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I. Introduction

Orthodox economic theory has little to offer in terms of understanding
how non-market organizations, like firms, form and function. This is so
because traditional theory pays little or no attention to the role of
information, which evidently lies at the heart of organizations. The recent
development of information economics, which explictly recognizes that agents
have limited and different information, is a welcomed invention, which
promises to be helpful in understanding the intricacies of organizational
structure. Particularly important in this context are questions concerning
the control of agent's incentives, which to a large degree dictate the design
of organizations and set the limits of its performance potential.

The members of an organization may be seen as providing two kinds of
services: they supply inputs for production and process information for
decision-making. Along with this dichotomy goes a taxonomy for incentive
problems. Moral hazard refers to the problem of inducing agents to supply
proper amounts of productive inputs when their actions cannot be observed and
contracted upon directly. Adverse selection refers to a situation where
actions can be observed, but it cannot be verified whether the action was the
correct one given the agent's contingency, which is not jointly observed.

This paper is concerned with remedies to moral hazard in teams. By a team
I mean rather loosely a group of individuals who are organized together for
productive activities. There is no presumption that they share a common
objective as in the more technical use of the term (see Marschak and Radner's
team theory).

I will first consider team production under certainty. The model is as

follows: There are many agents, whose privately taken actions jointly



determine output. An agent's action is costly to himself and neither the cost
nor the action can be observed by others. The problem is to induce agents to
take efficient actions for optimal team production. Since it is not possible
in general to infer the agents' actions from the outcome, agents can cover
dysfunctional behavior by blaming each other. This is the well-known free-
rider phenomenon. If agents form a partnership, and hence have to share the
outcome fully between themselves, there exists no sharing rule based on the
joint outcome alone, which induces proper incentives for action.

This observation is the starting point for Alchian and Demsetz's (1972)
well-known article. Since a partnership is productively inefficient, they
argue that competition will lead the partnership to fall apart and develop
into an organization where there is a monitor who will control that agents
take correct actions. In order to induce the monitor to perform his job
properly, he should be given a residual of the outcome. This will guarantee
efficiency according to Alchian and Demsetz.

This line of reasoning provides a theory of the firm. Firms develop
since their organizational structure is superior to a partnership as argued
above. Alchian and Demsetz's analysis does not explain, however, the
existence of corporations, where part of the residual goes to stock owners who
do a very limited amount of monitoring themselves. I will argue that
monitoring can largely be dispensed with in the context of certainty simply by
letting outsiders, who provide no inputs for production pick up the
residual. Therefore, separating ownership from production will resoclve moral
hazard and restore efficiency. This provides for an alternative rudimentary
rationale for the capitalistic firm, that is, a reason for why capital hires
labor, rather than the reverse.

Separating ownership from production is one way of alleviating incentive



problems. The other is the aforementioned monitoring. Of course, for
monitoring to resolve the problem, a sufficiently rich set of observable
measures of productionis required. 1 address the question how rich. Quite
generally two measures will do. However, if we insist on shares being
monotone in output, then as many measures are needed as there are agents and
these measures must effectively discern the actions taken by the agents. This
is the familiar theme of responsibility accounting, which states that agents
should be responsible only for what they can control.

The second part of the paper considers the impact of uncertainty. First,
I explore circumstances under which separation of ownership and production
will resolve inefficiencies as in the case of certainty. Mirrlees (1974)
observed that penalties can be quite effective in alleviating moral hazard
problems. His model had a single agent. 1 extend the result to the context
of team production by using group penalties. The case of certainty is but a
special case of this more general setting.

An objection to penalties is that they may have to be infeasibly large.
If there are constraints on agents' wealth, which restrict the extent to which
agents may be penalized, this will generally hinder an efficient solution
(Mirrlees' agrument normally requires unbounded penalties). The more agents
there are, the less efficient it will be to police opportunism by group
penalties. Consequently, bounded penalties lead to limits on the size of team
organization when uncertainty is present. This contrasts with the certainty
case for which one can find an efficient, individually feasible solution
irrespective of team size and wealth constraints.

