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ABSTRACT

This paper presents a set of axioms which characterizes a family of price
mechanisms for consumption goods. Among these prices are marginal-cost prices
and Aumann—-Shapley prices. Using this characterization one can uniquely
determine marginal cost prices (as well as Aumaann-Shapley prices) under

certain axioms. A discussion of the economic interpretation of the axioms is

also provided.
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I. INTRODUCTION

The main purpose of this paper is to provide an axiomatic approach to
warginal cost (MC) pricing and to point out the similarity between MC pricing
and Aumann—Shapley (A-S) pricing. The latter is a cost-sharing price
mechanism that is axiomatically derived by a set of five natural axioms
discussed in {3] and {6].

In this paper we consider models in which there is one producer with a
given technology and fixed input prices who produces a finite number of
consumption goods. Thus, we can uniquely derive the cost function that
describes the minimal cost of producing a given vector of consumption goods.

By a price mechanism P(+,») we mean a rule or a function that associates
with each cost function F and vector a of quantities that are actually
produced, a vector of prices:

P(F,0) = (Pl(F,a), P2(F,a),...,Pm(F,a)),
where m is the dimension of a and Pi(F,a) is the price of a unit of the i-th
commodity. The interesting cost functions are those which do not consist only
of costs which are directly cuased by each commodity, i.e., cost functions
which are not of the form

F(Xl’XZ""’xm) = Fi(xl) + eee + ﬁm(xm).
According to our definition a price mechanism does not depend on the utilities
of consumers and it can be applied to the case in which information on the
private tastes is not available.

Let us point out that although price mechanism are independed of demand,
it may lead to prices which are compatible with demand, i.e., given the cost
function F one may set prices p and a vector a such that o is demanded at p
and moreover, p is determined by the price mechanism at a, i.e., p = P(F,a).

For example, Mirman and Tauman [6] showed that the Aumann-Shapley price



mechanism.is compatible with demand as explained above. 1In the case that the
price mechanism does not generate cost sharing prices rules to share the
profit or cover the loss not through prices must be specified.

We shall consider in the sequel price mechanisms which obey the following
four axioms. First we require that prices should be independent of the units
of measurement (Axiom 1 below). This is a preliminary requirment of any
pricing system. We also require that the price of a commodity for which the
cost is positive is non negative (Axiom 4, below). This axiom reflects
fairness toward the producer. Axiom 2 requires that two commodities having
the same effect on the cost have the same price. This emphasizes the fact
that a price of a commodity measures its "real value"” in production.

Finally axiom 3 below enables us to calculate the prices via its factor
of production: If the cost is broken into two factors, e.g., the cost of
labor and the cost of raw material then, the prices can be obtained by adding
the pries attributable to the two factors separately. (In section IV we will
show that Axiom 3 can be replaced by other natural axioms).

In this paper we prove that strengthening slightly the positivity axiom
(axiom 4* below) the set of four axioms (1,2,3, and 4*) uniquely characterize
MC prices (this is theorem B below). On the way to proving this result we
state a theorem (theorem A below) that is interesting in its own right, which
characterizes the set of all price-mechanisms satisfying the four "basic”
axioms 1,2,3 and 4. Among them is the marginal cost prices and the Aumann-
Shapley price mechanism. The latter as mentioned, can be uniquely
characterized by an additional requirement that cost equal revenue, i.e., cost
is shared by the prices. This price mechanism was first proposed by Billera,
Heath and Raanan [2] to set telephone billing rates which share the cost

arising in serving the consumers; and it has been adopted for interal



telephone billing at Corunell University. Later it was characterized
axiomaticaly (independently) by Billera-Heath [3] and Mirman-Tauman [6].
Moreover using this characterization one can easily prove (Theorem C below)
that the A-S price wmechanism is the unique cost-sharing mechanism which obeys
axioms 1-4. This provides an alternative proof for the main results in [3]
and [6].

The conclusion is that axioms 1-4 are the key axioms in our study. Both
MC prices and A-S prices obey these four axioms. Strengthening axiom 4 yields
MC prices while imposing the cost-sharing requirement in addition to the four
axioms (1-4) yields A-S prices.

