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Introduction:

A group of individuals make one choice from a set of feasible states.
This situation occurs frequently in real life and is addressed by Economic
Theorists, Game Theorists and Political Scientists.

When the participants try to deal with the situation individually and
selfishly, without the aid of some social mechanism or an arbitrator,
inefficient outcomes often result. One observes this type of phenomena in
strikes, wars, excessive competition between individuals and free rider type
of situations. The classical game theoretic example is the prisoners' dilemma
game where the only equilibrium of the game is inefficient.

When the situation is repetitive and is analyzed as an infinitly repeated
game, the problem becomes somewhat less severe (see Aumann [1978]). One
observes new equilibrium outcomes which are group efficient, but there are
still many inefficient ones.

Purely cooperative game theory deals with the problem of which efficient
outcone would, or should, result in such situations. But it does not address
the issue of the cooperation inducing mechanism or the game that the "selfish"
players play with the arbitrator. Some game theorists dealt with the question
of the mechanism itself and its performance, for example Nash [1953], Raiffa
[1953], and Kalai-Rosenthal [1978]. Some of the difficulties with their
mechanisms is that they are too complicated, equilibrium behavior is difficult
to compute, and the informational requirements imposed on the players and the
arbitrator are very strong. Recently a preocedure to incorporate pre-play
negotiations into the game was proposed by Kalai [1981], however, this
procedure does not always guarantee efficient outcomnes.

The purpose of this paper is to formalize a simple procedure of

sequential contract sizning that enables the group to reach a group efficient



agreement. Every "regular” Nash equilibrium of the noncooperative extensive
form game induced by this procedure is individually rational aund Pareto
optimal, Thus, individually, and as a group there is a strong incentive to
follow this procedure.

Conversely, almost every individually rational Pareto optimal state is a
possible regular equilibrium outcome of this procedure. I view this
multiplicity of equilibrium outcomes as a positive characteristic of the
procedure. If procedures of this type result in small and restricted sets of
outcomes then there would be disagreement among the participants as to which
procedure to follow. Thus the same problem would arise again in the form of a
conflict about which procedure to follow or which arbitrator to use. In this
proposed contract signing procedure with its multiple equilibria it is left to
the bargaining ability of the individuals and there should be no problem in
agreeing to adopt the procedure.

This proposed contract-signing procedure is attractive in its
simplicity. This is true for two crucial aspects, the description of the
procedure, and the optimal equilibrium behavior computations that have to be
done by the participants. While simplicity is not a well defined mathematical
property I feel that it is an important feature. Simplicity of description
gives the procedure hope of being implemented. Simplicity of computing
optimal behavior increases the chances that the individuals would actually
behave as the theory prescribes.

There are three major contributions in the paper. The first is as a
descriptive theory. The procedure suggested here is a close approximation to
procedures that actually take place in real life. Thus the paper supplies a
game theoretic analysis of such situations. A second major contribution lies

in the hope that for certain real life situations in which non Pareto optimal



outcomes occur this procedure will be implemented. The third coantribution is
within the theory of equilibrium notions for extensive form games. While
analysing the equilibrium of our procedure 1 suggest some additional criteria
for restricting the equilibrium notion to be more reasonable. 1 believe that
these ideas can easily be incorporated into the general theory of extensive

form games in the direction initiated by Selten [1975].

I. THE CONTRACT SIGNING PROCEDURE AND ITS APPLICATIONS.

Let N = {1,2,...,n} be a set of players (n > 1) and
C = {co,cl,cz,...,cm} be a finite set of states. For i=1,2,...,n

Uj: C > R represents a utility function of player i which expresses his

ordinal preferences over C.
For a predetermined commonly known positive integer k and a predetermined

commonly known state c( the k attempts (or iterations) contract-signing game

G(co,k) is defined as follows. There are k identical iterations numbered k,

k=l,ees,1l. In every such iteration j, the players, simultaneously, each

o . JN .
proposes a state cJ42eC. The proposals (cj’l, ¢, ¢4*™) are then made

common knowledge.
To define the outcome of the contract-signing game we distinguish between
1 2 j,n_ ]

two types of outcomes at iteration j. If et P = L= ¢ ¢ then we

say that an agreement cJ was reached at iteration js Otherwise we say that no

h iteration. The outcome of the game is

agreement was reached at the jt
defined to be c; if there was no agreement reached at any iteration. 1If an
agreement was reached at some iteration then we defined the outcome to be the
last agreement, i.e., the cj with minimal j.

