
K # f. By theorem 3.2 for each v in Cw(v), v(s) = (¢v)(s) for each S IO
and v(Ai) = (¢v)(Ai) for each i ¢ K. Since v(I) = v(IO) + Z v(Ai) and
(¢v)(I) = (¢v)(Ly) +izK(¢v)(Ai) we conclude that whenever '

E(ap) = 0, v(A) = (4v) (4)) = O

Therefore for any w~coalition S, v(S) = (¢v)(S), i.e. Cw(v) = {¢v}.



Part IL

Core and Competitive Equilibrium in Monetary Markets with Synidicates

5. Preliminaries

The space of traders in the Monetary Market is a measure
space (I,C,u) where py is a non—atomic probability measure. Denote by Q the
non-negative orthant of the Euchidian space E™. The points of Q are commodity
bundles. An integrable function x(t) from I to Q@ is called an assigmment.
The initial assignment is denoted by a(t). For an assignment x and a coalition
S we shall denote the integral f x(t)du by x(S). An assignment x for which
S

x(I) = a(I) is called an allocation. Each trader t has a utility function

up(x), defined on 9 and having the following properties:

(5.1) For each t, u, is non-negative and increasing on Q.

(5.2) For each t, ut(x) is measurable, as a function of both t and x,
on the product space (I x R, C xB ) where B is the Borel

g - field on © and C xB is the product o - field.

m
(5.3) For each t, ug(x) is o( ) xj) when ) X, > intergably in t.
j=1

(5.4) For each t, u. is continous in Q and for each 1 < j < m the
du

X,
J
in 2 with Xj D 0.

derivative exists and it is continuous for each x



The meaning of (5.3) is that for each ¢ > O there exists an integrable

function n(t) such that ut(x) <€ z xj whenever z xj > n(t).
We require also

(5.5) a(I) >0

Define a set function v on (I, ) by:
v(8) = max {f u_(x(t))du: x(S) = a($)}.
S

Under assumptions (5.1) - (5.4), v in well defined, [A-S, proposition 31.7].

We call v(S) the worth of S. A monetary competitive equilibrium (m.c.e.) is

a pair (p,x) where x is an allocation, p is in @ and for almost all t,
ut(x) - p(x - a(t)) attains its maximum at x = x(t)
The measure o defined by
o(8) = [ [u (x(t)) - p(x(t) - a(t))ldu

S
is called the monetary competitive payoff (m.c.p) of (p,x).

Lemma 5.1 Let M be a market which satisfies (5.1) - (5.4). Then the worth
function v is a market game in pNAD (1 pNA' and the core of v contains only one
element which is the value ¢v. If (5.5) is also satified, then there exists a

unique monetary competitive payoff and this m.c.e coincides with ¢v.

For proof see propositions 31.7, 32.3 and section 45 in [A-S].
We denote by C(M) the core of the game v associated with M and we shall
call it also the core of the market M. By Cw(M) we shall denote the w—core

of v.



We say that two traders t and s are of the same type if a(s) = a(t) and

up = uge. A syndicate A; is called atom if all the traders of A; are of the

same type. For each coalition S define Ug by
Ug(b) = max{[ u (x(t))du: x(S) = b}
S

Ug is well defined under conditiomns (5.1) - (5.4). [A-S, proposition 31.7]}.
Two coalitions S and T are similar if u(T),p(S) > 0O
and
1
U S)x U T)x
-—(—— (u( )x) = MON T(u( )x)
for each x in ©, and

a(s) = a(T).

1 1
u(s) u(T)

A trader t and a coalition S are called similar if u(S) > 0

and
u (X) ( ) U (u(b)X)
for each x in ©, and
a(t) = ——— a(s).
= u(s) =

For simplicity we assume from now on that each syndicate has a positive

measure.

6. The Main Results

The first theorem shows that the formation of syndicates hurts, in

general, the unorganized traders.

