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Introduction

In many multi-agent dynamic contexts resources allocated now to
some investment activity generally affect the probability of future states
experienced by other agents. For example, the care taken by a particular
automobile driver now determines the probability that some other driver
will be involved with him in an accident in the near future. Assuming non-
cooperative behavior, an external effect exists in these situations unless
property rights are properly defined. In the example, all drivers have an
incentive to drive with proper care if the driver at fault in any accident is
required to compensate for damages. In these games, another issue also exists.
Is the number and composition of the participants optimal under conditions of
free entry? Will the equilibrium associated with the assignment of property
rights that induces efficient investment decisions also emit signals that
attract the right numbers and types of participants?

Two different examples have recently appeared in the literature. The
first is a model of matching equilibrium formulated by Diamond {80] and by
Mortensen [79]. The second is a model of innovative competition introduced
by Loury [79] and by Lee and Wilde [78]. Similar dynamic externalities are
shown to exist in the two models. 1In each case, the external effect is inter-
nalized by an assignment of property rights analogous to fault liability in
the accident example. However, the incentives for entry associated with an
equilibrium given this assignment do not yield an efficient "market structure"
in either example for different reasons. Comparative study of these two examples
suggest a general model of related dynamic games. This general model is for-

mulated and analyzed. The conclusions drawn from the examples are shown to hold

more generally.



In the Loury-Lee-Wilde model of innovative competition, the R&D
investments made by all agents determine the probability distribution
over time to discovery of some specific new product or process. In the case
of exclusive patent rights, there is too much competition in the sense that
the non-cooperative investment in R&D made by each agent is excessive. 1In
this paper, it is shown that the source of the externality can be viewed as
follows. No competitor takes account of the loss in the prospect that the
others suffer in the event that he will be the inventor. If the successful
inventor were required to compensate the others for the value of seeking the
discovery, the non-cooperative investment decisions are efficient. However,

a non-cooperative equilibrium solution to the game defined by this allocation
rule is shown to attract too many plavers.

In the Diamond-Mortensen model of matching there are two types of
agents, say firms and workers. A surplus accrues to any matched pair which
induces individuals of each type to seek out a member of the other. How the
surplus is divided once a match is formed affects the incentive of an unmatched
individual of each type to invest in search efforE. In turn, the search effort
determines the instantaneous probability at which each individual finds a part-
ner. Given an equal division of the surplus, every unmatched agent invests too
little in search because the benefit accruing to the partner once a match is
formed is ignored. All unmatched agents will invest in search at socially
efficient rates if the agent responsible for making each match is awarded its
total value less the other's forgone value of continuing to search. However,
if the probability of contacting an agent of the opposite type depends on their

relative numbers, then the composition by type attracted to the.process is sub-

optimal. Specifically, no individual agent takes account of the effect of his
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participation on the contact probabilities of other agents.

These two examples suggest a general model which includes them as
special cases. In the general formulation, each player's current action
affects the probability that he will perpetrate some event involving others
in the near future. The incentive of each agent to take action is determined
by the manner in which the aggregate capital value of each event is allocated
among the agents involved ex post. A non-cooperative solution to the game
defined by the following contingent allocation scheme exists and every solu-
tion is Pareto efficient. The perpetratcr of each event receives the total
capital value of the event less a compensation paid to all other agents
whose play is terminated by the event equal to the value of their continued
participation under the scheme. 1In general, multiple equilibria exist and some
of these may be perverse. Under conditions that guarantee uniqueness, the
composition of plavers by tvpe maximizes social surplus if and only if the
probability of being the perpetrator of an‘event and the expected compensa-
tion required in each event are both independent of the distribution of agents
by type.

The paper is organized as follows. The first section introduces some
of the ideas to be explored by considering the problem of assigning accident
liability. The innovation race and the mating game are treated in sections
2 and 3 respectively. Sections 4 and 5 contain the general formulation and

theorems which apply to the entire class of games of this type. The final

section summarizes the conclusion drawn from the analysis



1. Driving

The purpose of the section is to introduce some of the issues studied
in the paper in the context of the easily understood problem of assigning ac-
cident liability. Let i = 1,2,...,n devote the set of automobile drivers.
Initially, the total number is regarded as given. Assume that the frequency
of accidents due to the negligence of each driver is a random variable with
a Poisson distribution. Specifically, the instantaneous probability that driver
i will cause an accident involving another driver is Aidt where Ai is the ex-
pected number of such accidents per unit time. Let us suppose that Ai is pro-
portional to speed which is beneficial in the absence of an accident. Let

bi(ki) denote the current benefit flow associated with driving at a speed Ai.

e assume

bi(x) > 0, b;(x) < 0, bi<0) = 0, and bi(O) = w. (1)

In other words, the current joy of driving increases but at a diminishing
marginal rate with speed. Finally, let Li denote the expected value of damage
suffered by driver i when involved in an accident.

By assumption, the other driver involved in any accident is a random
draw from the set of all other drivers. Hence, the probability that driver i

will haye an accident during an instant of length dt is A{dt + H%T j;i Aj dt.

It is equal to the probability that driver i will ram someone else plus the PTO-

bability that he will be hit by one of the other n - 1 drivers. The probabi-
lity that any driver will be involved in more than one accident during an
instant is negligible. Consequently, if there is no provision for compensation,

the total instantaneous benefit of driving at speed Ai less the expected damage



due to accidents is

1
- + —_— .
bi(xi)dt [Ai -] j%i Aj]dt Ly

Equivalently, the per period expected net benefit flow expressed as a function

of all the drivers' accident propensities is
0. i) = b (L) - (L + —=— 1 AL i=1,...,n. (2)
i ’"n i1 i n-1 4£1i 3771 ’ ’

Given the speeds chosen by the other drivers, each driver might be ex-

pected to choose his own to maximize expected net benefits. The joint solu-

tion to these choice problems is a non-cooperative equilibrium of the n person

game defined by the payoff functions ﬂz('). Formallv, a non-cooperative solu-
tion is a vector of accident propensities (Az,...,kg) > 0 which solves the
problems

max rz(ki,...,k,,...,ko), i=1,...,n.

xiip i n

oy virtue of (1) and (2), the unique solution is defined by

b' (A% =1, i=1,...,n. (3)
1 1 1

The marginal current benefit flow required to reduce the driver's own accident
frequency by one equals his private expected loss per accident.