Two intuitive examples of the model are the following. 1In a game

theoretic context we consider an n-person strategic form game. Each c;(i > 0)



may be thought of as a joint (n-tuple) pure strategy of the n players. Thus
all joint pure strategies may be agreed upon. ¢ is the noncooperative
(possibly mixed) Nash equilibrium strategy which would result if no agreement
was reached.

In a social choice context we may think of the ci's as social states with
¢ being the forecasted outcome in the case of no agreement, possibly the
status quo state.

An alternative and possibly more intuitive description of the contract-

signing procedure is the following inductive process. For j=0 we let for

every c;eC the degenerate game G(ci,O) be the game with no strategies whose
outcome is c;. For k > j > 1 and CiEC we define the game G(cy,j) to be the
toliowiag. Each player i chooses ciEC. 1f cl = 02=...=c“ =< then the

outcome is the game G(cp,j—l). Otherwise the outcome is G(cj,j-1). The k
attempts contract signing game is then G(co,k). With this description we can
view the contract signing game as a sequence of signiang biuding contracts.
The initial coantract is the noncooperative contract cge Earlier coatracts are
vinding and they can be cancelled by a mutual agreement to sign a new contract

later on.

II. REGULAR EQUILIBRIUM OF EXTENSIVE FORM GAMES

In this section a notion of regular equilibrium of extensive form games
is described. It is assumed that the reader is familiar with the theories of
extensive form games and normal form games (see Owen [1963] and Selten
[1975]). The games described here will have no "chance" moves and will
involve only "pure” strategies. Also the payoffs at the end of the game will
be states rather than utilities. The players are assumed to have preferences

over the states (as in the previous sections). Thus these are really



"ordinal” extensive form games. The concepts preseated here can easily be
extended in the obvious way to "cardinal” games with probabilities. Since
this would serve no purpose for the present paper I will ignore this
extension.

The motivation in defining regular Nash equilibrium for these games is to
restrict the set of equilibria to "reasonable” ones. This idea was suggested
in a seminal paper by Selten [1975] and was recently extended further by
Kreps—-Wilson [1980]. Related ideas for games in the normal form were
presented by Myerson [1978].

Given a game in extensive form of the type described above and Nash
equilibrium strategies of the n-players, the equilibrium will be called
regular if it satisfies the following three conditions.

1. Subgame Symmetry
2. Subgame Optimality

3. Reduction Compatibility
Weaker versions of these concepts have been introduced earlier by others.
Subgame optimality is an obvious extension of Selten's [1975] idea of subgame
perfectness. A somewhat different idea of reducing a game through domination
is mentioned in Luce-Raiffa [1957] and a version of it was used by Moulin
[1979].

To explain these notions it is necessary to first extead the outcomes of
an extensive form game from the set of terminal nodes of the set to all
decision nodes of the tree. But for given pure strategies of the n-players
there is a unique natural way to do this extension. Namely, given a decision
node of the game tree, the pure strategies of the players define a unique path
from this node leading to one terminal node. It is the terminal node that

will result if the game starts at the prescribed decision node and the



specified strategies are really followed. Thus the outcome associated with a

decision node relative to the given pure strategies is defined in this manner.

Given an n-person extensive form game as described at the beginning of
this section, and pure strategies of the players, we are interested in the
optimality of these strategies over logical complete subgames. A subtree of
the game tree is a subset of the nodes and arcs of the game which constitutes

a tree with the following properties.

l. There is a unique initial node of the subtree.
2. For every nonterminal node of the subtree the following two
conditions hold.
a. All the arcs coming out of the node are in the subtree, and
b. All the nodes that belong to the same information set in the
original tree as the specified node are also nonterminal nodes

in the subtree.

A subgame of the original game is a restriction of the original game,
with its information sets and players names, to such a subtree. The outcomes
associated with the terminal nodes of the subtree are the outcomes associated
with these nodes (by the given pure strategies) in the original game.