Given that group penalties will be ineffective in larger teams, I go on
to study the second alternative for resolving incentive problems:

monitoring. Two results are proved. The first one states a necessary and



sufficient condition for a new output measure to improve on the second-best
solution. This is an extension of a result of mine for the single agent

case. It says that only the sufficent statistic of a set of measures 1is
relevant for controlling agents' actions. This may sound obvious but it

not. One should appreciate that we are not concerned with a statistical
decision problem, but with a strategic game. It is appealing, but by no means
evident, that the same sufficient statistic condition works in a strategic
context.

The second result builds on the first. Departing somewhat from the
notion of team production, I show that in a situation with independently
producing agents, moral hazard can be better controlled by evaluating each
agent against average performance, provided that the uncertainties are
correlated. If agents share a common uncertain factor of production, then as
the number of agents grows large, the use of an average will remove the
commonly shared uncertainty from the problem and leave us only with solving
that part of the problem that pertains to the agents' idiosyncratic risks.

It is interesting to note that a recent trend in executive incentive
scheme design is to use performance of closely related firms as a base for
executive compensation. The earlier practice of stock option compensation has
the drawback of leaving the executive faced with risk he can in no way
control. In accordance with theory (and common sense) such risk should be
filtered away to the extent possible. This is the virtue of the new
performance incentive packages.

Measuring performance against peer averages has been common in firms for
a long time. Lazear and Rosen (1980) have studied a specific form of such
practice, which they call rank order tournaments. In rank order tournaments

bonuses are awarded based on performance rank. Agents are compared against



each other, rather than absolute performance standards. The rationale, as
will be shown, rests solely on the value that peer performance has in
providing information about production uncertainties. If agents do not face
any common sources of uncertainty, then it is inefficient to use rank order
tournaments.

To summarize, the paper pursues two ways of combatting moral hzard in
teams. The first one uses separation of ownership and labor to allow for non-
budget-balancing penalities or bonuses. This way one may frequently induce
proper incentives at low cost. The other one relies on increased monitoring
of performance to uncover actual actions. The question addressed and answered
is what type of monitoring will be valuable and improve efficiency.

The rest of the paper is organized as follows. Section 2 deals with the
case of certainty when joint output is the only observable measure. Section 3
addresses the issue of how detailed a monitoring system should be in order to
reach etficiency under certainty. Section 4 considers use of penalties and
bonuses when there is uncertainty. Section 5 discusses the value of
monitoring under uncertainty and Section 6 the use of relative performance
measures. The last section offers a summary of the main implications of the

model for understanding and improving organizational design.

2. Certainty - Single output measure

Consider the following simple model of team production. There are n

agents. Each agent, indexed i, takes a non-observable action

ajed; = [O,w), with a private (possibly non-monetary) return vii oAy > By vy
is strictly convex and decreasing with vi(O) = 0. Let

n
a = (al,...an) € A = i§1Al and write a_i = (al’...’ai—l’ ai+1,000,an),

a = (ai, a_i).



The agents' actions determine a joint monetary outcome x : A + R, which
must be allocated among the agents. The function x is assumed strictly
concave with x(0) = 0. Let si(x) stand for agent i's share of the outcome
Xx. The preference function of agent i is assumed (for simplicity) to be
linearly separable and hence of the form u;(n;,a;) = n; + v;(a;) over money

and action.

The question is whether there is a way of fully allocating the joint
outcome x so that the resulting non—cooperative game between the agents has a
Pareto optimal Nash equilibrium. That is, do there exist sharing rules

{si(x)} such that we have budget-balancing

(1)

si(x) = x, for all x,

|| ae R @]

and the non-cooperative game with payoffs
(2) si(x(a)) + vi(ai), i=l,e0.,n,
has a Nash equilibrium a*, which satisfies the condition for Pareto

optimality,

n
(3) a* = argmax x(a) + I v_(a.).
i1
acA i=1

If the sharing rules are differentiable we find, since a* is a Nash

equilibrium, that

(4) sixi + vi =0, i=l,¢e.,n,



where xiE Bx/aai. Pareto optimality again implies
(5) x. + vi =0, i=l,...,n.

Consistency of (4) and (5) requires si =1, i=l,«4e,0 But this is in

conflict with (1) since differentiating (1) implies
n
(6) L s' =1.