Theorem 6.1 Let M be a market which satisfies (5.1) - (5.5), and let

w = {AI’AZ""’} be a syndicate structure. Then for each element v in the



w-core of M, and for each coalition S of unorganized players, v(S) does not

exceed the monetary éompetitive payoff of S.

Theorem 6.2 and 6.3 provide conditions under which the formation of syndicates
does not hurt the unorganized traders. For the unorganized traders it seems,
under these conditions, that perfect competition prevails in the market, i.e.

the payoff they get from each element of the core is the competitive payoff.

Theorem 6.2 1If there is a non-trivial partition of the set I1 = U Ai (i.e. a
i

partition with at least two non empty sets) into w — coalitions Bys Bpseee

which are all similar, then every element in the w-core gives to coalitions

of unorganized traders and to each of the coalitions Bj,Bp,...their monetary

competitive payoff.

The condition in theorem 6.2 deals only with the organized traders. The
condition in theorem 6.3 deals with the relationship between the unorganized
traders and the syndicates. For each w-coalition B with pu(B) > 0, let us

denote by B' the set of all traders in I, that are similar to B.
)

Theorem 6.3 1f there is a partition By,Bj,... of I = LJAi, such that
i
u(By)
inf ~————> 0
u(B, )

then coalitions of unorganized traders and the coalitions By get their

monetary competitive payoff at each element of the w-core.

The following propositions do not concern directly markets with syndicates but

are immediate results of the discussion in the next section.



Proposition 6.4 Let M' be a market generated from M by reallocating the

initial bundles of a given coalition S between its members. Then the
restriction of the monetary competitive payoff to INS is the same

in M and M'.
The meaning of this proposition is, that in a market with side payments the

competitive payoff to a certain coalition is not changed if the distribution

of resources of the complementary coalition is changed.

Proposition 6.5 Let C; and Cy, be two disjoint coalitions such that C; Cr =

I. Denote w, = {Cl}, w, {Cz}. Then

C(M) c (M) Nc @)
W w

1 2
This proposition means that a sufficient condition for a measure v to be in
the core, is that v(S) » v(S) only for those coalitions which include or
exclude one of the coalitions C; and Cj.

7. tomization of Syndicates

We shall show in this section how syndicates can be atomized without
considerably changing the market. We shall use this procedure in the proofs
of theorem 6.2 ad 6.3.

Let M be a market satisfying (3.1) - (5.5) and let w = {Al’AZ"'°} be a
syndicate structure. We define now a market Mw on the space of traders

(I,C). The initial assignment in Mw is




The utility functions in Mw are:

u, (x) , t g1
ut,:(x) = t o

1
-FA-I)— UAi(u(Ai)x) , L € Ai

L

Proposition 7.1 The market Mm satisfies (5.1) - (5.5).

Proof: Properties (5.1), (5.2) and (5.5) are easy to verify. Let us prove
(5.4).
The function Ug is continuous and concave in Q ([A-S], propositions

37.13, 36.3). By proposition 38.1 of [A-S] for each 1 < i < M the
au
S

axi

it follows by proposition 39.1 of [A - 8] that Ug satisfies property (5.4).

derivative exsits at each x for which x; > 0. From these properities
Let us prove now property (5.3). For each € > 0 there is an integrable
function n(t) for which

(7.1) u (x) <5 ] x
whenever Z x » n(t).

Without loss of generality assume n(t) > 0 for each t in I.

Let us define n'(t) by

in(x) s tel

n'(t) =<‘ 1
% ;?sz n(Ai) , te Ai.

-

Clearly n' is integrable and it suffices to show that for each t in A.i



u't(x) <e ) X

whenever Z x » n'(t).

Let t be in Ags b in  and
(7.2) T b > n'(t).

Let x be the allocation for which the maximum in the definition of

UA (u(Ai)b) is attained, i.e.,
i

(7.3) [ u (x(t)du = U, (u(a;)b)

A, i
i

and

(7.4)  x(4)) = u(Ap)b.

