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ABSTRACT

This paper is the first of a set that will focus on the multiregional
generalization of classical single-region mathematical demography. Formal
mathematical demography has its origins in the seminal published works of
Alfred Lotka, which extended over a period of some forty years beginning
in 1907. His fundamental integral equation, which relates the births
of one generation to those of the preceding one, leads to several of the
basic results of mathematical demography. However, Lotka's model and
those of classical mathematical demography in general deal with a single-
region population that is assumed to be undisturbed by migration. The
principal purpose of this paper is to review and extend some recent efforts
to generalize Lotka's integral equation to the case of a multiregional
population that experiences internal migration. 1In so doing we shall
focus on the relationships between a multiregional population's fertility,

mortality, and mobility and its growth and regional age distributions.



THE CONTINUOUS-TIME MODEL OF MULTIREGIONAL DEMOGRAPHIC GROWTH

1. The Multiregional Renewal Equation

The conventional single-region single-sex population projection of
mathematical demography in its continuous form is expressed as an integral
equation. Beginning with the density of female births, B(t), say, we note
that the number of women of ages x to x + dx at time t, who were born
since time zero, will be the survivors of those born x years ago,

B(t - x)p(x)dx, x < t. At time ¢t, these women give birth to
B(t - x)p(x)m(x)dx @)

female children per year. Here p(x) denotes the probability of surviving
to age x, and m(x)dx 1is the probability of a woman x years of age
giving birth to a female child during the interval x to x + dx.
Integrating (1) over all x and adding G(t) to include births
to women already alive at time zero gives the fundamental integral equation
t
B(t) = G(t) + f B(t - x)p(x)m(x)dx, (2)
0
in which G(t) may be set equal to zero for t > B, the last age of
childbearing and the integration taken over the childbearing ages «
through B8:
g

B(t) = [ B(t - x)p(x)m(x)dx. (3)
a

On replacing B(t) by Qert and B(t - x) by Qer(t - %) we find

the well-known characteristic equation
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B B _
v(r) = f e rxp(x)m(x)dx = f e X b(x)dx = 1, %)
Q a

where the product p(x)m(x), denoted by @(x), is known as the net
maternity functiom.

A continuous model of single-sex population projection also may be defined
for the multiregional situation. Consider, for example, the case of a

two-region system with regions i and j, say. We define the pair of

equations:
B
B, (t) = G (t) + £ [B; (t = %) ;P () + By(t - %) ,5p, () Im; ()dx (5)
B
B, ()= G, (£) + £ [B; (€ - %) ;gp3(x) + By(t-x) 4P, () Im, (x)dx,  (6)

where, for example, jOpi(X) denotes the probability of a woman born in
region j being alive in region i at age x, mi(x)dx is the probability
of a woman x vyears of age in region i giving birth to a female child

during the interval x to x + dx, and

B-t

G, (t) ijit [k, (x), P, (stt) + kj(x)jxpj(vt)]mi(ﬁt)dx (7)
B-t

Gj(t) =(1[t [ki(X)iij(x +t) + kj(X)jij(x + t)]mj(}&t)dx, (8)

ki(x)dx denoting the number of women alive between ages x and x + dx
in region i at time t = 0.

Expressing (5) and (6) in matrix form, we have the multiregional

renewal equation

p
{(B(0)} = {c(}+ [ Mx)PG){B(t - x)}dx, (9)

a



where

and P(x) = '

l
i
L 0 om0 | LoPs 0 5P 0

For the case t > B, {G(t)} = {O}, and (9) reduces to the homogeneous

equation first set out by LeBras (1971):

B
(B0} = [ ME)PE){B(t - x)}dx (10)
§ ROOZEE

As in the single-region model, the solution of the integral equation

in (9) can be found by first obtaining a solution of (10) and then
choosing values for the arbitrary constants in that solution so that in
addition to satisfying (10), {B(t)} also satisfies (9).

On replacing Bi(t) and Bj(t) in (5) and (6) by Qiert and
J

t . .
Q.er , respectively, noting that Gi(t) = Gj(t) =0 for t>B, and

proceeding as in the single-region case, we obtain the pair of characteristic

equations
P -rX .
Qi = £’e [Q; P () +Q; 0Py (Mm, (x)dx (11)
L o - oo ,
Qj = £ e Q 0P 3 (% Qj jOpj(x) mj(x) X, (12)
or, in matrix form
PB -T 3 -rx
fQ} =] e Xg(x>g(x>{g}dx = [ e e 0dxl{Q) = ¥(0){Q}, say, (13)
@ a

where 3(x) = M(X)P(x) 1is the multiregional net maternity function and

~




s
B 1

-rX . . .
v(r) = f e $(x)dx 1is the multiregional characteristic matrix.
a

We have now reduced our problem from one of solving the integral
equation in (1l0) to that of solving (13) which, unlike (10) is a
function of only a single variable, r.