Finally, we should mention that our work stems from ideas that were
already developed in game theory. In [2] it is shown that for a given cost
function F and vector o of quantities consumed, one can associate a non-atomic
game v(F,a) in a way that its Shapley value will measure the effect of each
unit of each commodity on the cost. If this magnitude is chosen to be the
price of the commodity we get exactly the Aumann-Shapley price mechanism.
Howéver, from the same gave v(F,0) one can derive a price mechanism using,
instead of the Shapley value, a wider concept of solutioa called the semi-
value. Using the characterization of Dubey, Neyman and Weber [5] for all
semi-values of a large space of non-atomic games, it turns out that the
corresponding set of all price mechanisms derived by the set of all semi-
values is exactly the set of all price mechanisms obeying Axiom 1 - Axiom 4.
Thus our Theorem A should be considered as the parallel result of Dubey,

Neyman and Weber formulated in purely economic terms.



II. THE AXIOMATIC APPROACH

We define here the notion of a price mechanism and we present four axioms
by which we describe desirahle mechanisms, then we characterize the set of all
price mechanisms that satisfy these axioms. A price mechanism can lead to a
profit as well as to a loss for the producer. However, how the profit is
shared or how the loss is covered is out of our discussion.

We denote by E™ the m dimensional euclidean space and by Ef the non—
negative orthant of E™,

Let F™ be the set of all real-valued functions F which are defined on
Ef, satisfying F(0) = 0 and are continuously differentiable on E$ .

For any dimension m of the commodity space it is assumed that a producer

2

A . . m
who produces m commodities has a cost function EEF D defined on E+.

DEFINITION 1 A price mechanism is a function P which associates with each m,

each B F™ and each vector of quantities « in Ei a vectof of prices P(F,a) in
o
P(F,a) = (Pl(F,a),...,Pm(F,a)) .

We will characterize those price mechanisms that satisfy the following
four axioms. The first axiom requires that the prices should be independent
of the units of measurment. To illustrate it, suppose that F is a cost
function of a producer who produces one commodity only. F(x) is the cost to
produce x units of this commodity. Assume that x is measured in kilogram.

Let G(y) be the cost function of the same producer where y is measured now in
tons. Clearly

G(y) = F(1000y).

2 It is worth mentioning that for the results we obtain in
this section it is enough to consider only non decreasing cost
functions.



According to our notatioms, if a tons are produced the price per one tomn is
P(G,a). Since a tons are 1000a kg the price per one kg is P(F,1000a).
Therefore, a price mechanism P(+,+) which is coherent with rescaling should
obey:

P(G,a) = 1000 « P(F,1000a).
and in general:

Axiom 1 (Rescaling). Let F be in F®. Let X shyseeeh  be m positive real

numbers. Let G be a function in F® defined by
G(XI’XZ""’Xm) = F(Alxl,kzxz,...,kmxm).
Then, for each a € Ef and each i, 1 < i < m

P,(G,a) = xipi( Fy(Ajay,eee ,)\mam)) .

The next axiom reflects the requirment that two commodities that are the
"same" will have the same price. Since by definition price mechanism yields
prices that depend on the cost function and not on demand functions it is
clear that being the "same commodity"” means playing the same role in the cost
function. As an illustration, suppose that a car's producer, produces red and
blue cars. UHe can represent his cost function as a two-variable function
F(xl, xz) where X] and X9 are the quantities of red and blue cars
respectively. But in fact, the cost to produce a red car is the same as the
cost to produce a blue car. This can be formulated in this way: There is
one-variable function G for which G(x) is the cost to produce a total of x
cars (red ones, blue ones or both) and

F(xl,xz) = G(x1+ x2).
In this case the axiom asserts that the price of a blue car is the same as the
price of a red car, which is the price of a car, i.e.,

P (F(aps0y)) = By(Fy(ap,a,)) = P(Gya +ay).



In general:

Axiom 2 (Consistency). Let F be in F™ and leg G be in Fl. 1f for every

m
X € E+
m
F(xl’xz,ooo,xm) = G( iil Xi)
then, for each i, 1 < i < m, and for each a ¢ Ei
m .
P.(Fa) = PG, Z a ).
i=1

Suppose now that a given cost function F can be broken into two
components say G — the cost of raw-materials and H - the cost of labor. In
that case it is reasonable to require that the prices born of the cost F will
be the sum of the prices born of G and H. (In section IV we show that this

axiom can be replaced by other two natural axioms).