Two subgames are identical if there is a one to one correspondence
between their nodes which preserves the tree structures, the names of the
players and strategies, the information sets, and the outcomes.

The strategies of the players are subgame symmetric if the induced

strategies on identical subgames are the same.

The strategies of the players are subgame optimal if the induced

strategies on every subgame constitute a Nash equilibrium in the subgame.



The notion of reduction consistency is more involved. I first define it
for games in the normal form. Let (SI’SZ""’Sn) = S be a list of finite
nonempty sets of strategies, one for every player and let XS = XS.. There is
a list of utility functions U = (Ul’ UZ""Un) where Ui: XS ~» RIprresses ith

ordinal preferences over XS. I first define, inductively, the notion of a

reduced version of the game (S,U). In every reduced version of the original

game the set of strategies available to individual players will be restricted
by successively eliminating dominated strategies. The utilities over the
remaining strategies will be the ones induced by the original utilities when
restricted to the smaller set. More precisely the following method defines
reduced versions inductively. (S,U) is defined to be a reduced version of

{(S,U). Suppose now that (T,U) is a reduced version then

Ul (with some abuse of

T = (Tl’ TZ""’Tn) with @ # Ti < si and U XT.
i

notation in order to keep the notation simple). We can get further reduced
versions as follows. Choose a player j and let Tj have the following

properties:

1. p =T, €T,
i- ]

2. For every s.eTj - Tj there is an ngTj such that
s,
J
s, sesys Je X T..

> +l’ b
] ©ogen/j T

Uj(sl, SyrecesSj-]s ’sj+l’°"’sn) 2&?&1, SZ""’Sj""’Sn) for every

(Sl’ SZ""’Sj—l

If Tj satisfies these properties then ((Tl, TZ,...,Tj_l, Tj’ Tj+l,...,T %,U)

also a reduced version. A pair (T,U) is a maximally reduced version if it is a

reduced version that can be reduced no further.

A Nash equilibrium s = (s ,sz,...,sn)eXS of the game (S,U) is defined to

1

be reduction consistent if for some maximally reduced version of (S,U), (T,U)

is



we have s;eT; for i=1,2,...,n.
Now, returning to extensive form games, the notion of reduction

consistency can be defined there. A simple subgame of an extensive form ganme

is defined to be a subgame in which every player has at most one information

set. A strategy choice of the players will be called reduction consistent if

the following condition holds. Consider any simple subgame with its induced
strategies. These strategies are reduction consistent in the normal form

representation of the simple subgame.

[II. The Regular Equilibrium Outcomes of the Contract Signing Procedure

In this section I characterize the outcomes that arise when a regular
Nash equilibrium strategy is played in the contract signing procedure. For
two states c.,, c. € C c, ¢ . denotes that U _(c.) > U ) for £ = 1,2,..4,n
i? j l>} i t( 1) t(c_]) y%y s Iy
cy S € denotes that U.(cy) > Ut(cj) for 1,2,...,n. ¢, satisfies

sophisticated individual rationality relative to c. if either

J

1o ¢; » cy or
k k

2. ¢y z c and for no ¢, € C c, ¥ cj.

¢y satisfies sophisticated individual rationality if it satisfies

¢c; is Pareto Optimal

sophisticated individual rationality relative to Coe i

(weakly) if there is no cj g€ C with cj } cye
Notice that the set of states that are Pareto optimal and satisfy
sophisticated individual rationality is not empty. Thus the following

theorem, in addition to characterizing the equilibrium outcomes, establishes



the existence of a regular equilibrium. Also the proof of the "if" direction
supplies a counstructive description of optimal stategies. These optimal

strategies are very intuitive and their computations are very simple.

Theorem For large enough k's (that is, there exists K > 0 such that for
all k > K) a state is an outcome of some regular Nash equilibrium of the k
attempts contract-signing game if and only if it is Pareto optimal and

satisfies sophisticated individual rationality.

Proposition 1 For every k » 1 if c; 1s an outcome resulting from a Nash

equilibrium of the k attempts contract-signing game then cy is individually

rational, i.e., cj »=cg.