To solve for r 1in (13), we rewrite the equation as
v (o) - 11{qQ} = {0}, (14)
from which we conclude that {Q} 1is the characteristic vector that corres-

ponds to the characteristic root of unity of the multiregional characteristic

matrix

B
¥() = [ o7 M) P(x)dx, (15)
! F

~

and r 1is the number for which

l¥(x) - 1] = 0. (16)

The multiregional net maternity function defined in (13) 1is a natural
generalization of @(x) in (4). However it assumes that inmigrants
immediately assume the fertility schedule of the region into which they
move. This assumption may be relaxed somewhat by differentiating the
fertility schedule of a region by the region of birth of the parent. In
the case of our two-region example, we have then

10”1 () o™ ) jOpi(X)jOmi(x)

3(x) = )

~

iOpj(X)iOmj(X) jODj\X)jOmj(X)

The annlysis of the integral equation in (13) remains unchanged.



-5-

Alternatively, we may approach the solution of (13) in a manner
more reminiscent of the single-region model. Dividing (11) by Qi and

(12) by Qj’ we obtain

rB -I'X~Qi Qj B ~-rX Qk
1: e 3, 1oP (0 F q, 3P (0 | my (Odx -£ DT, o Gom (1)
rB ~-rXx '_Ql QJ ] J’-B ~IrX Qk
lﬁ e — . p.(x) + = . p.(X) | m,(x)dx = Te - p. (X)m, (x)dx
; [ Q5 1073 Qy 3073 j Yk Q LSO ]
or, in matrix form:
P -r -1
(0 = [ e e peogfl}ax (19)
. A N
B ~ ~
Sl e mveorwie 2o = 0leeag (20)
B -rx ~ ~ ~
= [ e s (01} ax, 2 (x) = M(x)P(x), (21)
J 2ARILC 2 oA
~ A B _ ~
= vl , v(r) = [ e 2 (x)ax, (22)
a
where
o, .
g =
0 Q;

~

Note that P(x),%(x), and VY(r) are weighted versions of P(x),%(x), and
¥(r), the weights being appropriate ratios of births in the stable multi-

regional population.

(17)

(18)



Rewriting (22) as
(¥(r) - 11 (1} = {0}, (23)

we conclude that the solution of (22) may be found by determining that

value of r for which

1E(r) - 1] =0. (24)

That the value of r which satisfies (24) also satisfies (16) may be
seen by observing that the weights are cancelled out in the expansion of the
determinant in (24). Why then introduce (22) at all? The reason will
become apparent in Section 3 when we discuss alternative numerical procedures
for obtaining r. There we shall demonstrate that for each particular set

of weights, one can obtain a value of r wusing the single-region method

(and computer program). This leads to an efficient iterative numerical

procedure for solving (13).



2. Multiregional Stable Growth

. . re .
In the preceding section we have seen that {Q}e is a solution to

(13) provided r 1is such that:

(i) a characteristic root, X(r), say, of the matrix

y(r) 1is unity:

NOIBE 25)
(i) Jy@ -1} =o0; (26)
(iii) ¥ (1} = (1 @7

Moreover, all three of the above conditions were shown to be equivalent in
that a value of r that satisfies any one of them also satisfies the other

two.

The matrix X(r) normally has more than one real characteristic root
of unity as r ranges from -= to +w., C(Consequently (25),(26), and (27)
may be satisfied by more than ore real value of the root r. However, we
shall always be interested in the largest, or maximal, real root which we
shall denote by r;- There can be only one such root and in addition to
exceeding the value of all other real roots r of (25), (26), and (27),
it is also greater than the real part of any complex root of those same
three equations.

If, as in almost all empirical situations, g(r) is a matrix with only
positive elements, then by the well-known Perron-Frobenius properties of

positive matrices [Gantmacher, Vol. II (1959), pp. 53-66]:

These properties also apply, in slightly weaker form, to nonnegative
matrices V¥ (r) that are irreducible. ¥ (r) 1is a nonnegative matrix by
definition”
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(1) The matrix g(r) has a real and positive maximal
characteristic root, xl(r), say, which is a simple
root and is greater than the absolute value of any
other characteristic root.
(ii) Associated with xl(r) is a characteristic vector,
{gl},say, with all of its elements positive. No
other such vector of positive elements exists except
for multiples of {gl}.
(iii) The maximal root xl(r) of the matrix g(r) decreases
in value when an element of g(r) is decreased (which,
as in the single-region model, occurs when r 1is increased).
0f the real roots r that satisfy (25), (26), and (27). let r,
denote the r for which xl(r) = 1 and T, denote the r for which hk(rk) =1,
for k = 2,3...; that is, kl(rl) = 1 and Kk(rk) =1, If X(r) is a

positive matrix, Kl(r) > Kk(r), whence
M) > 1 (28)