By (7.3) we have:

' - 1 _ 1
(7.5)  ul(b) = WAy UAi(u(Ai)b) ewn 2{ u (x(t))dp.
i

Denote by B; the set of traders in A; for which Y x(t) » n(t), by C; the set
of traders in A for which 0 < Z x(t) < n(t) and let Di = Ai N\ (Ci UBi)' By

(7.1) we have for each t in By,
(7.6)  u (x(t)) < =] x(t).

Since u, in increasing it follows that for each t in Cy,



n(t)

(7.7) u, (x(t)) <€u ( (t)

x(t))

and for each t in DI

(7.8)  u (x(£) = u (0) < u, (UL

where e is the vector that has 1 in all its coordinates.

But

7.9 ] (ry K(E) = n(0)

and

Thus from (7.1), (7.2), (7.8), (7.9) and (7.10) it follows that for each t in

Ci Dj

(7.11) u (x(t)) < 3 n(t).

From this, using (7.2), (7.4), (7.6) and (7.8) and the positivity of n:

[ o x(tNdu ¢ [ (3 T x)du+ [ = n(E)du <
A, B, C, D,
1 1 1 1

< (A)Zb+-—— (A)n(t)<

< e u(Ai) b
and therefore by (7.5)

) i
u!(b) = —— f u_(x(t))dp < e Ib.
t na;) 4t
1 Q.E.D.



By proposition 7.1, Mw is a market that satisfies properties (5.1)-(5.5) and
in which each syndicate A; is an atom. The following proposition shows how

similar are the markets M and Mw.

Proposition 7.2

For each S in Cw’

(i) The coalition S has the same worth in M and in Mw'
(ii) The monetary competitive payoff to S is the same in M and in
M.
w
f£22£5 (i) Denote by v and Vw the worth functions of M and Mm

respectively. Let S be an w—-coalition and assume that v(S) is attained

at Xx.
Define:
x(t) ytel
x'(t) = 1
F(A_)-E(Ai) ,tEAi
i
Now
(s = fu (x(0))an < [ u(x(0))au+ 1, (x(a)) =
S S:’\Io Ai <Ssi

= f u'(x'(t)\du + (u'[g'(A.)) = f u'(g'(t))du < v (S).
S!‘-Iot J Aig)':.SJt i gt ®

In order to prove the reverse inequality assume vm(S) is attained at x'(t).

Since for each t in Ay, ué = UA' and UA is concave we can assume without

loss of generality that x' is constant over Aj and

A

/ ué(g'(t))du = U, {5'(Ai)). Let us assume that U (x'(Ai)) is attained
A, i i

i .
at Yis leee:



_26—

u, (x'(ap) = iut(zi(t))du

i
and *
x'(4,) = y,(a)
Define an assignment x by:
{5'(t) , teT0
x(t) = 4
zi(t) , teAi
Clearly x(8) = x'(S) = a(s) and
v (8) = f u' (x'(t))du =

[ u (x(0))du < v(s).
S

(ii) Let (p,x) be an m.c.e in M and let ¢ be the m.c.p in M. Define

x(t) , teI0

1%

'(t) =

1
W X (Al) 5 tEAi

‘We will show that (p,x') is a an m.c.e in Mw

It is sufficient to show

that for each A; and t in 44, ui(x) - p(x - a'(t)) attains its maximum at
x = x'(t).

Let xef2 and assume that UA (u(Ai)x) is attained at y(t). It
i .
follows that

u (x(6)) - p(x(e) - a(®)) » u (3(0)) - p(g(t) - a(t))

and by integration

(7.12) u
[ o

(x(0))aw - p(x(a) - aa)) > U, (u(a)x) - p(uax-a(s)) =
1

1
u(a,) [ul(x) - p(x-a'(t))].