Proof Thes proposition follows immediately from the fact that in this
game every player 1 has the option to play the constant strategy c, at all the
iteration and thus guaranteeing himself an outcome at least as good as Cqye

Before proceeding with the proof of the "only if" direction of the
Theorem it is necessary to digress to an analysis of the equilibrium outcomes
of diagonal type n-person normal form games. In such a game all the players i
have an identical non empty set of strategies S = S = 597 = .... = She
Ui: s => R represents the utility of players i. A joint strategy
(sl,sz,...,sn) e S" will be called a diagonal strategy if S| = Sy Tees=S.,
otherwise it will be called a nondiagonal strategy. This game will be called

a diagonal game if every player is indifferent between all the nondiagonal

strategies, i.e. for every player ieN and two nondiagonal strategies q,r

Ui(q) = Ui(r).



Lemma 1 In a diagonal game every Nash equilibrium strategy r is
individually rational relative to every nondiagonal strategy. Furthermore if
r is reduction consisteat then it satisfies sophisticated individual

rationality relative to any nondiagonal strategy.

Proof The first part is obvious since every player can move the play to
be off the diagonal. Now suppose r is a nondiagonal strategy and there are
joint strategies (necessarily diagonal) b = (b,b,..s,b) with b > . Suppose
((Ty, T9,+++,T ), U) is a maximally reduced version of the game. Observe that
for i = 1,2,...,n b € Ti (to get a coatradiction consider the first time that
b was eliminated by some player). Thus let B = {b e S: (b,b,...Db) } r} then

g #+B8C Ti for i = 1,2,...,n. Now to see that B = Ti for all players suppose
ace Ti - B for some player i. There exists a player j for which

Uj(g) < Uj(r) < Uj((b,b,..,b)) for some (and every) b € B, where

a = (a,a,ses,a). Thus a ¢ Tj by the maximal reduction of Tj' Thus player j
does not play a in the maximally reduced version. But then the strategy a is
doninated for every player by the strategy b. Therefore T, = B for i =
1,2,¢..,n. Now it is clear that the only equilbrium strategies in this
reduced version ({(B,B,...,B), U) are of the form (b,b,...,b) = b with b } o

Now, turning to the proof of Theorem 1, we consider a sequence of
decision nodes dk dk—l""’dl described as follows, dK is the initial decision
node of the game. dk—i is an initial decision node of iteration k—-i which
followed previous iterations of disagreements going though d,_;;;. Let o be
the outcome associated with di when a regular equilibrium strategy is played

and let 0, = Co° The only if part of the theorem would be completed when we

argue the following two observations for i = 0,1,2,...,k-1



l. o 2 0 and
i+l i’

2. ©

. > o, whenever o, 1s not Pareto optimal.
i+l i i

These two observations are direct consequences of Lemma 1. When we
consider for every i the game starting at d;;; and ending after every player
made his choice at this iteration. The fact that each one of these games is a
diagonal game follows from the structure of the contract signing procedure and
the subgame symmetry property of the equilibrium strategies played (giving all
the off diagonal strategies the same outcome). Notice that the above argument
proves the sophisticated individual rationality property of the outcome for
every number of iterations k > 1.

In order to prove the "if" part of the theorem we give a constructive

proof of a somewhat stronger version.

Proposition 2 for every k > 1 and every Pareto optimal state ¢y which

satisfies sophisticated individual rationality there exists a regular Nash

equilibrium of the k attempts contract signing game which induces c; as its

outcome.

Proof Consider functions g: C => C which satisfy the following three

properties for every c, € C.

l. g(c;) is Pareto optimal

2. g(cl) satisfies sophisticated individual rationality relative



to ¢

3. glgley)) = g(ey)

For such a function g define the strategies of the players to be the
following. At every iteration if the last agreement leading up to this

iteration was c;

i then every players plays g(ci). If no agreement was reached

prior to this iteration (including the case of the first iteration) then every
player plays g(co)- The proof of the proposition will be completed if we
observe that this strategy induced by g is a regular Nash equilibrium.