Consequently, r., > r, . This can be seen by observing that if r > r then

17 "k k 1’
by the third property of positive matrices listed above Kl(rk) < Xl(rl) =1,
which is a contradiction of (28). Therefore r, > o for all k = 2,3,...
The maximal root kl(r) is in fact a function that assigns to any value
of r the maximal characteristic root of the matrix g(r). This function
is continuous, concave upward throughout, and its values decrease monotonically
from + ® to 0 as its argument increases from - ® to + ®. Consequently, Kl(r) =1

can occur only once, when r = ry. Such a function is illustrated in the

next section (Figure 1) as a graph in which Kl(r) is plotted as the
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ordinate with r as the abscissa,
As in the single-region model, any complex roots that satisfy (25),
(26), and (27), and therefore (13), must occur in complex conjugate pairs.

Suppose that u + iv is such a root. Then
v(u+ iv) {Q} = {q} (29)

where, for example,

i\}fj(u + iv) =lfe—(u+iv)x iQ)j(x)dx
a
B
= fe-ux[cos(vx) - isin(vx)]ibJ(x)dx

aQ

Equating real and imaginary parts in (29), we find

m FB ~ux

%z Q e

Tk cos (vx) O (x)dx = Q
k=l ~a k's s (s = 1,2,...,m) (30)
m B _

¥ Qk f e WX sin(vx)kD (x)dx = O
k=1 a s

It follows that u - iv is also a complex root of (13), whence

y(u - iv) {qQ} = {Q}. (31)

Moreover, we observe that the maximal real root Ty is greater than u 1in
the complex root u + iv. Since cos(vx) < 1 1in (30) for some values of

x within the range of integrationm,

m B _
f kar e k@s(x)dx z Qs'
k=1 Iod

But
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B oorix
sq [ e b Godx = q.

Hence u < r. That is, the maximal real root that satisfies (25), (26), and
(27) 1is larger than the real part of any complex root that also satisfies
those same three equations.

Finally, Equation (13) is homogeneous. Consequently its solution
vectors are additive. Thus if ry;Ty,... are roots satisfying (25), (26),

and (27), then

rkt

{E(t)} = {gk}e (k = 1,2,...)

are solutions of (13), as is the general solution

rlt rzt
{(B(©)} = {Q}e = +{Q,}e + ..
rit v Tkt e« ugt
= {Ql}e o {Qk}e + z Qe [cos(v t)+isin(v t)], (32)
- k=2~ s=wtl ~° s S

where the vectors {gk}’ k =1,2,..., may be chosen to satisfy (9). As in
the single-region model the birth sequence [E(t)} is increasingly dominated
by the maximal real root r| as t becomes large. Because rl> Real (rk)
for k = 2,2,..., all terms after the first in the series set out in (32)

become negligible compared with the first for large t, and

ne

rt
(B(T = {q }e (33)

We shall see below in Section 5 that exponential births lead to an exponentially
growing population with a stable distribution in which each age-by-region

subpopulation maintains a constant proportional relationship to the total
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population and increases at the same constant rate ry. The influence of
the initial population distribution is forgotten as time goes by, a condition

known as ergodicity.

Let us conclude this section by considering the problem of evaluating
the [gk} vectors, k = 1,2,..., to fit a particular initial condition
specified by {g(t)}. The proof of the fundamental result that we need
requires a rigorous and rather complicated matrix generalization of an
argument given by Feller (1941). Such an analysis is beyond the scope of this
paper. Hence we shall instead adopt a nonrigorous intuitive argument which
yields a solution the accuracy of which may be tested against numerical data.

The simplest method for deriving the formula for Qk in the single-
region model is by means of Laplace transforms. Taking Laplace transforms of
both sides of (2), after denoting p(x)mn(x) by Q(x), the net maternity

function, we have

B (r) = G (r) + B ()0 (1), (36)
where
B () = [ e " B(eyde; )
0
¢ (r) = [ &% (t)de;
0 (35)
and
p*(r) = r e-rtQ(t)dt.
0

It follows that

(36)

1]
X

*
B (r)

the right-hand side of which may be expanded as follows:



* ¢ (x >
B (r) = -—ilfl‘l — 557" k§1 _—_r_rk s (37)

subject to conditions that normally are satisfied im demographic analysis.
By applying the usual procedure for determining the coefficients of partial

fractions, we have that

_ (r-1,)G (¥) >

Qe = i1$ l—bi(r) - -dp§(§§;dr ’ (38)
k
r=r
k
whence
B
[e k" g(ryat

Qk = 9 (39)