" Under this 'driver beware' liability rule, it is clear that too many
accidents occur per period. Each driver takes account of own loss caused
by his negligence but ignores the loss incurred by those he runs into. To
formalize this point, consider an alternative game in which the driver at
fault is required to compensate the other for loss as well as pay his own
damages. In this case, the driver's benefit per period less tﬂe expected loss

per period due to the possibility of an accident is
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1
T*(X1s-+-A_) = b (X,) = A [L, + — L,], (4)
i 1 n i 1 i1 n‘ljii ]J

since no loss is sustained in accidents where the fault lies with the other
driver under this scheme. A non-cooperative solution to the driving game

solves

1 3 l .

b(>\)=L +——l— z L ’ l=la"'an' (5)

i1 i n- J#i J
As the negligent driver pays all damages, the forgone current marginal
benefit attributable to reducing his own accident frequency equals the aggregate
expected loss incurred in an accident which is his fault. Requiring compensa-
tion internalizes the external effect present in the nc fault case. As the

externality is a diseconomy, equations (1), (3) and (5) imply

A9 > Al (6)

The equilibrium accident frequencies when no compensation is required are
too large.

Like this one, the models considered in the sequel are formulations
of dynamic investment games in which the probabilities of future events invol-
ving more than one agent depend on the current actions taken by all. In each
case a contingent compensation scheme exists that internalizes what would
otherwise be an external effect. The practical feasibility of such a scheme
generaliy requires that the perpetrator of each pertinent event and the value
of the external effect attributable to the event can be relatively easily vari-
fied ex post. In this example, the negligent driver must be accurately named
and the damage suffered by the other driver accurately assessed on average.

Although we know that doing so is a practical problem, the existing law in most



of the U.S. imposes liability on the driver judged at fault which suggests that
it is not insurmountable. Nevertheless, the verification problem and other
possible complications may prevent the adoption of what would otherwise be a
socially optimal incentive scheme in the examples which follow and others that

the reader might be able to imagine.



2. The Race to Innovate

There are n firms indexed by i=1,...n seeking the same discovery of
capital value B. Time to discovery is a random variable jointly determined
by the R&D activities of all n firms. The instantaneous probability that
firm 1 will make the discovery at date t 1is Ai(t)dt where Ai is a measure
of the R&D intensity pursued by firm i. The corresponding R&D investment of

firm i is cfki(t)) where

ci(x) > 0, c;(x) > 0, c;(O) = ch) = 0 and c{(m) = w, i=1,...,n. (7)
All firms invest continuously until the discovery is made by one of them.

The n competitors play a dynamic or super game in which Ki(t) > 0 is
the action of firm i at date t. The game ends when one of them makes the dis-
covery. A non—-cooperative solution to the game is an action time path, a
strategy for each firm,that maximizes the firm's discounted egpected future
profits at every date given the strategy pursued by other firms. Following
Loury [79] we assume an exclusive patent right; the inventor obtains the
lump sum B or its future income equivalent at the discovery date.

Consider a typical instant of time [t,t + dt]. Given that it has not
yet been made, the probability that firm i will make the discovery during the
instant is Ai(t)dt. The probability that one of the others makes the discov-
ery instead during the instant is T A,(t)dt. Agent i receives B in the

hEa!
first event but nothing in the second. If no one makes the discovery during
the instant,then the game continues. During the instant, the firm makes an
investment equal to ci(Ki(t))dc Let vi(t) denote the value of play at time t.
Since it equals the expected discounted future value of making the discovery

less the discounted stream of R&D expenditures to the date of discovery,

dt

e 3

v,(£) = ot [, (t)den + (1 -
i i

A, (e)dt)v, (e+de) ] - ¢, (A, (t))de
J J 1 1 1

1
L
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where r > 0 denotes the positive interest rate.

Because the future value of play, vi(t+dt), depends on the future ac-
tion time paths of all the agents, non-cooperative behavior and Bellman's
principle of dynamic optimality implies that the agent's optimal action at
t maximizes the right side given the other agent's current action and the own
value of continuing. Let vz(t) denote the value of the non-cooperative joint
strategy Ao(t) = (A?(t)...,kg(t)). Given that all agents play non-cooperatively
in the future, we have

vz(t) = max {e—rdt

[k.dt(B—v?(t+dt)) + v?(t+dt)
A.>0 + * +
12

- A%)devO(+de)] = ¢ (r.)del.
j#i 1 1 1

Hence, by rearranging terms appropriately and by taking limits of the result

as dt - 0, one obtains

uva‘?(c)(l-e‘rdt)/dt - e‘rdt[v‘?<c+dc>—v‘?<c>]/d§
de-0 L+ + +

= rvo—dvo/dt = max 7000, .. a2 0v0 (), i=1,...,n. (8)

1 1 1 n 1 n 1
x>0

where 1

O = — — —

wi(x,vi) Ai(B vi) ci(Ai) j;i Ajvi (9)

is the expected profit per period attributable to R&D activity.
Each agent's strategy in a non-cooperative equilibrium solves the problem

on the right side of (8). Under the assumption, it is the unique solution to
1
c. (0% =8 - v°, i=1,...,n (10)
i1 i

o . . . . .
given B > v.. Specifically, the marginal cost of making the discovery is equal
- i
to the capital gain, the value of discovery less the value of the prospect of
L. . . o Sy s . o)
continuing to look for it. Notice that the joint equilibrium action X (t)

is the same at every date if and onlv if the corresponding joinc value of
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play vo(t) = (vi(t),...,vi(t)) is stationary. Hence, every steady state
solution to the differential equation system defined by (8)-(10) is a joint
value vector corresponding to a joint stationary equilibrium action. It can
be shown that at least one exists and that 0 < vz < B for all i characterizes
every steady state.

For a related model, Loury [79] argues that rivalry among the firms
induces each to invest too much in R&D. Because every competitor fears that
the others will win the race, the same result holds here. The dynamic exter-

nality present is revealed by the fact that (9) implies ani(-)/axj = - vy 0, j#i .

No firm takes account of the fact that an increase in its own R&D intensity re-
duces the chance that each of the others will be the inventor. Consequently, a
smaller joint vector of R&D intensities exist that all prefer.

Loury suggests a limited patent life as a means of correcting this
distortion. By analogy with the previous example, the readar can probably
suggest an alternative. Require that the inventor compensate the others for
the lost value of the prospect of being the inventor. Under this rule, firm i

receives B - 5.V if the investor and v, if not at the time of discoverv.
JjF1 ]

We show that the non-cooperative solution to the game defined by this contingent

allocation . rule yields an efficient vector of R&D investments and maximizes

the joint wealth of all the competitors.

Since Ai(t)dt is in the instantaneous probability of discovery by firm i

and each player is indifferent between continuing and discovery by one of the others,

rdt
(

vi(t) = e (Aft)dt (B - j;i Vj(t + dt)?