Axiom 3 (Additivity). Let F,G and H be in F®, 1If for each x ¢ E$

F(xl,...,xm) = G(xl,...,xm) + H(xl,...,xm),

m
+

P(F,a) = P(G,a) + P(H,a).

then for each a € E

The last axiom asserts that prices of commodities for which the producer

should invest money to produce are non negative. In a formal way;

Axiom 4 (Positivity) Let Fe F™ and let a ¢ Ei, a # 0. If F is non

decreasing at each x < a, then3
P(F,a) 2 0.
i.e., for each i, 1 (i < m, Pi(F;a) 2 0.

Price mechanisms which satisfy these four axioms are of special form.

3 By x < a we mean x; < a; for every i, 1

A
=
B A
B
.



THEOREM A. P(-,-) is a price mechanism which obeys Al — A4 if and only if
there is a non—negative measure p on ([0,1],B) (Bis the set of all Borel
subsets of [0,1]) such that for each m, for each Fe F® and for each

m

a € E+, a #0

IF

(*) Pi(Fﬂx) = I 3x (ta)du(t), i=1,ee., m.

i

Moreover, for a given price mechanism P(-,-) there is a unique measure p which
satisfies (*). In other words, (*) defines an one-to one mapping from the set
of all noun-negative measures on ({0,1], B) onto the set of all price
mechanisms obeying Al-A4.

For an intuitive interpretation of the formula (*), assume that the
vector o is produced in an homogenous way, starting from O and ending at a.
Suppose also that along this production process each time a "small" proportion
(an infinitesimal one) of a is produced, the m-th commodity is then charged by
its current marginal production cost. The price of the m-th commodity once a
has been produced, will be the average of these marginal costs weighted by the
measure p which corresponds to the given price mechanism. If this measure
happens to be the atomic probability measure whose whole mass is concentrated
at the point, t =1, i.e., if u({l}) = 1, the associated price mechanism
P(+,=) is the well-known marginal cost price mechanism. For any m}for any F

e F® and for any a € Ei
- OF .
Pi(F,a) —W(a), i=1,¢..,m.

If 41 is chosen to be the Lebesgue measure on [0,l1] the associated price



mechanism P(s+,*) is the Aumann-Shapley price mechanism (see [3] and [6])

1
3 F .
Pi(F;a) =0f 5;; (ta)dt, i=l,...,m
These prices are the uniform average of the marginal cost along the diagonal
[0,a].

We shall prove theorem A through Proposition 1 to Proposition 4, below.

Let P(+,+) be a price mechanism obeying Al - A4.

PROPOSITION 1. Let m be a positive integer. Let Fand G be in F™ and let

a € E:. If A(x) = G(x) for each x £ a then

P(F,a) = P(G,a).

Proof. It follows (e.g. by the additivity axiom) that P(0,a) = 0. Therfore
P(~F,a) = -P(F,a) for each FeF ™, Let H= FG. For each x La H(x) = 0 and
therefore H and - are non-decreasing at each x La. Hence, by the
positivity axiom P(H,a) 2 0 and P(-H,a) 2 0. Therefore P(H,a) = 0 and hence
P(F,a) = P(G,a).

Let a ¢ Em

+» & # 0, and let C be the box {x e Eilx Sal.  Let F™(CG) be

the set of all continuously differentiable functions on qx with F(0) = 0.
Each Fe Fm(ql) can be extended to a function on Ei which is continuously
differentiable (for a proof see for example Whitney [8]). 1If Fand F are two
such extension of F we have by Proposition 1
p(F,a) = P(F,a)-
Therefore the function P(+,a) on F™ can be considered also as a function on
Fm(ql) which is positive and additive, i.e.,

P(FG,a) = P(F,a) + P(G,a),



for each F and G in Fm(ql), and
P(F,a) 2 0,
for each F which is non-decreasing on Qx‘
From now on we will refer to P(e,x) as a function on F® as well as a

function on Fm(ql).