Now consider the same argument in matrix form. Taking Laplace transforms

of both sides of (9), we have

(B = (") + 8 @ (870 . (40)
Consequently
(B =11 -2 M1 ™I, 1)
whence
kS ® rt
(3°(0)) = = fgle , (42)
k=1

and
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_ lim L * -1, *
) = r FTOIL - £ 17 )
_ _g_— % -1 %
= [- el (r)] e} )
r=r,
-1
= A (V] ) (43)
r=r,
. .th .
where the i1j— element of A 1is
A, = FB b (x4 44
i axe 1?3 X (44)
. th .
and the i-— element of ({V} is
v, = Be’rtc (t)dt 45
i £ i ’ (45)

In the special case r = r A, will be referred to as the mean age of

1)
childbearing in region j of mcthers born in region 1, and v, will be

called the total reproductive value of the (single-sex) resident population

of region i. We examine these two measures in greater detail below.



-14-

3. Numerical Solution of the Multiregional Renewal Equation

To determine the single real root of (4) one normally adopts the

approximation
B> rex+ 2.5
y(r)y = 2 e T ()P (x), (46)
X=Q
> -r(x + t)
in which the integral r e p(x + t)m(x + t)dt 1is replaced
- + 2.
by the product of e rx 5), L(x), computed on a unit radix,
and F(x). The summation is over ages x which are multiples of 5. Thus
(4) is approximated by
-12. -47.
v(r) = e 20T L(10) F(10) + ... + e 70T L) FGS) = 1,  (47)

where we have assumed childbearing to begin at age o = 10 and to end at
age B = 50.
An analogous approach may be followed in the multiregional model. We

replace the integral

5

g o T(x + t)151(x + )Pz + t)dt (48)

e—r(x + 2.5)

by the product of , F(x), and L(x) where

F.(x) 0 AL, (x) AL L (%)
F(x) =| * and L(x) = | 01 jO7.4

0 Fj(x) iOL.j(X) jOL.j(X)

the matrix L(x) having been computed on unit radices for both regions.

Thus, in the case of our two-region system, we may use the following numerical

approximation to the multiregional characteristic matrix:
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Toss
T (642.5)

B-5 ]
z 10L‘i(x)Fi(x) =

e-r(x+2.5)_ L . (x)F. (x)
X=Q x=qL jo .1 i
¥(r) = (49)

B-5 _ B-5 _
7 ero&LSXOL.GOFXx) 2 e TS O ()
X=a vl J x=0, 0 .] ]

Table 1 presents age-specific birth rates and data from a two-region
life table with which we may calculate v (r) for United States females
residing in California and the rest of the United States in 1958. For
example, beginning with r = 0.020, we obtain

0.7213515 0.0609076
vy (0.020) = ; (50)
0.2869147 0.9557833
a matrix with a maximal characteristic root of Kl(0.020) = 1,015245,

Next, increasing r to 0.025 yields

0.6375670 0.0533113
¥(0.025) = (D)
0.250884( 0.8417467

and K1(0.025) = 0.893921. Since K1(0.020) > 1 and Kl(0.0ZS) < 1,
ry must lie between 0.020 and 0.025. An average of these two values
yields xl(0.0225) = 0.952632. Continuing in this manner we ultimately

converge on Iy = 0.,020593 for which Kl(rl) is unity to four decimal places,
thereby satisfying (25). At this point
0.7108365 0.0599501

y = (52)
0.2823706 0.9414467

Note that (26) and (27) are also satisfied:
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(0.7108365 ~ 1)(0.9414467 - 1) - (0.2823706)(0.0599501) = 0
and

0.7108365 61(0‘0599501) (1 1
i E
Q, \ ) ’
T (0.2823706)  0.9414467 {1 1
j \
here “i _ 1 -0.7108365 _ L 82922 and %G 1 - 0.9414467 _ 0.20733
Q, 0.0599501 : n Q 0.2823706  °° :

Table 2 and Figure 1 illustrate the behavior of kl(r) as a function
of r. Also detailed are the functions \E(r) - E \ and g(r){l}.

Equations (25) and (26) both lead naturally to iterative procedures
for establishing the value of ry. The first requires the Jerivation of the
maximal characteristic root of an n by n matrix at each iteration. The
second instead requires the calculation of the determinant of an n by n
matrix. Either requirement leads to a considerable amount of computation.
Consequently, the efficiency of these two iterative procedures is rather
low, particularly when compared to the one suggested by (27).