+(1-x (t)dt)v, (t+dt) ] ~ c, (A, (¥))dr.
1 1 i 1

% ) ] ) *
Let vi(t) denote the equilibrium value of play to agent i and ki(t) denote the
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equilibrium strategy. An argument analogous to that applied above implies
that X;(t) at date t maximizes the right side given non-cooperative

behavior in the future. Hence,

* * % .
rv. - dv./dt = max T,(A,,v¥), i=1l,...,n (11)
i i i i
%20
3=
where v* = (v_, .,v;) is the joint value of play and
e A (B - I A (12)
Ty i’v) T T j=1 vj] - Ci( i)

is the expected profit per period given action Ai and the joint value of

continued plav v under the contingent compensation rule. Each agent's

equilibrium action maximizes qz given v = v¥,it solves the problem on the
right side of (11). Specifically, it maximizes the aggregate flow of capital
gains net of costs attributable to current R&D activity.

A comparison of (12) with (9) reveals the change in incentives in-
duced by the requirement to compensate. Since anj(-)/axj =0, j #1, there
is no dvnamic externality. The resulting efficient equilibrium R&D activities

solve

(13)

e 3
<
R
I
=
=]

SCHEERHES
The marginal cost of making the discoverv is equal to the aggregate capital
gain attributable to discoverv, its value less the aggregate value of contin-
uing the race.

A stationary equilibrium is defined by (13) and any steady state solu-

v* ro the system of differential equations defined by (11). Because a steadv

state aggregate value of play is anv solution to
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n n
% n *
r T Vi=max I {2.(B-L wv.,) -c. (X)), (14)
i=1 ' 50 i=1[ 1 j3=1 3 11
% %
one and only one stationary equilibrium R&D intensity vector A = (Al,...,xn)

exists. To prove uniqueness, simply notice that the right side of (14) is a
non-negative, continuous and strictly decreasing function of the sum Zvj.
Hence (14) has one and only one solution and it satisfies 0 < sz < B. The
corresponding value of Az is determined by (13) for all 1i.

Equation (14) also implies that the aggregate value of play in.equilib-

rium, total ex ante wealth, is maximized by A* over the set of all stationary

ok n
joint action vectors. Specifically, I v, > I v_. Since v{ > 0, (10) and
i=1 P Ti=1 * *
(13) imply
® 0 .
Ai < Ai’ i=1,...,n. | (15)

Every firm pursues R&D less intensity given the requirement to compensate.

Loury [79] also claims that too many competitors enter the innovation
race when the winner receives an exclusive patent. Here we show that it is not
the infinite patent life which is responsible for the distortion that Loury iden-
tifies. Although the contingent compensation scheme internalizes the dynamic
externality present given an infinite patent life, too many firms still enter
because, no one takes account of the fact that the value of play to each falls
with the total number. Formally, every entrant receives the expected wealth
per firm rather than the marginal contribution to aggregate expected wealth.

Consider the special case in which all competitors face the same R&D

o
W

cost structure is; i.e. ci(x) = ¢c(x) for all i. Llet A% = Ai denote the common

stationary equilibrium R&D intensity and let v* = v* denote the common value

i

of plav in equilibrium. By virtue of (11)-(13) these solve
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C'(X*) = B - nv= (16.8.)
and
TV* = max [A(B-nv¥*) - c(A)]. (16.b)
A>0

Regarding n as a continuous variable, a differentiation of both relationships

yields
dX* Joy e " -
in = - r/(r+nd*v®)c" (A%) < 0 (17.a)
since
dv* . "
= - ARvE/ (r+nlEvE) < Q- (17.b)
dn

The R&D intensity as well as the value of play of each firm decrease with the
total number of competitors.

A potential competitor enters the race if and only if the private
capital value of playing v*(n) is at least as large as the entry cost a.
Hence, the equilibrium number of competitors is the solution to

v*(n) = a. (18)
However, the aggregate expected wealth generated by all players in the race
is equal to the aggregate value of play; i.e.,

Wx(n) = nv*(n)
Hence, the socially optimal number of competitors in that which equates the

marginal contribution of each player to aggregate value,

oWx _ dv* T
r+ni*

to a. Since free entry implies v* = a, this condition is never satisfied.
Indeed, since the private return to entry always exceeds the social return,
too manv firms enter the race. Of course, in principle, this distortion can

be corrected by charging an appropriate entrv fee.
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The conclusion that compensation of the losers in the innovation race
yields efficient R&D investment rates is crucially dependent on two assump-
tions. First, the invention or discovery sought must be unique. As we show
later, no compensation is required to obtain efficiency if a discovery made
by one firm leaves the value of continued R&D activities by others materially
unaffected. Second, the compensation scheme must be costlessly implementable.
Since the value of seeking a discovery depends on the private cost structure
faced by the firm in question, this assumption does not hold in practice. It
may well be that an exclusive patent is the best allocation mechanism available

when each firm's cost structure is regarded as private information.
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3. The Mating Game

Individual agents of two types, denoted as i = 1,2 seek to form pairs.
The total capital value of a match involving an agent of each type is B > 0.
The value is divided among the members of the pair ex post. The number of
agents of type i is n;, i = 1 and 2, and each agent of type i contacts other

agents at a probabilistic rate Ai(t) at date t subject to the cost ci(Ai)

per unit time. The cost functions have the following properties:

cl(x) >0, c¢"(x) >0, ¢'(0) =¢c.(0) =0 and cJ](w) = o, i =1 and 2. (19)
i — i i i 1
Assume that the agent contacted by another is a random draw from the set of

all agents. Hence, the probability that an agent of type i contacts an agent

of the opposite tvpe during the instant [t,t+dt]

is Ai(t)dt nj/(nl+n The probability that the same agent is contacted by

9)-
some agent of the opposite type is njkj(t)dt/(nl+n2). The probability that

the agent will meet another of the opposite type is the sum of these two
instantaneous probabilities. Let vi(t),i=l and 2, denote the value of the
prospective meeting to an agent of type i at date t. It is the expected pre-
sent value of the agent's share of the value of the match once formed less the
discounted stream of costs incurred prior to the meeting data. TFollowing |
Diamond [80], we assume that the total capital gain or surplus B - vl(t) - vz(t)
given that a meeting takes place during the instant [t,t+dt] is shared equally
by the two agents involved.

There are several possible interpretations of this simple model of
matching. It could be viewed as a representation of a housing market in which
the two agent types are buvers and sellers, as a labor market in which emplovers
and workers search for one another, or as a marriage market populated by men

and women seeking a mate. In the first case B is the difference between the

tvpical buver's demand price and the tvpical seller's supply price for the
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house in the absence of search. In the latter two cases, B is the present
value of a future stream of income or benefits accruing only to a matched
pair. In each context, the purpose of the model is to permit an analysis of
the time required to form a matched pair.