Therefore, with differentiable sharing rules we cannot reach efficient Nash

equilibria. The same is true more generally as stated in the following:

Theorem 1. Assume there exists a Pareto optimal solution a* in the inferior
of A for which xi(a*) # 0 for all i. Then there do not exist sharing rules
{si(x)} which satisfy (1) and for which a* is a Nash equilibrium in the non-

cooperative game with payoffs (2).

Proof: Ilet s;(x), i=l,..,n, be arbitrary sharing rules satisfying (1). I
will show that the assumption that a* is a Nash equilibrium will lead to a
contradiction.

From the definition of a Nash equilibrium
* * *
(7) si(x(ai, a_i)) + Vi(ai) < si(x(a )) + Vi(ai)’ Ya €A, .

L . . . .
Let {a } be a strictly increasing sequence of real numbers converging to

x(a*). Let {ai} be the corresponding n sequences satisfiying



(8) o = x(ai, a* ).

The sequences {ai} are well-defined (starting from a large enough £ if
necessary) since a* g int A, xi(a*) # 0 and x(a) is strictly concave. Pareto

optimality implies
1(a%) = - *
Vi(ai) xi(a ), Vi.
A ] . . L £

This in turn implies, using (8), that v.,(a)) - v_.(a*) = x(a*) - x(a’,a*.)
i1 i1 i2%-1

+ o(ai— a;), Vi’ ¥%2, where o(h)/h » 0 as h » 0. Substituting into (7),

using (8) gives

2 £ £
*x) — - a%) < %)) -
(9) x(a*) o + o(ai ai) < si(x(a )] si(a ), Vi, ¥2.

Sum (9) over i and use (1) to get

o 2 2
| - x@a*) - o + o(ai - a;)} <0, ¥

i=1

This can be written

(10)

Mg

- x.(a%)(a% - a%) + o(a® - a%) < 0, w.
1 1 1 1 1

i=1

Since aZ < x(a*) by the choice of aZ, and xi(a*) # 0, the first term in the
bracket is strictly positive. For large enough £, this term dominates, which

contradicts (10). Hence, the assumption that a* is a Nash equilibrium has led



to a contradiction and must be false. Q.E.D.

Theorem 1 extends the intuition of the inconsistency of (4)-(6) to the
case of arbitrary sharing rules. As long as we insist on budget—balancing
(eeg. (1)) and there are externalities present, (xi¢ 0) we cannot achieve
efficiency. Agents can cover improper actions behind the uncertainty
concerning who was at fault, since all agents cannot be penalized
sufficiently for a deviation in the outcome. Therefore, some agent always has
an incentive to capitalize on this control deficiency.

The result is indicative of the free-rider problems closed (budget-
balancing) organizations face. Examples include labor-managed firms, firm
cooperatives, management teams and professional services firms like CPA
partnerships. In all cases labor and ownership are integrated and is likely
to result in insufficient supply of productive inputs like effort.

This is the starting point for Alchian and Demsetz's (1972) reasoning.
As I described in the introduction Alchian and Demsetz conclude that
partnerships will break down and be replaced by firms in which an owner takes
on the task to monitor agents. The owner is given the title to net earnings
in order to have the proper incentive to monitor. This argument provides a
simple theory of the capitalistic firm, which emerges as the most efficient
organizational form in combatting adverse incentives.

Note, however, that it is not evident that full efficiency will be
reached with an owner-monitor. Insofar that he expends effort in monitoring
we will have an augmented team, albeit with more measures than the single
joint outcome as a basis for sharing the output. In the next section I will
take up the question of how rich a measurement system needs to be to reach

efficiency. Here I will discuss a simpler, more fundamental solution to the



problem: elimination of the budget-balancing requirement.