Equation (27) yields, by means of standard single-region methods, an
approximation of ry that is consistent with the particular system of weights
defined by the ratios Qk/QS, for k,s = 1,2,... . These ratios are not

determinable until one finds rl’ however, and therefore must be approximated

along with ry by iteration. As an initial approximation the ratios may

all be set equal to unity, say, and the corresponding initial approximation

of T, then may be obtained by a standard single-region method, such as the

method of functional iteration described by Keyfitz (1968,p. 111). 1In the

case ol out two-region svatem of Catifornia and the rest of the United States,
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TABLE 2. Values of A(r), ]Y(r) - ;l and ¥ (r){1} for a two-region model of
United States females, 1958: (i) California and (j) Rest of the United States

¥ ({1
S L B N RS
0.000 1.704195 0.063645 1.696689 1.705700 1.090379
0.001 1.660048 0.041696 1.653113 1.661438 1.063171
0.002 1.617105 0.022633 1.610714 1.618387 1.036676
0.003 1.575331 0.006257 1.56946 1.576551 1.010875
0.0032 1.567114 0.003287 1.561342 1.568272 1.005796
0.0034 1.558942 0.000416 1.553270 1.560080 1.000745
0.0036 1.550815 -0.002358 1.545242 1.551934 0.995720
0.0038 1.542732 -0.005036 1.537257 1.543831 0.990721
0.004 1.534694 ~0.007620 1.529315 1.535774 0.985749
0.005 1.495160 -0.019173 1.490252 1.496147 0.961279
0.006 1.456699 -0.028568 1.452238 1.457596 0.937448
0.007 1.419280 -0.035959 1.415243 1.420092 0.914238
0.008 1.382872 -0.041492 1.379240 1.383603 0.891631
0.009 1.347448 -0.045303 1.344199 1.348102 0.869612
0.010 1.312978 -0.047522 1.310095 1.313559 0.848164
0.011 1.279437 -0.048267 1.276901 1.279948 0.827272
0.012 1.246798 -0.047652 1.244591 1.247243 0.806920
0.013 1.215035 -0.045782 1.213140 1.215418 0.787094
0.014 1.184124 -0.042757 1.182525 1.184447 0.767780
0.015 1.154041 -0.038670 1.152723 1.154307 0.748964
0.016 1.124761 -0.033607 1.123710 1.124974 0.730632
0.017 1.096264 -0.027650 1.095%64 1.096425 0.712771
0.018 1.068526 -0.020875 1.067965 1.068639 0.695369
0.019 1.041526 -0.013354 1.041191 1.041594 0.678412
0.020 1.015245 -0.005154 1.015123 1.015269 0.661890
0.020592 1.000016 -0.000006 1.000015 1.000016 0.652309
0.020593 0.999990 0.000003 0.999990 0.999991 0.652293
0.020594 0.999965 0.000012 0.999964 0.999965 0.652277
0.021 0.989661 0.003662 0.989741 0.989645 0.645790
0.022 0.964755 0.013037 0.965025 0.964700 0.630102
0.023 0.940508 0.022915 0.940958 0.940417 0.614813
0.024 0.916903 0.033246 0.917522 0.916777 0.599914
0.025 0.893921 0.043982 0.894700 0.893762 0.585393
0.026 0.871544 0.055077 0.872473 0.871355 0.571242
0.027 0.849756 0.066491 0.850827 0.849539 0.557449
0.028 0.828542 0.078184 0.829745 0.828297 0.544006
0.029 0.807884 0.090121 0.899211 0.807614 0.530902
0.030 0.787768 0.102268 0.739212 0.787474 0.518130
" The weights used for computing ;(r): Q,/Qi = 4.82322 and Qi/Q': 0.20733, are

derived in Section 3, where they are shown to be associated wit

r = 0.020593

the maximal root
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we find for Qj/Qi = Qi/Qj = 1, an initial approximation of

0.010210 if we use the equation relating to California and

rl(l)

1l

rl(l) 0.028462 if instead we rely on the equation for the rest of the

United States., With an initial approximation of ry, we may proceed to
obtain an improved approximation of Qj/Qi and Qi/Qj by solving for

these two unknowns in (27) to find

B-5
- 2.
1oz e TOTE L GoF (o

Q.
L = X=a, : (53)
N B-5

. e—r(x+2.5)

L.i(X)Fi<X)