But

(7.13) w@ap[u(x'(v)) - p(x'(t) - a'()]] = UAi(g(Ai)) - p(x(a) - aap) >

> [u (x(t))du - p(x(a)) - a(a)))

A,
i

From (7.12) and (7.13) we deduce:

ul (x'(£)) = p(x'(r) - a' (&) > ul(x) - p(x-a'(t)).

By that we have shown by that (p,x') is an m.c.e in Mm' Moreover, if 9, is

the m.c.p in Mw then by (7.13), for each Ay,
om(Ai) > o(Ai).

But cm(S) = g(S) for each S Ioand cm(I) = g(I) and therefore

O = Jo
w

8. Proofs of the main results

Proof of Theorem 6.l: By Lemma 5.1 the worth function v of the market M is in

pNAD pNA'. It follows by Theorem 3.1 that for each S < IO and vscw(M),
v(S) < (¢v)(S). Since, by Lemma 5.1 ¢v is the monetary competitive payoff,

the theorem is proved.



Proof of Theorem 6.2: Let us denote w = {Bl, Bz,...,} and consider the

market MB’ generated by atomization of the sets By, Bg,+..,. Denote by
v the worth function of MB' Since the sets Bl’ BZ’°’°’ are similar in M it
follows that all the traders in | Bk
k

same (concave) utility function and the same initial assignment. It follows

are of the same type in Ma and have the

therefore that if S., S, <

B
b4
l_ 2 K k ]
disjoint to Sl’ SZ’ v(T U Sl) = v(T Uy SZ) and thus Bk is a coalition of
k
type ) with respect to v. Since u(Bk) > 0 for each k it follows by corollary

and u(Sl) = u(Sz) then for each T which is

3.3 that for each v in C_ (M_) and each S in C_,
w W w

v(8) = (¢v)(8).

But ¢; is the m.c.p in M_ and by proposition 7.2 it follows that the

monetary competitive payof?s of M " and M coincide on C o and therefore for

each S in C 5’ v(S) is the m.c.p for S in M. Since C a < Cw and for each
secC =, v(S) = v(8) (by proposition 7.2) it follows that C (M) < C= (M=)

We conclude therefore that for each v in Cw(M) and each §$ in C o v(S) in the

monetary competitive payoff to S, in M.

Proof of Theorem 6.3: By the stipulation of the theorem and since p is non-

atomic, we can find for any sufficient large n, coalitions Bk,n such that:

and



Let us denote and B 1’ En}

It is easy to see that I; and Bn are similar coalitions and therefore by

=U . Consi t ndi =
0 kBk,n Consider the syndicate structure w {1

Theorem 6.2 for each S in Id\En the payoff v(S) for v in Cw (M) 1is the m.c.p
n
to S. This last statement is true also for v ¢ Cw(M) since Cw(M) < Cw (M). By

n
the construction of the sequence B_ it follows that B < B_and u( B ) = 0.
n ntl - n nn

1
We conclude therefore by Theorem 6.2, that v coincides with m.c.p on Io\lﬁﬁn
and on each By. Since these two measures are absolutely continuous with

respect to p it follows that they coincide on Io, and are the same for each

By .

Proof of Proposition 6.4: Consider the syndicate structure w = {S}. Clearly

Mw and M& are the same market. By proposition 7.1 for T { I § the m.c.p of
T is the same in M and Mw and the same in M' and M'w. Therefore T has the

same m.c.p. in M and M',

Proof of Proposition 6.5: Let v be the worth function of M and let v be a

measure in Cw (M) Cw (M). By Theorem 6.1 for each S ¢ Cl’ v(8) < (¢v) (8S)
1 2

and similarly v(S) < (¢v) (S) for each S ¢ CZ' But since v(I) = (¢v)(I) it

follows that {v} = {¢v} = C(M).