If budget-balancing (e.g.(1l)) is not a constraint, one can make the
efficient outcome a Nash equilibrium by giving each agent the total share of
the outcome. From equations (4)—(6) we see that, indeed, that is the only
differentiable (at a*) scheme that works. It has the drawback that there will
be insufficient funds to compensate agents if they for some reason choose a
joint action a such that x(a) > x(a*). A more appropriate scheme has a kink

at x(a*)., For instance consider the step function:

b , X » x(a%*)

(11) si(x) =

k. , %< x(a*),
i

where ; bi= x(a*) . This will work as long as b; + vi(a;*) > k; - v;(0) =
i
ki. Since Pareto optimality of a* implies

x(a) + i vi(ai) > x(0) + ? vi(O) = 0,

we can clearly choose b;:s such that I bi = x(a*) and bi + vi(a;) > 0.
i
Therefore, by taking k; = 0, i=l,...,n, we can enforce efficiency without

penalties exceeding individual resources. This shows,

Theorem 2. There exist feasible group incentives, which induce an efficient

Nash Equilibrium without violating individual endowment constraints.

The fact that a feasible group incentive scheme exists regardless of the

size of the team implies that under certainty, incentive problems do not



impose constraints on team size. That will not be the case under uncertainty.

Group incentives, where all agents are penalized since the ones at fault
cannot be discerned, are found in some types of contracting with labor
teams. Usually it takes the form of a flat wage for team members with a group
bonus which is paid only if the target is attained (whether we view the
discontinuity in (l1) as a bonus or penalty appears immaterial). An extreme
example of group incentives is the dismissal of the board of directors of a
firm.

We find then that no monitoring is needed in order to achieve efficiency,
at least under certainty. Though the point is technically trivial, I think it
is conceptually important: breaking the budget-balancing constraint is an
effective way of resolving externalities in the team. A natural way of decing
it is to separate ownership and labor, that is, introduce an owner to the
organization who does not provide any productive inputs, but merely picks up
the residual of the non-budget-balancing sharing rule. This provides for a
rudimentary theory of the capitalistic firm, which differs somewhat from that
of Alchian and Demsetz's in that monitoring plays no role in the argument.
Note that stock owners do not generally exercise very close monitoring of the
behavior of managers, only of managers' performance as measured by the total
outcome. Perhaps this can be taken as an indication that not monitoring but
ownership separation, is the essence in the argument. This is, of course, not
saying that monitoring can generally be abandoned. 1Its role may be important
when there is uncertainty, as will be seen shortly.

The theme that budget-balancing and efficiency are inconsistent when
externalities are present is certainly not novel. A celebrated solution to
the resulting free-rider problem in the public goods context is Groves scheme

(Groves, 1973). 1 note that Groves solution is possible only by breaking the



budget constraint; Groves scheme does not balance the budget (barring
exceptional cases), because balancing the budget would necessarily result in

inefficiencies in analogy with theorem 1.

3. Certainty-Monitoring

The conclusion from the previous section is that it is insufficient to
observe the total outcome if one wants to achieve an efficient noncooperative
equilibrium when budget—-balancing is imposed. If budget—balancing cannot be
relaxed the alternative is to observe additional signals about the agents'
actions or, as I will view it, get a more detailed account of the outcome

measure X.

Let x consist of the sum of m measures xk:A + B, k=1,s00,m ive.,
m
(12) b xk(a) = x(a), ¥aeK.
k=1

Call the set of functions %, an accounting system. Based on this accounting

system, we can design an allocation mechanism, which is a set of sharing rules

si:Rm+ B, i=l,..., n, satisfying:

(13)

(X, 00 = .
sl( i ,xm) X ¥x

ne~pg

The pair consisting of an allocation mechanism and an accounting system will

be called a control system. If a control system leads to a Nash equilibrium

at the Pareto optimal action a*, the control system is acceptable. If an
accounting system is rich enough so that an acceptable control system can be
built upon it, the accounting system is sufficient.

With this terminology our problem can be posed as follows: find the



conditions under which an accounting system is sufficient. The result from
the previous section (Theorem 1) was that the total outcome alone is an
insufficient accounting system.