X=Q

B-3 ~r(x+2.5)

gi ) 1 - Xi@e jOL.j(X)Fj(X) (54)
] P2 —r(xt2. -
z (A)F (%)
x=Q,

and computing their values with r set equal to either of the two alternative

0.010210 + 0.028462

initial approximations, or preferibly, to their average: r1(2) = 5

= 0.019336. Entering these imprived approximations of Qj/Qi and Qi/Qj into
(27), we obtain an improved approximation of ry- Repeating this iterative
procedure until two consecutive approximations of T, differ by less than a

fixed amount, say 0.0001, we find r, = 0.020593 as before,

Care must be exercised to ensure that the above iterative procedure converges
to the maximal real root and not merely a real root that satisfies (13). In
practice this danger can be minimized by setting r equal to an estimate

of the single-region solution for the entire multlreglonal system and then
using (53) and (54) to obtain an initial approximation of Q J/Q and Ql/Q
Alternatively, the iterative procedure may be carried out

over region of birth measures instead of region of residence ones, thereby
eliminating the use of weighting ratios altogether.
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Having outlined methods for the numerical evaluation of ry, we

now turn to the associated problem of numerically evaluating {gl}. Given
a multiregional population, life table,and fertility schedule, all in five-
year age groups, say, we may proceed to evaluate (43) for r = r, by
arguments that are the multiregional analogues of those normally used in
the single-region case (for example, Keyfitz (1968), p. 264). Assuming
once again a two-region system, we begin by evaluating the iE-}l element

of {v}. For this task we need the following numerical approximation of

Gi(t)I
. B-5 il (D) L (0
G, (t) = x;o [Ki(X) —L‘l‘(T + KJ. (x) J___Lj.(x) F,(xtt), (55)

where t and x take on values at five-year intervals. Premultiplying both

-rt . .
sides by e and averaging the result between two consecutive values of t

multiplied by 5, gives

_ . . 5 [t ~r(£+5)
v, = RN [e G (£) +e Gi(t+5)]
= % G, (0) + 5e'5rci(5) + ...+ Se-rtGi(t) + ... (56)
B-5 B-5 B-x-5 . L, (xtt) . L, (x+t)
= % S K. (X)F, (x)+5 s e It [K.(X)-L + K.(X)JL—\IF.()H{)
i i i L, (x) j L, (x) i
x=0 x=0 t=5 i. j. B

A parallel argument yields an analogous expression for Vj’ to complete
the formula for the numerical evaluation of {V}. Premultiplying {V} by

the inverse of
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[ B xt2.3) B-5
xfaxe ol OF; () Xfaxe'r(x+2'5).oL COF. (x) ]
A= jor.i i (57
B-5 _ B-5 _
| 7w r(X+2'5)iOL C(X)F.(x) T xe r(X+2'5).OL  (X)F . (x)
o R e jo~. 3V

evaluated at r eaqual to the maximal real root, provides the required

numerical approximation of {gl}.
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4. The Multiregional Net Maternity Function

We now take up the multiregional generalization of several concepts
related to the net maternity function defined in (13). To simplify the
exposition, we shall continue to focus on a two-region population system
with regions 1 and j, respectively. Thus, we have

UAEY J.{>i<x) 10P3 (O m () Py GOImy (30)

8 (x) = = (58)
P50 0,00 1P (OGO 1P (Om, ()

where, for example, jOpi(x) denotes the probability that an individual
born in region j will be alive in region i at age x, and jDi(x)
represents the j-born contribution to the net maternity (or paternity)
function of region 1i.
. . th . . .
First, we define the n— moment matrix of the multiregional net

maternity function to be

B, B
Rm) = [ x 8 (x)dx = 'x M(x)P(x)dx. (59)

o8 S

Observe that Vv(0) = R(0), a matrix we shall call the net reproduction matrix.

Its typical element jRi(O) gives the number of children expected to be born
in region 1 to a girl now born in region j, under the current regime of
fertility, mortality, and migration.

Next, generalizing two other conventional measures in the single-region

2 .
model, we d2fine the matrices n and o , with elements such as
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.- £X¢)i(X)dX R, (1)

i I (60)
B R, (0)
J JDi(X)dX ]
(08

and rB b

x - w.) . (x)dx

2 a : it ) jRiEz; ) .Rizl)

ji R, R, (0) s (61)
IjQi(x)dx 11 J1

where i is the mean age of childbearing of j-born parents who are
members of the stationary population of region i, and jOiZ is the
associated variance. As in the single-region case, one may use the numerical
values of these measures to graduate the elements of the multiregional net
maternity function. For example, we could assume that j@i(x)/jRi(O) is
normally distributed with mean jui and variance jGiz and proceed to
graduate this function with the mathod of moments.

Using the empirical multiregional net maternity function set out in
Table 1, we may calculate the mitrices E(O)’E’ and 22 that are presented
at the top of Table 3. Their interpretation is straightforward. For example,
under the 1958 regime of growth, a woman born in California is expected to
be replaced by 1.192 + 0.495 = 1.687 girl children, of whom 0.495 will
be born in the rest of the United States. The mean age of childbearing of
the stationary native California population is 25.430 years with a variance
ot 34,234 vyears. This may be contrasted with 25.967 years, which is the
same measure computed with the single-region model, under the assumption of

no internal migration. In turn, this may be compared with the 26.295 years
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which the single-region model yields when applied to the consolidated
data, that is, the United States female population.