PROPOSITION 2. There exists a non-negative measure pu on ([0,1], B) such that

p(re) = | 2sadauce)

for each Fe Fl and a > 0. Moreover, the measure p is uniquely determined by

the above equation.

Proof. We will first prove the proposition in case a = l. By the last remark
we will consider here P(e, 1) as a function on Fl([O,l]) (the set of all
functions in Fl restricted to {0,1}) and we will prove this proposition for
functions F in Fl([0,1]).

There is 1-1 linear mapping T from C[0,1] (the class of continuous real
functions on [0,1]) onto Fl([O,I]), defined by

X
Tf(x) = Of f(t)dt, f e c[0,1].

P(+,1) defines a functional ¢ on C[0,1] by

(1) ¢f =P@(t£,1), f ¢ C[0,1].

By the additivity and the positivity of P(e,l) we get the additivity and
the positivity of ¢ (positivity means here that yf > O whenever £ > 0). By

the additivity of ¢, Y(rf) = ry(f) for any rational aumber r. Using the



positivity axiom it is easy to verify that the last equation holds for any
real number. Thus y is linear and positive functional on C [0,1]. Apply the
Riesz Representation Theorem for y (see for example [7,p. 40]) to get the

existence of a unique non-negative measure y on ([0,1], B) such that
Wo = e,
Together with (1) we thus have
@ rRD = ] oawm.
0 X

Now let Fe¢ F1 and let o > 0. Define a function G in F1 by G(x) = Flax). By

(2) we have

[
——

. _ aG
P(G,1) A (t)du(e).
By the rescaling axiom

P(G,1) = a*P(F,a).

Therefore

P(Fy0) = = ! Sy = 0} S T(ta)au (o).

0

on F™(C) (the set of all

DEFINITION 2. Let C = Cb for 8 > 0. The norm I II1

continuously differentiable function F on C with F(0) = 0) is defined by

(%

F I

1 axi sup



where the sup is taken over C.

It is easy to check that | Il1 indeed defines a norm on F®(C). The

property IFl, = 0 ==> F= 0, follows from F(0) = 0.

PROPOSITION 3. Let C = CB for B >> 0. For each a € C the function P(.,a) is
continuous in the norm I 1, on F ).

Proof. Since P(e,a) is additive it is sufficient to prove that if (Fn)m is

a sequence of functions in F®(C) satisfying | Fnll1 + 0 as n + © then, e
Pi(Fn,a) + 0, as n » =,
for each i, 1 <1 § M.
From the additivity axiom one can easily verify that for each rational number
A and for each FeF™®
P(AF,a) = AP(F,a).
For each integer n let us choose a positive rational number €n such that

(3) e’ 0, as n> = and | Fn“l < € "

Let R be the function inF ™ defined by

R(XI’XZ""’Xm) = I X..

By (3) for each i, 1 <1

(7N

m, and for each xe¢ C

a(e R - F) AF,
9x . (x) = €n - 9x. (x) >0
i i
and
B(EnR + Fn) aFn
3; (X) = g;:‘ (X) + En > 0.



Therefore, enR - Fh and enR + Fh are non decreasing functions on C. By the
positivity and the additivity axioms we have
Pi(Fn,a) < Pi(enR,a) = enPi(R,a)
and
Pi(Fh,a) 2 -Pi(EnR,a) = —enPi(R,a).
We thus have
Pi(Fh,a) + 0 as n» o,

and the proof of Proposition 3 is completed.

PROPOSITION 4. For amy polynomial p inF™ and for any a € Ez, a#0

_ (L ap
P(p,a) = 0] 5;;-(ba)du(t).

Proof. Any polynomial p in F™ is a linear combination of monomials (i.e.,
k k
11,...,xmm ). By formula 7.3 of [1,p.41] any

polynomials of the form x
monomial in F™ is a linear combination of polynomials of the form

(4 F(xl,...,xm) = (nlx1+...+nmxm)2
where the ni's are non-negative integers and £ is a positive integer. Thus,
any polynomial in F™ is a linear combination of polynomials of the form (4).
The additivity of the three: the price mechanism, the differentiation
operator and the integration operator makes it sufficient to prove the
proposition for the function a*F where a ¢ gl and F is given by (4). Let us
assume first, that for each i, 1< i < m, n, > 0.