I first argue that these strategies satisfy subgame optimality. Consider
a subgame T starting at some decision node d. Suppose the strategy of player
i is not a best response in the subgame. Then it follows by the structure of
the contract-signing procedure that it is not a best response in the larger
subgame I' consisting of d and all the nodes and arcs that follow from it to
the very end of the original zame. Let € be the last agreement reached
before getting to d (co if such agreement was never reached). Notice that by
the definition of the g induced strategies that at every iteration an
agreement on a Pareto optimal outcome is reached. In particular starting at d
the players immediately agree on g(cj) and continue on agreeing. Thus the
final outcome is g(cj). If player i modifies his strategy then at some
iterations he causes disagreement but whenever there is an agreement it would
be based on a previous last agreement of the type c. or g(cj). Thus overall,

J

after he modifies, the outcome would be € or g(cj) and he cannot improve
relative to g(cj).

Now to see that the strategies induced by g satisfy subgame symmetry

consider two identical subgames G and G with inital nodes d and



d respectively. Suppose the last agreements leading to d and respectivelyto d are cj and C-
(again making the converntion that j = 0 if no agreement

was reached earlier). If j = 3 then subgame symmetry holds since the induced
strategies are always determined by the last past agreement. So assumeing
that j # 3 we want to show that the plays induced by g in G and in G are the
same. Consider a path p starting from d with the following strategies
played. At every iteration the first player plays a strategy different from
the one prescribed by g while the other players play their g induced
strategy. Let £ be the last node on this path which still belongs to the
subgame G. Let 5 and £ be the corresponding objects in G. Now the outcome
associated with £ is either g(cj) or cj(if 4 is a terminal node in the
original game). Similarly the outcome associated with 2 is either

g(cj) or 03. Thus, since G and G are identical we have one of the following
identities Cj = CE or g(cj) = CE or cj = g(cg) or g(cj) = g(cE).

In any of these cases it follows that g(cj) = g(cE). Therefore the
players will play the same induced strategy at the iteration starting at d as
they would at d. The same argument holds for every other iteration whose
initial node is included in G and subgame symmetry is proved.

Finally, it remains to be shown that reduction compatibility holds for
the strategies induced by g. Consider a simple subgame G which starts at a
decision node d. Let € be the last agreement reached before d was reached.
The normal form version corresponding to the game G is a t-person diagonal
game with T = {1,2,...,t} € N. The nondiagonal outcomes are g(cj) if there are

any iterations left in the game after the current one, otherwise the non-

diagonal outcomes are Cye The diagonal outcome corresponding to the diagonal

stratey é (g(cj), g(cj),...,g(cj)) € Cf:is g(cj). For other diagonal

strategies c, = (ci,ci,...,ci) with ¢y # g(cj) the outcome is either



1. cy if T = N and we are at the last iteration,

or 2. g(ci) if T = N and we are not at the last iteration,
or 3. cj if T # N and we are at the last iteration,
) if T# N and we are at the last iteration.

or 4. g(Cj

It is straight forward to verify in every one of these cases (using the
Pareto optimality of g(cj)) that g is an equilibrium strategy for some
maximally reduced version of the normal form game.

To complete the proof of the proposition observe that for every C; which
satisfies Pareto optimality and sophisticated individual rationality one can
construct a function g with the property that g(co) = ¢j» Define g(c,) = C;

and for every other Pareto optimal state < define g(cj) = <y For non Pareto
optimal states cj choose g(cj) to be any state which satisfies Pareto

optimality and sophisticated individual rationality relative to it.

IV. Further Discussion

Several extensions of the coatract—-signing procedure will be of
interest. One such extension would allow the participants to reach partial
agreements among subsets of players, rather than the whole group. This is
important especially for situations in which the number of participants 1is
large. Also agreements restricting the set of states (or strategies) to a
smaller set rather than to one state should be of interest. This may be
easier to implement in very complex situations. Most real life agreements and
contracts are of this type since the participants reach an agreement on the
strategies relating to one situation of conflict or cooperation., Their

actions in other aspects of their lives (the ones which do not relate to the



specific situation) are not specified by the agreement. These issues are
important if we hope to be able to describe a consensus achieving mechanism
which would be more applicable for economies involving private and public
goods.

Another issue to study is the performance of the contract signing
mechénism, or ones like it, in situations of incomplete information. Unlike
the one shot game in this extended extensive form there are many more
opportunities for the participants to learn about their coplayers and to

transfer information.
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