9. Comparison to Non—Transferable Utility Markets

Shitovitz studied in [S] non-transferable utility (n.t.u) markets in
which the big traders are atoms of the measure space. The core of these
markets can equivalently be studied in a market with atomless space of traders
and in which the set of big traders w, is a set of disjoint coalitions such

that traders in the same coalition are of the same type. (This is the way



atoms were defined in this paper). The equivalent of the core in [S] will be
then the w -core. Shitovitz has shown that in general, in core allocations
small traders may be monetarily exploited. He also bring some sufficient
conditions that prevent this exploitation. In general, for each allocation_§
in the core, there exsits a price vector p, such that (Paﬁ) is an efficiency
equilibrium and for almost all small traders p x(t) < p a(t) where a(t) is the
intial allocation [Theorem A,S]. The exploitation of the small traders is
equivocal however, since although monetarily exploited, the small traders may
have higher utility of their core allocations then of their inital bundles, as
was shown by Aumann [A]. In the transferable utility (t.u) market the
exploitation of small trader is unequivocal. In these markets as we have
shown in Theorem 6.1, the small traders are exploited in the sense that the
core payoffs to them cannot exceed their monetary competitive payoff. Since
in t.u.e the monetary payoff measurs the utility, no distinction can be made
between monetary loss and utility loss. For the subsequent discussion we need
the following definitions. Two coalitions Sl and S, are of the same type if
there exist a measurable one to one mapping ¢ from S; onto S, and a real
number a > O such that for almost all traders t in S;, t and ¢(t) are of the
same type, and for each T SZ’ p(T) = au¢_l(T). Two coalitions are of the
same kind if they are of the same type and a = l. Observe that two coalitions
that are of the same kind or of the same type are similar according to the
definition in section 5. Theorem B in [S] says that if there are at least two
atoms and all the atoms are of the same type than the small traders are not
exploited in the core, (in this case the efficiency equilibrium of theorem A
is the competitive equilibrium). Theorem C in [S] claims that if the sets of
atoms can be partitioned into coalitions (at least two) which are of the same
kind then the small traders are not exploited. The conditions in Theorems B

and C in [S] are stronger then the condition in Theorem 6.2 of this work and



therefore for t.u. markets the propositions of these theorems are special
cases of Theorem 6.2. Moreover, by this theorem we can conclude that the
small traders are not exploited even when the requirement of "the same kind"
in theorem C is replaced by the weaker requirement "The same type"”. Similarily
we can also replace "atoms” in Theorem B by the wider concept of

"syndicates”. This strengthing of theorem B and C is typical to the t.u.
markets and is impossible for n.t.u.e as was shown by Chamsaur and Laroque

[C-L].

Theorem 6.3 is comparable with a theorem proved by Gabszewicz and Mertens
[G-M]. They discuss n.t.u markets in which the A;'s are atoms (rather than
syndicates) and {Bk}k is a partition of the atoms according to their types.
Let us denote by Ek the set of traders in the market which are of the same
type as the atoms in By. (Clearly Bk < Bk)°

It is shown in [G-M] that a sufficient condition for the coincidence of
the core and the competitive equilibrium is

u(8, )

—— <1
k u(B)

when the number of types is greater than 1 and u(Bl)/u(El) < 1 when there is
only one type. By Theorem 6.3, the coincidence of the core and the m.c.p. in
the transferable utility case is reached by a weaker condition. 1Indeed the
condition of Theorem 6.3 can be rewritten as

n(B, )

u(B,)



(Observe that when the A;'s are atoms then the core coincides with the m.c.p.

not only on the By's but also on the A;'s).

Proposition 6.5 is analogous to a theorem that was proved recently by
Shitovitz and Okuda [0-S] for n.t.u markets. In this theorem the sets C; and
C, of Proposition 6.5 are replaced by sets Cy, Cy,..,C, 4 | where n is the

dimension of the linear subspace spanned by the efficiency price vectors.



(A]

[A-S]

{C-L]

[G-M]

(0-s]
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