Under the allocation rule, an agent of type i realizes the lump sum

or a future income flow equivalent equal to vi(t+dt) + 1/2 (B—vl(t+dt)—v2(t+dt))

if the agent either contacts or is contacted by some agent of the opposite type

during the instant [t,t+dt]. Otherwise the agent continues to search which
has capital value equal vi(t+dt) by definition. During the instant, the
cost flow ci(t)dt is incurred. Since the value of search at date t is the
expected present value of the agent's capital value at the end of the instant

less the cost of search incurred during the instant, we have

n,
vty = e T4 3 1o (0yde 4+ 0 ()de | E(B-v. (t+dt) - v (t+dt))
i n,¥n, i b 2 1 2
-rdt
+dt) - )
+ e Vi(t dt) Ci('i(t))dt

where r is the common discount rate. The optimal non-cooperative action at
t, denoted as Kz(t), maximizes vi(t) given the current action of the other
agent type and the future values of continued play of both types. If all
play noh—cooperatively now and in the future, then the equilibrium value of

o ..
plav Vi(t) satisfies

—-rdt n.
Oy = max deTIE Ty [ de + 2%(8)de ] (B—vO (e4de) - vO(tHde))
1 /\. >O l\ nl+n2 1 J 2 l 2

i —

+ érdtv9(t+dt) - c.{(\.))de>
1 1 1

i
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o) . .
where Aj(t) is the non-cooperative of the other type at date t and vo(t+dt)
is the future joint equilibrium value of play. By rearranging terms and tak-
ing limits appropriately, one obtains the simultaneous system of differential

equations in the values of play which follows:

O - av9/dt = max W?(A,,A?,Vo), i=1 and 2, j#i (20)
i i j
3,20

where

n
0 _ i Lra_v - -
Wi(A,v) = nl+n2 (Ai* Aj)z[B vy v2] ci(ki)

is the expected flow of private benefits attributed to the possibility of meeting

another of the opposite type net of the search cost incurred per unit of time.
The optimal action of an agent of type i at date t is the solution to

the problem on the right side of (20). Under the assumptions,

n,
1030y = 3 1 ., o 0 c_1 9 . .
ci(ki) — 5 (B vy v2), i=1,2 and j # 1 (21)
1 2
defines the non-cooperative strategy of every agent given B z_vi + v;. The

contract rate of every agent is such that the marginal cost of contacting
another is equal to the agent's share of the surplus attributable to a match
weighted by the probability that the agent contacted is of the opposite type.
A stationary strategy is a time path of the joint action 2%(t) which is
constant over time. By virtue of (21) a stationarv solution to the game
is associated with every steady state solution to the differential equation
system involving vi and vg defined bv (19)-(21). One can easily show that
0 < vi + v; < B in any such steadyv state.

The dvnamic externality present in this formulation of the mating
game is revealed by (20). Specifically,
37° _ nj 1 [B—vo—vo

2 1

A
5 nl+n7 2

o -

] >0, j#i
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given any stationary equilibrium. No agent takes account of the fact that
an increase in one's own contact rate reduces the expected time to match
for some agent of the opposite type. Hence, expected time required to find
a mate is too long for both types. Formally, a larger pair of contact rates
exists which yield a greater payoff to every agent at every date than that
associated with the equilibrium pair.

The externality present in the matching process is internalized by the
following alternative allocation rule. Let the contacting agent receive the
entire value of the match less a compensation paid to the contacted agent equal
to the latters forgone value of continued search. Inotherwords, an agent of
type 1 receives the lump sum (or its future income stream equivalent) B - Vj if
the contacting agent. Since every agent is indifferent between forming a match

as the contacted agent and continuing to search for a partner, we have

_ n,
e rde — 1 x.(t)dt[B, - v, (t+dt))dt.
nl+n2 1 1 ]

v, (t)
1

n,
+ oTTdE[y 1A (t)de vi(t+dt) - Ci(Ki(t)dt-
nl+n2 1

L
iy

Let A% (t) = (Al(t),Ag(t)) denote the equilibrium joint action associated with
the equilibrium joint value of play at date t, v*(t) = (vz(t), vg(t)). An argu-~

ment analogous to that presented above implies

P = & * :
rv, - dv, /dt = max 7.(A.v. ), 1i=1,2, j#i (22)
i i ivii
X.>0
12
where
. n. A,
Ty SN I S SR _ 2
ni(xl,v) nl+n2 [B vy v2] ci(Ai) (23)

is the expected payoff of the dvnamic game at every date under the contingent
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allocation rule. The latter equals the expected capital gain flow attri-
butable to the possibility of contacting an agent of the opposite type in the

near future less the current search cost flow incurred. Since Ai solves the

problem on the right side of (22),

1 o n. KN oo
L LK _
ci(Ki) EI%H; [B vy v2], i=1,2. (24)

The equilibrium contact rate is such that the marginal cost of contacting
another is equal to the capital gain obtained as the contacting agent weighted
by the probability that the agent contacted is of the opposite type. Since
the current expected payoff is independent of the contact rate chosen by the

0, the equilibrium pair X* is efficient. No other

i

opposite type, BWi(')/SA,
i

exists that yields higher values of search to both types.
One can also show that a unique joint action exists. "Since (24) implies

that dvl/dt + dyz/dt = 0 given a stationary equilibrium action A*, the correspond-

ing sum of values Vi + V; solves

( kS + f:) "_' 1'12/\1'{"1'11,\2] % % )— ( )

r{v v = max t____.___. (B-v.-v,) = c1 (A1) = cp(Xxs 25
PP agageo |t mtme L2 _

by virtue of (21) and (23). Uniqueness follows by virtue of the fact that the

right side of (25) regarded as a function of vy + v, is non-negative decreasing

K !,

and continuous on R+. Furthermore, the solution satisfies O < Vi + v; < B; i.e.
<

the joint exante wealth of a pair is positive but is less than the total capital

value when matched.

Equation (25) also implies that the equilibrium stationary action A%
maximizes the joint ex ante wealth of the typical unmatched pair. This fact
can be used to show that the equilibrium contact rate of each type exceeds that
cbtained when the surplus attributable to a match is shared equally by

the partners; i.e.
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WD i=1 and 2. (26)
i i
Formally, if the contact rate pair XA = (Xj,A;) is the joint action of every

date, then the corresponding sum of the values of search vl(k) + VZ(A) = w(})

solves

nlxl nzkz
rw(k) = [ET?E; + n1+n2J(B—w(A)) - cl(kl) - Cz(xz)

independent of the allocation rule or equivalently

_ (nlxl+an2)B —(n1+n2)[c](kl)+co(X7)]
W(A) - r(n1+n2) + nlkl + nzkz (27)

By virtue of (25) w(X*) > w(}) for all A > 0 and specifically,

w(iF) > w(xo) = v 4+ V;' Because the distortion is an external economy when

1

the surplus is shared equally, we also know that 3w(x)/3dX > 0, i=1 and 2,

at A = AO. Furthermore, strictly convex search costs together with (21) and
(24) imply either A° > A% or A% < A%, Since w(})) is decreasing in both of
0

its arguments in the region X > X* by virtue of (27), X~ > X* is ruled out.
It follows then that the expected time required to find a mate is shorter under
the contingent compensation scheme.