Let L be the function in Fl defined by

L(x) = xz,

and let T be the function in F™ defined by



m
T(xl,...,xm) =L(ji1 xj).

Since

F(xl,...,xm) = T(nlxl,...,nmxm),

it follows by the rescaling and the consistency, that for each o € Ei and

each i, 1 < i< m,

(5) Pi(F,(al,...,am)) = niPi(T,(nlal,...,nmam))

m
n,P(L, Z n.,a.).
i j=p 33

The positivity of the n.'s implies that for a # 0 in Em, Ina, >0

1

therefore by Proposition 2

m ldL m
(6) P(L, Z n.a,) = Tn (tef n.a.)dp(t).
j=1 J 1] 0 j=1 JJ
Using the equality
m
P(xl,...,xm) = L(j}i1 nij).

we have

dF Y
ﬁ-(xl,ooo,xm) - ni '&'};( i n X.)o

This, together with (5) and (6), imply



13

'-q

|

(7 Pi( g, (al,...,am)) = 0] (ta)du(t). i=l,e..,m

Q@

X,
i
In the general case however some of the ni's might be zero. In that case we
define for each ¢ > 0 a function Fg in F@ by
F(x) = ((n,+ e)x, +,..0,4n_+e)x )",
€ 1 1 ? m m
Let C = CB for some 8 >> a. Clearly
(8) HEE - Fﬂl + 0 ase + 0

Since the coefficients of the xi's in E: are all positive we have by (7)

L 9F
(9  P(F ,a) =0f B—X-ei—(ta)du(t), i=1,e00,m.

The left hand side of (9) tends, by Proposition 3, to Pi(F,a) when € + 0.
1
The right hand side of (9) tends, by (7), to f‘%f (ta)du(t), and so
0 i

1
= [ 35 (ta)du(t)
i

Pi(F,a)
and the proof of Proposition 4 is complete.
Now, we are ready to prove Theorem A.

Proof of Theorem A. Let P(+,*) be a price mechanism obeying the four

axioms. Let Fe F™ and let a # 0 be in Ei. Choose B with B >> a and denote
C= (é. The polynomials in m variables are demse in F™ (C) with C1 norm (for

a proof see [4,p.68])(The ¢! norm is defined by

o AF
IR =R+ T )
c Poog=) 9% 5P

Therefore, there exists a sequence of polynomial (pn) :=1 such that

ftp - Hi + 0 as n » », Thus if
n C1



p, = P~ P (0),

then p (0) =0 and Ip_ - A, » 0 as n » =,
n n 1

By Proposition 3
(10) Pi(pn,a) > Pi(F;a), as n > =,

By Proposition 4

13p,
P.(p @) = of 5%, (ta)du(t).

Since llpn - Eﬂl + 0

3
Ph 3F
> as n > o,
dx, sup ~ 9x,
i i

on C

Therefore,

0
1 Pn 5 F
of ——axi (ta)du(r) » 0} Ei_ (ta)du(t), as n» «.

This together with (9) imply
P, (F,a) = fl 3F  (ra)du(t)
i o Fx IR

Thus we proved the first direction of Theorem A. To prove the other direction

we have to show that for any nonnegative measure pn the formula

L 5F

axX,

(11) P (Fa) =Of -

(ta)du(t)

which is defined for each Fef™ and each a € Ei, yields a price mechanism



that obeys the four axioms. For the rescaling axiom, assume that F and G are
functions as defined in Axiom 1. Then
fl 3G fl dF

. 5;; (ta)dp(t) = Ai . 5;; (tklal,...,tkmam)du(t)

Pi(G,a)

AP (B e, eeed o))

For the consistency axiom let F and G be as defined in Axiom 2. Then

m
o F _ dG
30X, (ta) = EE'(t.z o)
i i=1
which implies that
, LoF 146 , O
P, (Fa) = 0[ o, (ta)du(t) = 0[ o (tiilai) du(t)

The additivity axiom follow immediately by the additivity of both the
differentiation and the integration operators.