The reason why a richer set of measures may help to control the agents
better, is, of course, that several measures generally make it possible to
infer more about individual actions. In the limit, a sufficiently rich
accounting system may reveal exactly the actions of the agents. In that case
an acceptable control system can easily be constructed. I state this formally

in the following:

Theorew 3. If the accounting system is a one-to—one mapping from decisions to

outcomes, then it is sufficient.
Proof: The measures will reveal each agent's action and so we can make the
sharing rules directly dependent on these actions. Let a* be a Pareto optimal

action. Let the sharing rules at a* be si(a*), i=l,.e.,n. We will show that

for any aeA, the outcome can be shared so that:
4 + *) + * i
(14) Vi(ai) si(a) < Vi(ai) si(a ) ¥i
This clearly implies our claim.
Let acA be arbitrary, and suppose (l4) cannot be achieved. That implies
there exist sharing rules si(a) such that

(15) Vi(ai) + ;i(a) > Vi(a;) + si(a*), ¥i,

with strict inequality for at least one. Add (l5) over all i's to get



n
z vi(ai) + x(a) >

v, (a*) + x(a*),
. . iti
i=1 i

N~z

1

using (1). This contradicts the Pareto optimality of a*. Q.E.D.

All Theorem 3 says is that if actions are observable or possible to infer
with certainty, one can achieve efficiency. The payoffs of the noncooperative
game can be redistributed in such a manner that the most desirable outcome is
the only Nash equilibrium. Moreover, it can be done so as to satisfy
individual feasibility constraints.

The assumption of observability is quite strong in Theorem 3 and can be
weakened. It suffices that we can detect when an agent is the only one who

deviates from the optimum. This will be possible if and only if the curves

* *
ti(ai) = (Xl(ai’a—i)""’xm(ai a_i)) eRm, i=1,...,n differ as

illustrated in the figure below.

Xl 4}
ta(ay)
/
tl(al)
///
(x (a*),x (a*)] —////////
1 *72

.Q\\\» X
— %

Call an accounting system independent at a* if there does not exist an

aeA, a # a* such that ti(ay) = «o0 = tn(an).



Theorem 4: An independent accounting system is sufficient.

Proof: Let si(xl(a*),...,xn(a*)), i=l,...,n be an arbitrary split of x(a¥*),
which satisfys (l). Define sharing rules s; along the t;-curves as follows:

(16) si(ti(ai)) = si(xl(a*),...,xm(a*)) + x(ai,afi) - x(a%*)

for i=l,...,n, and the others arbitrary but so that (1) holds. This is
possible by the assumption of independence. With such a choice the agent's
ob jective coincides with the social objective when others stick to their
efficient action afi. Hence the agent's best response against afi will be

ag by definition of a*. Q.E.D.

Notice that one measure does not constitute an independent account
system. Independence is also a necessary condition in the sense that a
sufficient accounting system has to be independent at least in the
neighborhood of a*. Notice further that if actions of the agents are perfect
substitutes of each other, then no accounting system can be independent, since
by definition of substitutability, for any aj, there exists an aj for each

j # i, such that ti(ai) = tj(aj).

From Theorem 5 we see that two measures may well be sufficiently rich to
reveal individual deviation. However, if we make the assumption that xk's are
monotone in actions, e.g.,

Bxk(a)

(17) —ai >0 for every acd, i=l,...,n,
i



and constrain ourselves to differentiable and monotone sharing rules,

ds.
1

Bxk

(18) (xl,...,xn) >0 ¥x, ¥i,

then at least n measures are needed.

Theorem 5: Make the assumptions of theorem 1 and in addition that (17) holds.

Then the accounting system has to include at least n measures if one wants to

construct a monotone acceptable control system.

Proof: By (12) and (13) we have

n
(19) -Z sik =1
i=1
le
= _— * e e ax .
where s, %, (Xl(a )s ,Xn(d ))

By (3) and (12)

n
(20) v+ I X = 0 ¥i
k=l
Bxk
where v! is evaluated at a*, and X, . = —— (a*).
i ki Bai
property of a*
m
(21) vi+ T s, x. =20
k
i k=1 i ki

Combining (20) and (21) yields

From the Nash equilibrium



(22) I x . (1 - s,

By (18) and (19) and (17),

x, . (1 - s =0 ¥i, ¥k.

ki ik)

Since xi(a*) # U,%x,4 > O for at least one k for a given i, say k;. Then

Sip = 1, which implies sjk = 0, Vj # i, by (18) and (19). Hence, there must
i i

be at least n measures, since each agent is given the full share in at least

one. Q.E.D.