Finally, Lotka's method for numerically evaluating the intrinsic
rate of growth in the single-region model revolves around the solution of

the quadratic equation:

2 2
ro -ru t+ 4noR(0) = 0,

)=

which may be solved iteratively as

r“ _ EnR§0)2
U -ro
2

FOS
i

where the r on the left-hand side is regarded as an improved approxima-
tion of the r on the right-hand side. A parallel argument for the multi-

regional model leads to the solution of the quadratic equation

1l

2

22
ro, - Lup + 4n Rk(O) 0, (62)

where

p B ot
R, (0) =£ PR (Om (x)dx :j; T @ M09

ko™ st ™
S T @ ) o

p 1,0 8
= £ kOpk(X)mk(x)dx + Z;?Bj g’ Sopk(x)mk(x)dx

£, (0)

&O O (63)

and, by analogous reasoning,

R, (1)

Pk Ry (1) (64)
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and

: K@ (RO
k Rk(O) Rk(O)

o (65)

Evidently, given appropriate values for ES(O)/Ek(O), k,s = i,j, k # s,
we could compute Rk(o)’ e and Oi; for k = i,j, and solve (62) twice
to find two separate numerical approximations of r. If the ratios are at
their appropriate levels, then the two separate approximations of r should
not differ beyond a specified small amount, such as 0.0001. This is because
at stability all regional populations of a multiregional system grow at the
same constant intrinsic rate of growth, namely, the r wvalue that satisfies
the characteristic equation in (13). If the ratios are not at their
appropriate levels, then we may obtain improved approximations using (53)
and (54) and recompute r once again. By iterating back and forth in
this way, we converge, as in Section 3, to the maximal real root, r. Thus,
we have yet a fourth method for solving (13). As in the single-region
model, this method is equivalenc to fitting a normal curve to the net
maternity function and yields &n approximation for r that is slightly
higher than the value found by the other three methods.

A numerical illustration at this point may help to clarify the
iterative solution method. Consider the two-region data in Table 3. Setting

Q; = Qj = 1, we begin by calculating

(R} = Q7! RMQ[1} = R)(1}, for n = 0,1,2 (66)

the kEh element of which is Rk(n), for k = i,j. This gives, for

example,



YA

' 1.296 (33,179 894,359 I
{R(O)} = {(R(D} = (R}
2.098 - 55.762 1562.811
i
and \
[ 25.595 ] | 34.833
w} = / L {32} =
| 26.573 | 38.619 |
T T

Substituting these values into (62) yields r, = 0.01021 and

r. = 0.02848. Taking their average as our initial approximation of r, we
proceed to compute an improved approximation of Qj/Qi and Qi/Qj using

(53) and (54). These in turn lead to improved approximations of {S(n)}
and thereby to r. Repeating this iterative procedure, we converge to the

values r = 0.02060 and Qj/Qi = 4,823, At this point,
26.037 | 36.175

¥

1.697 |
I 3 2 |

{R(D)} = \ {w) = ]

A ~

\
1.706 i 26.311 ? l 37.904

)
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5. Relations Under Stability

In a two-region population system, persons aged x 1in region i at
time t were born at time ¢t - x in either region. Hence, for example,
we may define the density of persons aged x in region i at time t,ki(x,t),

to be the expected value
ki(x,t) = Bi(t - X)iOPi(X) + Bj(t - x)jopi(x). (67)

Consequently the total population in region 1i is
w

[k (x,)dx,
0

and the proportion of that regional population which is of age x at

time t 1is of density

k, (x,t)
1

C-(X)t) =
1

'rki(x,t)dx
0

At stability, births in each region will be increasing geometrically

rt
at the rate r, for example, B.(t) = Qe ~. Hence
-rx -r
Qe Py () + Qe gpy (x)
c,(x,t) = o ' = ¢, (%) (68)
-rx -rx
,E[Qie 1P () + Qe T iop, () ]dx

an expression for ci(x,t) that does not contain t.
Notice that by setting x = 0 in (5.21), we obtain the birth rate

of the stable population in region i:

b, = 0) =
RERC T - (69)

f (Q e

X -
3 joP1 (0 Qje

onpi(X)]dx
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1

= s (70)