Because the probability that the agent contacted is of the opposite
type is equal to the fraction of all agents who are of the opposite tvpe, the
equilibfium values of search for both types depends on the distribution of agents

by type. These dependencies are implicit in the fact that the equation svstem

1 2
(28)
3 M A? * *
v = max 12 (B-vy -vo) - CZ(\?)]
KZZO nl+n2 =
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.

™~

g

and v. to be functions of (n ,nz), the number of

implicitly define both vy 9 1

agents of the two types. A complete differentiation of (28) reveals that

Bv: BVZ
Wi < O and aT' > O’ 1 = 1’2 and J # 1. (29)

Inotherwords, the value of search of each agent decreases with the number of
participants of the same type and increases with the number of the opposite
type. The reason is clear. An increase in the number of the same type reduces
the probability that a contacted agent is of the opposite type while an increase
in the number who are of the opposite type increasesthat probability.

Under conditions of free entry, the number of participants of each
type 1is endogenous. In particular, agents of a given type enter until the
private value of search is driven down to the cost of entry plus the present
value of the future stream of benefits forgone as a consequence of entry.
Letting vi(nl,nz) and vZ(nl,nz) denote the functions defined by (28), the

equilibrium market structure is that agent distribution which satisfies

v.(n,,n.) = a., i=1,2 (30)
i 2

1 i

where ai is the total capital cost of participation for agents of type 1i.
Is this structure optimal? The answer is no in general.

The gross wealth of all those that participate is the aggregate value
of search defined by

)

w(nl,nz) = nlvl(nl,nz) + n

L

pVp(ny,0y)
)

Hence, net wealth or social surplus, W(nl,n - nzaj,is maximum only

n,a
2 171
if the marginal contribution of an agent of type i to gross wealth
v, av“
T( o % 3 . . .
W) v. +n L +n, 1, i=1,2 and j#i
Iin, i i 3n, J on,
i i i
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is equal to a - Since the last two terms, although of opposite sign,do not
cancel in general and v: = a; under conditions of free entry, the condition
holds only by accident. The distortion present arises because no agent takes
account of the fact that his entry will lower the value of search to all parti-
cipants of the same type and will raise the value of search to all agents of
the opposite type. Equivalently, the distortion is due to the fact that an
agent's private return to search is the average rather than marginal contribu-
tion of his type to gross wealth.

Given the established efficiency properties of equilibrium under the
contingent compensation schemes, one might properly ask why allocation rules
that embody its features are not observed in labor, housing and marriage mar-
kets where search is regarded as important. There are several possible answers
to the question. First, search costs are trivial and, hence the welfare loss
involved is insignificant. Second, in the marriage market at least there is
no common currency for the purpose of compensating a reluctant mate. Third,
even when an appropriate currency exists, a significant degree of within type
heterogeneity is present. Given heterogeneity, the total value of a match B
depends on the identities of the agents involved as does the value of search.
The verification of both necessary to operate an appropriate compensation
scheme poses a serious revelation of preferences problem. Fourth, in those
cases where the total benefit attributable to a match is not realized as a
lump sum but is instead a stream of future benefits, the equilibrium is not
perfect. Because the contacting agent generally receives the more favorable
share of the total, across matches agents of indentical type realize different
streams ex post. Hence, in the absence of indenture or no-divorce laws,

contacted agents of either tvpe have an incentive to search for an alternative
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while matched even though sociallly suboptimal. To the extent that some

combination of these reasons other than the first precludes the adoption of

the appropriate contingent allocation scheme, the analysis suggests an argument

for subsidizing search effort.
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4, The Existence and Efficiency of Compensated Equilibria

It is apparent that the examples studies above are members of a general
class of dynamic games with an endogenous player structure. Each player's
action affects the probability that he will be the perpetrator of some
event involving others in the near future. The way in which the total
capital value of each such event is allocated among the agents involved exX post
affects each agent's incentive to take prior action.

In this section a general class of games with these features is form-
ulated. All three examples are special cases of the class of games. A con-
tingent allocation scheme with the following properties is analyzed. The
perpetrator of each event receives its total capital value less a compen-
sation paid to every other agent whose play is terminated by the event equal
to the agent s value of continuing to play.

Let N = {1,...,n} denote the set of players. Although the play of
some individuals is terminated from time to time, the set N is regarded as
fixed overtime. There ate two interpretations. First, each individual whose
play terminates is immediately replaced by an identical individual. Inother-
words, an infinite number of each player type exist but only a finite subset
choose to participate at any moment. Second, the analysis pertains to a
steady state of a birth and deatl process in which the distribution of players
by type is stationary.

Player i takes an action Aiip at date t which determines the probabil-
ity qiki(t)dt of perpetrating some event during the instant [t, t+dt]. Let
A=(Al,..., Xn) denote the joint action of all the players. The conditional pro-

bability that the play of agent jelN is terminated- by an event perpetrated



.by agent 1 is denoted as pij' In general, both the parameter vector
q=(ql,...,qn) and matrix P= [pij] depend on the player structure, the
distribution of players by type denoted as m= (nl,.;., nz). Finally, the
aggregate capital value of any event perpetrated by agent i is denoted as Bi
and the cost (or benefit) per unit time of the action persued ZIs denoted
as ci(ki).

An event is an accident involving two drivers, a discovery made by
any competitor, and a meeting between two agents of the oppositve type
respectively in the three examples. The perpetrator respectively is the
driver at fault, the inventor, and the contacting agent. In the accident
model,pij= 0 for all i and j; no agent terminates play in the event of any
accident. In the innovation race pij = 1 for all i and j; the game ends for
all when anyone makes the discovery. There are two agent types in the mating
game (2=2). The play of both agents is terminated in each event and the
contacted agent is a random draw from the set of all who are of opposite in
type; p. =1 pij=()if i#j are of the same type and pij=l/mk’ k=1 or 2, if 1#j
are of the opposite type and i is not of type k. In both the driving example
and the innovation race, the probability of being the perpetrator is independ-
ent of the player structure; i.e. qi=l for all i. However, the probability of
contacting an agent of the opposite type is proportional to their relative
numbers; 1i.e. q; = nk/(nl+n2) given 1 is not of type k= 1 or 2. 1In the driving

game —Bi= L. + L £ L.>0 is the expected capital loss incurred in an accident

i n-1 ;.
j#i
involving agent i where Lj’ jeN, is the value of the damage to the automobile
driven by agent j. The flow of benefits derived 'from driving is some function

bi(li) = —ci(Ki)z_O of his own action. 1In both the innovation race and the

mating game Bi=B>O and ci(k:)i 0.
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The general model permits variations on each theme. 1In the driving
model q;=n corresponds to a situation in which the probability of an accident
increases with driver density. In general pij >0 can be interpreted as the
probability that driver j will suffer a fatzl injury in an accident caused by
drive i. The contingent compensation rule then requires driver i to
pay a death benefit. In the innovation race, pij =0 for all i and j if an
infinite potential supply of equally valuable discoveries exists. Alterna-
tively, pii=l and pij=0 for all i#j characterized a specification in which
each discovery 1is firm specific. There is no rivalry in either of these
cases. The mating game is the dating game when pij=0 for all i and j.
Finally, Diamond's[ 80] version of the mating game specifies qi=l, each
agent's probability of contacting another of opposite type is independent of
the distribution of agents by type.