Tne assumption of monotonicity is rather natural to make if we think of
xk's as monetary outcomes which inprove with, say, increased effort. 1In
practice most sharing rules are monotone. All agents get a positive share in
the outcome. Under such circumstances efficiency can be achieved only if each
agent is in charge of his own account. Moreover, the proof shows that it nust
be that his action does not affect the other agents' accounts. In other
words, only when the whole system can be decoupled and externalities removed
can we achieve efficiency.

The conclusion is that if budget-balancing is required, the only way to
reduce inefficiencies is to create a richer accounting system which better
discerns individual deviations. Two measures may be sufficient, but if they
are monontone and we want a monotone allocation mechanism, then n independent
measures are needed which in effect decouple the organization. The desire to
decouple the organization is familiar from responsibility accounting. The
analysis supports the widely accepted accounting principle that managers

should be able to control the measures that are used for evaluation of their



performance (see Horungren 1972, Chapter 6 on responsibility accounting and
motivation).

We have not discussed the possibility that some decision, say an
allocation of the firm's resources, may make agents' actions dependent. If
one tries to promote goal congruence, in order to guarantee an efficient
allocation of resources by giving each agent a share in the firm's outcome,
this will again lead to insufficient supply of effort. It is interesting to
note that Groves' scheme is able to get around this problem. By effectively

decoupling the organization, it can assure both optimal allocation of

resources and efficient supply of effort. Once the allocation of resources is

determined, each agent is in charge of his own account as required for

efficiency.

4. Uncertainty-Single Output Measure.

In section 2 we found that efficiency can be attained by using

penalties (or bonuses). A team can be made efficient by committing itself

to wasting some of the output if the desired target level is not

reached. In equilibrium no output is wasted. Under uncertainty output

would generally be wasted and this fact may make the certainty case appear

extreme. That is not true, however. Penalties may work quite effectively

also under uncertainty. This was first observed by Mirrlees (1974) in the

context of a principal-agent relationship. The argument is here extended

to the team case.
For the moment agents are assumed risk neutral. Output x(a,0) is
random through the state of nature 6. For all 8, x is assumed concave.

Agents have homogenous beliefs concerning 6.



It is more convenient and illuminating to supress 8 and consider the
distribution function of x parametrized by a. Denote it F(x,a). Output

is shared according to sharing rules si(x), i=l,.s.,n, for which

n
(23) ) si(x) < x, for all x.

i=1
Equation (23) permits waste. Generally, we would have to require in addition

that si(x) > Wi where w; is agent i's endowment, but for the time being I

i
omit consideration of such a constraint. It is assumed that the partial

derivatives

Fi(x,a) = BF(x,a)/aai, i=l,.ss,n

exist for all (x,a).

Theorem 6: Assume
(i) F(x,a) is convex in a.
(ii) Fi(x,a)/F(x,a).+ —co,
Then a first-best solution can be approximated arbitrarily closely using

group penalties.

Assumption (ii) is equivalent to assuming that fi(x,a)/f(x,a) + oo, This
ratio is known as the monotone liklihood ratio (Milgrom, 1980) and is in

effect a measure of how sharply one can distinguish actions based on the

output. Assumption (i) may not be very reasonable. Its purpose is to

guarantee that first-order conditions correspond to global optima. In many



situations it can be relaxed.

Proof: Consider the following sharing rules:

six, X 2 ;,
(24) si(x) =

s.x — k,, x < x,
i i

where ki > 0, and Is; = 1. Evidently (24) satisfies (23). The rules in (24)
prescribe a penalty ki to each agent i if a critical output level x is not
achieved. Otherwise output is shared wholly. In order for a* to be a Nash
equilibrium with (24) it is necessary and sufficient (by assumption (i)) that

: *) - C (x * 1 (%) = i=
(25) sihi(a ) kiEi(x, a*) + Vi(ai) 0, i=l,...,n,

where E(a) = Ex(a) the expected value of x given a and Ei(a) = aEx(a)/aai.