The positivity axiom follows from the inequality %5% (x) 2 0 which
holds at any x < o for any function F in F™ which is nondecreasing at each

x {a. Thus for any non-negative measure p on [0,1], (10) defines a price

mechanism which satisfies the four axioms.

III. THE DETERMINATION OF THE MARGINAL COST PRICES BY SET OF AXIOMS
Let us strengthen the positivity axiom (Axiom 4).

Axiom 4% Let Fe F™ and let a € Ei. If F is nondecreasing in a neighborhood



of o then P(F,a) > 0.
i.e. we require that the prices are non-negative at a even if F is non-
decreasing in a neighborhood of a only.

It is clear that Axiom 4* implies Axiom 4 aud therefore by Theorem A a

price mechanism P(+,+) which satisfies Al, A2, A3, and A4* is of the form

L oF
Pi(F’a) =Of é_x'i_(ta)dU(t)'

But in fact the available set of mechanisms is now much smaller.

THEQREM B. A price mechanism P(-,+) satisfies Al, A2, A3, and A4* if and only
if there is a coanstant ¢ > 0 such that for each m, for each Fef™ and

a € Ei (« # 0)

oF .
% (@) i =1,¢0.,m.
i

Pi(F;u) =c e

Proof. It is obvious that a price mechanism P(+,+) defined by

°F
90X

P (Fa) =c » (o) c> 0,
obeys the four mentioned axioms.

Assume now that a price mechanism P(+,+) satisfies the four axioms.
Then, by Theorem A there exists a non-negative measure p on ([0,1], B) such
that

1 5F
P, (F,a) =Of = (ta)du(t)

X,
1

WDl



For eachm, B F™ and a ¢ ET_.
Notice now that if F is a constant in a neighborhood of a then

Pi(F;a) = 0 (apply axiom 4* for F and —-F). Define now for eache, 1 > e > 0

X 1 1
a function f€: E+ > E+ by
1 0<x< 1=
) 2 _ _ _ €
fe(x) -E c X +-E 1 l-e € x <1 5
L0 1 - %-& X

since f_. is continuous the function E defined by
X
F(x) = [ f_(t)de
0
is in F1. E. is constant in a neighborhood of a=1 therefore

P(Fé,l) = 0.

Hence

1
[ £ (t)du(r) = 0.
0 [
On the other hand
1
Of £_(c)du(r) > u([0,1-]) > 0.
Therefore for each 0 < e <1
U([O,I—E]) = 0.

Thus, u([0,1)) = O which implies that un([0,1]) = u({l}), and the proof is

complete.



Corollary 1If in addition to axioms 1,2,3, and 4* we require for the identity
one variable function H(x) = x that P(H,1) = 1 then the MC pricing is the only
price mechanism which obeys these requirements (i.e. in this case the constant
¢ of the Theorem B must equal 1).

Proof. According to Theorem B P(H,l) = c - %% (1) = 1. Thus ¢ = 1.
Finally, let us return back to the four original axioms Al-A4 and add up
another axiom that requires cost sharing in the model (total cost equal total

revenue).

Axiom 5 (Cost sharing) for each m, each Fe F™ and each a ¢ Ei

a * P(F,a) = Fla).

THEOREM C. There is a unique price mechanism P(-,-) which satisfies Al-AS.

P(-,-) 1is given by

1 3F

90X _
i

P(F,a) = of (ta)dt.
P(s,*) 1is called the Aumann-Shapley price mechanism.

This result was previously stated (independently) by Billera-Health [3]
and by Mirman-Tauman [6]. However it is also an immediate corollary of

Theorem A above.

Proof. First it is clear that the Aumann-Shapley price mechanism satisfies

Al-A5 since the cost sharing axiom is implied by



o F dF
e (f0) = I oy 5o (ta),
1
and therefore
I a, P (Fa) = fla—F-—(ta)dt= fl—g(ta)dt=
TR S . 8% | o Bt

Fa) - K0) = KHa).

Assume now that P(e,*) is a price mechanism obeys Al-A5. By Theorem A

there is a non-negative measure p on ([0,1]),B) s.t.