The contingent compensation rule has the following properties. The per-
petrator of any event receives its aggregate capital value (or incurrs the
associated capital loss) Bi expost., In addition, the perpetrator compensates
every other agent whose play is terminated by the event a lump sum equal to
that agent's expected capital value of continued play. Hence, if during the
instant {t,t+dt] agent i perpetrates an event, his expected exante
worth is Bi —.Z' pij vj(t+dt)+ (1- pii) vi(t+dt) at the end of the instant where

; j#i
vj(t+dt) is the value of continued play to agent j. It equals the agzregate
capital value (or loss) of the event less compensation plus the capital value
of continued play weighted by the probability of continuing given the event.
If the same agent does not perpetrate an event during the instant, then his

end of instant capital value is vi(t+dt) because either he continued to play
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. or he has been compensated for the capital value of his continued play.
Since the probability that the agent will perpetrate an event during the
instant [t,t+dt] is qiki(t)dt (approximately), the beginning of instant

capital value of play is

-rdt

[ o I

vi(t) = e [qili(t)dt (Bi - Py vj(t+dt) + vi(t+dt)) (31)

j=1
+ (I-g A, (0)de) v (eHde)] - e (v, (1))de

i=l,..., n

where Ai(t)zp is the current action of agent 1.

Because every agent's end of instant value of play depends only on the
future time path of the joint action, the optimal non-cooperative current action
of agent i maximizes the right side of (31) by virtue of Bellman's principle
c¢f dynamic optimality. By rearranging (31)  appropriately and then taking

limits as dt-0, one finds that

-rt -rdt,

lim v, (t)[l-e "7]/dt-1in e v, {tHdt) - v.{t)]/dt (32)
dt->0 dt—0 *

dvi n
rv. - g0 T max [qix (Bi - El Py vj) - ci(x)} i=1,...,n.

- J

along any non-cooperative solution path to the dynamic game. Of course, the
best replay at data t for agent i Ai(t) is the solution to maximization problem
defined on the right side of (32).Inotherwords, the non-cooperative strategy

~aximizes the difference between the expected aggregate flow of capital gain

attributable to the current action and its cost flow.
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The general class of games of interest satisfy the following assumptions:

Al r>0,q=(ql,...,qn) >0 and 0 <P = [Pij]f_[l] where [1] denotes the nxn

matrix of ones.

A.2 ci(x) is monotonic, differentiable and strictly convex. In addition,

c.(0) = c!(0) = 0.
i i
A.3 Bic,(x) > 0 for all x > 0.
i Z 2

Recall Bi>0 and ci(x)zp in the innovation race and the mating game. However, in
the driving example - Bi>0 is the total expected property damage given that agent
i caused the accident and —ci(ki) is the benefit flow associated with driving at
"speed" Xi. A.3 reflecr these facts.

In the sequel we study stationary non-cooperative solutions to the general
dynamic game, solution paths with the property that the joint agtion is the same
at every data for all agents; i.e. A(t) = X for all t. One can show that a
stationary action is the optimal non-cooperative strategy for esach agent given
that all the others pursue a stationary strategy. Furthermore, if all agents
pursue a stationary strategy then the joint value of plav v(t) is the same at

every date under the assumptions. Hence, we have the following equilibrium con-

cept.

v

Definition 1: A stationary equilibrium is a joint action X ¢ R+ and a joint

: * *
non-negative value v ¢ R: such that ki solves
* n *
= max [q.x (B, - Z . Vv.) - c.(x i=1,...,n. {(33)

v, zao lay ( 175k plJ J) l( )] s

P,

In equilibrium, everv agent maximizes the expected income attributable to his
current actiomn ziven that all agents continue to do so in the future. An equil-

ibrium can have any orf the following properties.
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_Definition 2: A stationary equilibrium is said to be

%
(a) trivial if and only if no agent acts A =0.

(b) interior if and only if the sub vector of strictly positive
* . - 3 .
elements of A 1is an equilibrium of the game played by the subset
*
of agents for whom A, >0.
i
(c¢) efficient on the set of stationary joint action strategies if no
other Ae R exists such that its associated value v dominates v .
+
. - . * * -
(d) symmetric if and only if Ay o= A, for all agents i and j of the
J
same type.
No one acts in a trivial equilibrium. The trivial acticn by any
agent is equivalent to not playing in an interior equilibrium. An efficient
equilibrium is not Pareto dominated by any other stationary strategv.
Finally, agents of the same tvpe take the same action in a symmetric equilibrium.
Theorem 1l: A stationary equilibrium exists. Every equilibrium is non-trivial,
interior, and efficient.
. n n . .
Proof: Existence. Let f: R, -+ R, denote the vector mapping defined by

+

1
= = [ P -
fi(v) —  max Lin(Bi .

z
x>0 j=

. pijvj> - ci(x)] (34)

i=1l,...n.
f(v) is a continuous decreasing function which maps R+ into the compact convex

subset X = R: defined by

n
X = 7 [o,vi] (34.a)
i=1
1 - s
o<v, = £.(0) = ¢ 3fp lagx By - e Gl <= 2N (34.5)

under the assumptions. Hence, f(+) has a fixed point by Brouwer's theorem and

% *
every fixed point v = f(v ) is a solution to (33).
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The equilibrium action A* associated with each fixed point v* is the unique solu-
tion to the collection of optimization problems defined by the right side of

(33). The following is used frequently in the sequel.
*
Corollary: Ai =0 <=> v, =0 ¥ i g N.

Non trivial: Suppose A* = 0., The corollary and (4) imply the contradiction

0=1£(0)=V>0, V= [Vl,---,V ].

oL

A, > 0} and let A; denote the sub vector of i*
i

Interior. Let N(A*) = {ieN

composed of all the positive elements of A*. By virtue of the corollary and (33),

we have
% ~ % N
rv, = max Q.X(Bi - I PijV-) - Ci(x)‘V 1eN(A*)
1 x>0 JEN(A®) !
and A; is the solution to these optimization problems. Inctherwords, A; is an

’ *
equilibrium solution to the game played by the non-empty subset of players N(\ ).