er gi e T p. (x)dx

o's Qi s0"1

whence
Q
-r
c,(x) = be x5 Qi 0Py () (71)
s i

Note that (17) <can be obtained by substituting the expression for

Ci(x) set out in (71) into the definitional equation for the intrinsic

birth rate:
B
bl = r Ci(X)mi(X)dx ) k = i,j, (72)
a
B Q
“x S
= bi f e &y Sopi(x)mi(x)dx,
a s i

and dividing both sides by bi gives (17).
Having r and bk’ we may obtain Ak = dk + oy - ik as a residual,

since

= - - + 4 = - = 9.3
T bk dk 0k i bk Ak, (k i,J) (73)

where Ak may be defined to be the intrinsic net "absence' rate in region

k, the absences being the result of either death or net autmigration, and

W

d = J:) e, () py (x)dx, (74)
¢4}

o, = cr) ¢ (x) v (x)dx, (75)

(o= v b b 4o (76)
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As in the single-region model, dk denotes the intrinsic death rate
and “k(x) is the force of mortality at age x. We introduce in (75 )

and ( 76), the multiregional concepts of the intrinsic outmigration and

inmigration rates, respectively, together with the force of outmigration,

Vi T 7 Vg
S

Equation (71) 1in its single-region form, has been used to infer the
birth rate and intrinsic rate of increase from a reliable census age
distribution and an appropriate life table [Keyfitz, (1968), p. 184].

Starting with the relation

%%z% = pe TX (77)

we may take matural logarithms to obtain

1n§%§% = 1ln b - rx,. (78)

Fitting a straight line y = a + 5x throcgh the observed points
y = In [e(x)/p(x)], gives

b = eOL

r = -f

We may generalize the above to the multiregional case by starting

with (71) in the form of

¢, (x)
9 = bke s k,s = 1i,],

S
L= aP (%)
< Qk s0'k

and then taking natural logarithms of both sides:
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¢, (®)

in q = 4n bk - TrX, (79)

s
257 PR (X)
S Qk s0 k

which is the multiregional counterpart of (78).
Returning to ( 71), we re-express the continuous expression for the

stable age distribution in region k as

Q
-rx S S
c., (X)) = % b e — p, (x) = 5 —
k s k Qk sO0'k < Qk ka(X)’ (80)
where, for example,
-rx
orx € jopi(X)
.c.(x) = b_.e .~b. (X)) = 81
100 T by yop 00 = R L T (81)
S joPi
o s i
Collecting such terms into a matrix, we define
o 161 (%) J.ci(X)
c(x) = e b P(x) = (82)
.c.(x ., (x
[ (€00 e
b,
i
where b = ,and the associated matrix
~ b
J
+5 101 (0 361 ()
C(a) = kr c(a)da = s (83)
.~
.C.(x .C.(x)
i J( ) ; J(

where, for example, jCi(x) is the proportion of the total population in

region i, born in region j and now aged x to x + 4,
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The numerical evaluation of the various stable growth measures
described above is straightforward and follows from the numerical approxima-

tions first set out in Section 3. Thus, for example,

1
bk = s
0-s - ~r(xt2.5) Qs (84)
ol e 6_ SOL k(x)
x=0 s k :
a result with which we may obtain
e-r(x+2.5) L (x)
C - b -r(xt2.5) L _ s07.k
sC (¥) = Bye s0 .k(x) w-s Q
-r(x+2.5) s
y T e — SOL k(x)
x=0 s Qk
or, in matrix form,
Cx) = e T2 . (85)
Next, we recall the matriz of mean ages of childbearing in the
stable population defined earlier in (44) and (57):
N 1 B B ]
-rx -rx
iAi in gée iQi(x)dx £ xe jQi(x)dx
A = =
~ B _ B
iAj jAj fxe T iD,(x)dx rxe rx ,O,(x)dx
L j & 33
L

where the numerical approximation of in, for example, is

B-5
A, = =T xe-r(x+2°5) jOL.i(x)Fi(x) . (86)

j 1
] X=Q
OUbserve that the mean age of childbearing of the stable population in region

k is
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QS
A= 3, A (87)

Finally, as in the single-region model, we define the mean length of

generation in region k to be the number of years required to increase
the stable population in region k by the net reproduction rate in that

region. Whence

eer

R, (0)

and

%=%““%m* (88)

Table 4 sets out several measures describing relations under stability
in the two-region numerical example of United States females residing in

California and the rest of the United States.



TABLE 4. Relations under stability for United States
females, 1958: Two-region model of
(i) California and (j) the rest of the
United States

Parameter California Rest of the U.S.
T 0.02059 0.02059
b 0.02648 0.02741
A 0.00589 0.00682
% 0.1767 0.8233
A; 25.319 25.560
Tk 25.664 25.921
T I
. 24.753 26.710 |
| |

A=
~ i

i
L—26.911 25.476_1