—
]
vy

(12) P (Fa) = Of - (ta)du(t),

#

for eachm, 1 € i € m, Fe F™ and o € Ef, (a#0). Since P(-,-) satisfies A5

for each E FI. Therefore by (12) we get
l gF 1 gF
Of % (Dde —Of 5 (Bdu(t).

It follows then, that the measure u and the Lebesgue measure coincide on
C[0,1] as linear functionals on C[0,1]. Therefore by Riesz Representation

Theorem these two measures are the same.

Iv. SEPARABILITY REPLACING ADDIT IVITY

In this section we show that the additivity axiom (A3) can be replaced

by



two natural axioms. The first is very similar in spirit to the consistency
axiom (A2), and the second deals with a set of commodities that can be
separated into two sets, which are independently produced.

For the first axiom consider a producer who produces two commodities with
a the cost function F(x,y). The producer can decide to generate a new
commodity consists of the other two: Each unit of the new commodity consists
of a unit of the first commodity and a unit of the second one. The cost
function G for the new commodity satisfies

G(x) = F(x,x).

It is only natural to ask that the price per unit of the new commodity will be

sum of the two prices of the original commodities. In general:

Axiom I (Aggregatiomn). Let F(x”,...,xln sXgpseetsXyn seeesX [seeesX ) be

. m 1 2 "
in F where £ = & n,+ Let G be the function in F® defined by
i=1
G(XyyeeeyX ) = F(X,y000yX;, Xoyese,Xosseey X yeeae,k e
1 m 1, 1 2 2 > “m > 'm
n n n
1 2 m
Then for each i, 1 < i € m,
24
Pi(G,(al,...,am)) = I Pij(F;(al,...,al, az,...,az,...,am,...,am)).
j=1

For the second axiom assume that a producer produces ntm commodities with cost
function F. The first n commodities are n types of cars and the remaining are
m types of shoes, which are independently produced. 1i.e. there are two cost
functions G(x|,...,x,) and H(y;,...,y,) such that

F(xl,...,x ) = G(Xl,...,xn) + H(Xn+1"'°’xn+m)

2 %n+1?°° " 0t

The axiom we state requires that a price of a commodity should be born only

from that part of the cost function that it affects. In order to formulate



this axiom we shall use the following notation. Let N = {il,iz,...,in},

where i1 < 12 <ol in’ be a subset of {1,...,m}, and let xcE™. Denote

Xy the vector in E" defined by:

XN = (xi seeesXy ).
1 n

Axiom II (Separability) Let N and N, be disjoint sets with n; and ny

elements respectively such that Nl Un, = {l,...,m}. Let F,G and H be

n "1 ) : m
functions defined on E+, E+ and E+ respectively. If for each x€E+
F(x) = G(le)‘+ H(xNz)

then for each asEf

PN (F,a) = P(G,(xN )
1 1
and

PN (F,a) = P(H,aN )

2 2

PROPOSITION 5 Axioms I and II imply the additivity axiom A3.

Proof. Let F,G and H be functions defined on Ei such that

F(x) = G(x) + H(x)

for each erT. Define a function L on Ezi by

L(xl,xz,...,xzm) = G(xl,x3,...,x2m_l) + H(xz,x4,...,x2m)

by

Denote by N; and Ny the sets of odd and even numbers, in the set {l,...,Zm},

respectively. By the separability axiom for each aeET

P (L,a) = P(G,a
N N

),
(13)

PN (L,a) = P(H,aN ).

2 2

Y

For x = (xl,...,xm) let us denote X = (xl,xl,...,xm,xm). By (13) for each



ack

+ 8

PN (L,a) = P(G,a),
1
(14)
PN (L,a) = P(H,a).
2
By the definition of L it follows that for each xsEf
L(x) = 6(x) + H(x) = Kx).
From the aggregation axiom we deduce that for each i, 1 < i € m, and for each
m
aeE+
(15) Pi(F,a) = PZi_l(L,a) + PZi(L,a)

but by (14)

P, (L,a) = P, (G,a),
(16)

PZi(L,a) = Pi(H,a).

Therefore from (15) and (16)
Pi(F;a) = Pi(G,a) + Pi(H,a),

for each aeEi and 1 € i € m. Thus the proof of Proposition 5 is complete.
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