. n . B . . s
Efficient. Suppose that a AER+ exists such that v > v* where v is the joint
value of play given that A(t) = X for all t. One can show that v is a solution

to the linear system of equations,

n )
rv, = q A, [B, - L pP,.v.] - Ci(ki>’ i=1,...,n.

Therefore, v > v¥ > 0, p > 0 and (33) imply the contradiction

n

Iop,, v.) - (A)
HAE T A A Py ¥y iti

\Y
0
>
—
o
]

n

> q. A, [B, -

L .oV, ] =, (X)) = v, for all ieN.
i ii j=1 pl] V]] 1( 1> Vi

0f course, this result establishes existence and efficiency of equilibrium

for all the examrles studied above.
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5. The Optimal Player Structure

When does the player structure obtained under conditions of free entry
maximize the aggregate expected value of play net of entry costs and opportu-
nity costs of play? To answer this question one needs to formulate the
optimization problem.

Given a specified set of players N and a particular equilibrium to their

pO%
ta

LIV
i=1 "

* % kK
game (i,v ), the equilibrium aggregate value of play is W Because
there are multiple equilibrium in general W ,is not unique given N. This pro-

blem might be resolved by associating with N that equilibrium which maximizes

the aggregate value of play. Let

n

W(N) = sup L.V, (35)
( ren(y) 1FHd

denote the maximal aggregate value of play on the set of equilibria Q(N)
corresponding to the player set N.

The socially optimal player structure, then,is that set of players N
which maximizes W(X) net entry and opportunity costs. The following example,
apply dubbed the "boxing tournament', illustrates why this definition of a
socially optimal player structure is inappropriate in general.

At any moment of time there are two boxers in the ring who fight until
one knocks the other out. The loser of each bout is eliminated from the tourna-
ment butlis immediately replaced by an identical opponent who takes on the
winner. The tournament continues forever according to this rule. An event is

a knockout and the perpetrator of the event is the winner. Hence, n=2 and

_{01
P =105 7.
9
Let r = 1 and assume identical agents. Specifically, Bi=B, qi=l and ci(x)=x—/2,

o T

i=1 and 2. Boxer i1 receives B-v., if the winner and vi is the loser where B is
J
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. . I3 . * .
" the total prize per fight. The consolation price v, is, of course, equal to

the value of entering the ring and is endogeneously determined in any compen-
sated equilibrium.
In this case (33) implies that an equilibrium corresponds to a simultan-

* %
eous solution (Vl’VZ) to the system

v, = f (v,) = max[x(B-v.) - x2/2] (36.a)
i i
x>0
(
' %(B—v.)z if v, < B
_ 227 j—
0 if v, > B
=

The equilibrium actions contingent on the values is

"When B = 2, three equilibria exist. They are (vl,vz) = (3,0), (0,3,

K

X % %
and (v ,v ) where v = 3 - Y5 labeled El’ E2 and E respectively in Figure 1.
At Ei’ boxer i is guaranteed the entire prize if he loses. Consequently,
boxer j # i has no incentive to resist so that boxer i must fight to eventually

win the prize. Equilibrium E is symmetric; both make the same effort;

the odds are even."

Figure 1: TIdentical Boxers (B=2)
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Notice that the solution to (35) is El and E2 even though only one boxer

fights in either equilibrium. Clearly no promotor could finance the prize money

if either represented behavior, let alone make a profit. To maximize inter-

est in attendance and, hence, to maximize his profit, the promoter would enforce
- .

the symmetric equilibrium. However, that equilibrium (vI = VE) minimizes the

-1 )
total value of the game v +v, to the baxers since fl(vz) = f2 (v2) is convex.

1772

The example suggests that one might want to restrict the set of equili-
bria in the optimal player structure problem to be the symmetric subset.
However, one can also show that multiple equilibria exist when
the two fighters are not identical. Suppose that one type is more able
than the other. Specifically, type 1 boxers are more likely to win given the

same amount of effort; 1i.e., ci(x) = cix2/2 and Cl< 02' In this case

vy = fi(vj) max [ X(B-vj) - cix2/2 ]

%0

{(B-vj)z/cig, if v, <38

< , i=1 and 2, j#i (37.2a)

{ 0 if v, > B
and
Ki = max [ O, (B—vj) / ci] , 1i=1and 2, (37.b)
Figure 2 illustrates the case of B>2 and l=cl < ¢, = B/2. There are two equili-

bria satisfying the requirement v; > 0 labled E and E In equilibrium E, the

2° 2

more able boxer doesn't resist. However, E, i1s the only solution to (35) even

2

though the promoter would enforce equilibrium E. Notice that both equilibria
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are strictly interior but (35) still choses E2 if <, is made slightly larger.
We must conclude then, that our proposed definition of a socially optimal player

structure is misleading in general except in the case of a unique symmetric equili-

brium to the investment game.

Figure 2: Non-ident3zal =~ - Boxers (B > 2)

The following result provides conditions on P that guarantee both unique-

ness and symmetry of equilibrium.

Lemma. Let A = rI + DP denote an n x n matrix where r is a positive scalar, I
is the n x n identity matrix and D is an n x n non-negative diagonal matrix and P
is a non-negative n x n matrix. The principal minors of A are positive for all D
if and only if the principal minors of P are all non-negative.

Proof. Given D diagonal, it follows that anyv principal minor wmatrix of A
of order k, denoted as Ak, is

Ak = rIk + kak’ k=1,...,n,
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where Ik is the identity matric of order k, and Dk and Pk are the principal

minor matrices of D and P respectively obtained by deleting the same common
rows and columns deleted to obtain Ak'

Since the principal minors of DP are non-negative under the hypotheses,
an argument used by Nikaido [1960, Theorem 20.8] establishes that [Ak ’ >0
for all k. Specifically, it can be shown that

] A | = £~ + P(r)
where @(r) is a polynomial of order k-1 whose coefficients are the various
principal minors of kak'
To prove necessity, suppose | Pk I < 0. Let D(m) denote a diagonal matrix

with all principal diagonal elements equal to the real number m. It follows

that for all m=0

-1 -1
Dk (m) Ak = Dk {(m) + Pk

and, consequently

k r

-1+ P

| ogtma | = [ 2 A =lZT e |

s I T . .
Hence, monotonicity and continuity of | EI + P in m together with

|

%im [l} k]A

Mmoo LT
imply [ Ak l <0 for all large enough values of m.
Theorem 2: If the principal minors of P are all non-negative, then there is one
and only one stationary equilibrium.
Proof. Thesystem(33) can be represented as
g(v) =r (v -£f(w)) =20

where £f: Ri > R? is the vector map defined by (34).
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Every solution v* lies in the n-dimension compact rectangle X defined by (34.3a)

" and (34.b). The Jacobian matrix is

22 = J(v) = £l + D(A*(v))P
where A*(v) is the equilibrium function mapping joint values to joint actions
defined by the solution to the right side of (34) and D(A) = diag qiki. Since
D(A*(v)) is a non-negative diagonal matrix on X, the Lemma implies that all
principal minors of J(v) are positive everywhere on X. Hence, at most one
solution exists by virtue of anunivalence theorem due to Gale and Nikaido (1965).
Since we have already established that f(v) has a fixed point in proving Theorem
1, the assertion follows.

At this point let us note that all examples considered except the boxing
tournament satisfv the condition. It is known that P has non-negative principal
minors if either (i) P is dominant diagonal or (ii) the symmetric part of P,
1/2(P'+P) where P' denotes the transpose, is positive semi—definite. In the
driving example P is the null matrix. In the innovation race P is the matrix
of all ones which satisfies (ii). P is dominant diagonal in the mating game.
Since [PI = -1 in the boxing tournament the condition fails and there

are many equilibria. The hypothesis also implies symmetry.

Theorem 3: Everv stationarv equilibrium is symmetric if Piy Z-pij (equivalently
pjj Z-pji) for all i and j of the same type.
" Proof. Given that i and j are of the same tvpe, Definition 1 implies

..V, + p..v? or equivalently
33 ] J1i 1

(p _—p,j)(v;-vg) = 0. Hence, it suffices to show that v; = v; under the hypo-
i

S W% W *
= i d ly if + =
that Xi Aj if and only i PiiVs pijvj P
il
thesis. Equation (33) implies

—

. x| q.x(B,~p..v.-p.. S - 1p, vf) - c, (%
j wo| 303 333 ik RRNES j

e
; % * =
- ~

= m - - - v - (x
0 L?iX(Bi P11757P15Y1 T Pux R
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given that i and j are of the same type. Hence

.
* %

+ /:': B _ _
(r qi\i(pii Pij)][vj vi] 0

hict let if . > .
which completes the proof pil —-pij

Given that P has non-negative principal minors, A is unique and
symmetric by virtue of Theorems 2 and 3. In this case, the unique value of play

is the same for every plaver of the same type. Let Né:N denote the subset

of playersoftype k = 1,...,2 and let m = (n ...,nz) denote the distribution

l,
* %

of plavers by type. Let w; = vy for all iENk denote the common value of play

to those of type k. The aggregate value of play given N as defined by (35)

can be expressed as a function

% L 3 '
Wm) = T v, = ¥ nw (38)
ieN T k=1 KK

of the distribution of agents by type.

An agent of type k enters the game if and onlv if the private value

K is at least as large as the cost of entrv for the type. Hence,

of play w
the market structure obtained under conditions of free entry is optimal if
and only 1f the private value of play for each type is equal to the marginal

contribution to the aggregate value of a player of type k; i.e.,

_aw(m)

dm = Ww=x (39)

XL
<

where w¥ = (wi,...,w;). By virtue of (38) this condition is satisfied in general
* X

if and only if w* is independent of the distribution of plavers by tvpe.

Theorem% : Given that all principal minors of P are non-negatives,
conditicen (39) holds if aud generally only if (i) the probability of being the

perpetrator (g.) and (ii) the expected compensation required when the perpe-
i
n

trator (jgl piff) are both independent of the distribution of plavers by
= J

tvpe (m).
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Proof. That (i) and (ii) are sufficient is implied by (33). Specifi-
cally v; is independent of m for all i given (i) and (ii). That (i) is neces-
sarv when (ii) holds follows from the mating example. That (ii) is necessary

when (i) holds follows from the racing example.

Notice that the driving example, 9 = 1 and p, = 0, satisfies all the
1.

J
conditions. So does the mating game if the probability of contacting another

agent is independent of that relative number, qi = 1, and so does the racing

example if discovery does not end the play of other agents, pij = 0,j#i.
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6. Conclusions

The class of dynamic games studied in this paper can be described as
follows. Every player takes an action now that affects the probability of some
event inthe near future involving others. How the aggregate gain or loss as-
sociated with each event is allocated ex post among the agents involved affects
the ex ante incentive of each agent totake prior action. Given an allocation
scheme, the problem of determining the actions of all the agents can be formu-
lated as a multi-person non-cooperative dynamic game. In general, solutions
are not efficient in the Pareto sense. However, a contingent allocation scheme
exists such that every stationary solution to the game defined by the scheme is
efficient. The scheme allocates the total value of each event to the perpetrator
less a compensation paid to every other agent whose play is terminated by the
event equzal to the value of continued play.

If the soluticn to the dynamic game defined by the contingent compensa-
tion scheme is unique and symmetric, then the player structure cbtained under
conditions of free entry maximizes aggregate wealth rate of entry and opportun-
ity costs of play if and only if the following conditions are satisfied: (i) The
probability that any agent will perpetrate an event is independent of the player
structure. (ii) The compensation that any agent must pay given that he is the

perpetrator is independent of the player structure. A sufficient condition for

uniqueness and symmetry is presented which the three principal examples - driv-
ing, racing and mating - all satisfy. The driving example also satisfies both
(1) and (ii). However, (i) fails in the case of the mating game and (ii) fails

in the case of the innovation race. Finally, the boxing tournament example
establishes that multiple and non-symmetric solutions can exist in general.
Furthermore, the example illustrates that the aggregate net wealth criterion is

not an appropriate social welfare measure in such cases.
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The distortion present when conditions (i) or (ii) fail are congestion
effects that are present whether the contingent allocation scheme obtains or
not. In the mating game, no individual agents takes account of the fact that
his entry will increase the probability an agent of the opposite type will
contact an agent of his type and decreases the probability that an agent of
his type will contact one of the opposite type. Because his entry increases
the value of play to agents of the opposite type but decreases the value of
play to agents of the same type, whether there are too many or too few agents
of a given type attracted to the game is indeterminant in general. In the innova-
tion race, no agent takes account of the fact that his entry reduces the probabi-
lity that any one of the others will make the discovery. Since the value of
play to each decreases with the number of competitors, too many are attracted to
the game.

In general the implementation of the contingent allocation and compensa-
tion mechanism shown here to yield Pareto optimal solutions to the dynamic game
requires the following information. First, the perpetrator of each event must
be accurately identified on average. Second, the aggregate gain or loss attri-
butable to each event must be assessed. Third, the agents whose play is termin-
aﬁed and their values of continued play must be determined. One or more of
these requirements may be impossible to fulfill in a particular case. Hence,
the determination of allocation schemes that are efficient in a constrained
sense given that one or more of the requirements fail would be an interesting

research problem.
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