For fixed X » choose k; so that (25) holds. The expected waste is given by
= x.a*%
W= Ik F(x,a*).
We need to show that W can be made arbitrarily small. From (25),
= ; " * i = * ' *
(26) ky Ai/bi(x,a ), with A, SiEi(a ) + vi(ai).
Let x decrease and adjust k; so that (26) holds. Then waste is given by

(27) W=2z AiF(E,a*)/Fi(E,a*),
i



and goes by assumption (ii) to zero with Xe Q.E.D.

Theorem 6 says that if lower values of x admit increasingly sharp
inferences to be made about a, then first-best can be approximated arbitrarily
closely by using group incentives where all agents are penalized for low
output. This is the force of assumption (ii). It should be noted that (ii)
holds for a number of standard distributions, including the case where x(a,8)
= x(a) + 6 and 6 is normal. Assumption (i) is false for the normal
distribution over the whole range x, but it is valid for x-values below the
mean. Therefore, since X » —», the argument goes through for the normal case
as well.

Note that penalities k; have to be designed individually unless the
problem is symmetric and agents are identical.

Through (26) and (ii), k;:s go to infinity with X This may violate
endowment constraints. If the x-distribution is tight (low variance) we can
get a good approximation already with small k;ts, but in general not. Thus,
efficiency losses may be substantial with constraints on wealth. The fact
that the degree to which we can approximate first-best depends on the amount
of penalties that can be imposed on agents, contrasts with the certainty case
in which first-best can be achieved without exceeding endowments.

Under uncertainty limited endowments put a constraint on the size of a
team as well. More team members imply increased production potential (if the
production possibility set is superadditive) but requires that s;':s
decrease. A smaller si requires a higher ki to force the agent to choose a
particular level of aj+ Since k; is bounded we will in the limit have agents

choose a; = 0 when team size grows large. Thus, there is a tradeoff which



will determine an optimal team size in contrast to the case of certainty.
A resolution to this dilemma may be found by bringing in a principal who

has resources to pay bonuses.

Theorem 7: Make the assumuptions:

(i) F(x,a) in convex in a.

(ii) -Fi(xla)/(l—F(xl,a)J > ® a5 X > ™,
Then first-best can be enforced at negligible expected cost to a principal
with unbounded wealth, even under the restriction that agents' endowments are

limited.

Proof: Consider the following scheme:

(28) si(x) =

where Zki = E(a*) and bi':s are bonuses paid if a critical level X is

exceeded. Define b;:s by:

4 _ _ . . _ _
(29) (bi ki) Pi(x,a*) + vi(af) 0, i=l,¢¢.,n.

By (i), (29) guarantees that a* is an equilibrium. The principal's expected

revenue is

(30) E(a*) - I bi(l-F(;,a*)) -z kiF(Q,a*) =
i i



E(a*) = I k; = I (b,~k)(1-F(x,a%))
i i

E(a*) - L k, + 1 Bi(l—F(;,a*))/Fi(;,a*),

i i
where Bi = -vi(a;), are constants. By (ii), this expression goes towards
E(a*) - ¢ ki = (0 as n > o, Q.E.D.

Theorem 6 tells us that a principal in order to restore efficiency, can
promise to pay bonuses to agents for exceptionally high outcomes but otherwise
pay them their expected product.

The theorems above were developed under risk neutrality assumptions. If
agents are risk averse with marginal utility tending to - « as wealth
decreases, theorem 6 remains valid (cf. Mirrlees, 1974). However theorem 7
appears quite dependent on the risk neutrality assumption. An unverified

conjecture is that asymptotic risk neutrality suffices.

5. Uncertainty-Monitoring.

The results above suggest that under certain circumstances efficient team
production can be approached via simple penalty or bonus schemes. A critical
feature again is that the budget-balancing constraint is broken. Obviously,
there remain plenty of situations where such schewes do not remedy moral
hazard due to endowment constraints and a second-best solution has to be
implemented. Monitoring then becomes a crucial element. I will investigate
below what type of monitoring will provide valuable information in the sense
that it helps improve welfare.

The set—-up assumes a risk-neutral principal and n risk-averse agents.



Since the principal is risk—-neutral there are no gains to risk-sharing per
se. To the extent output is used in determining agents' payoffs, its value is
solely in providing incentives. Put differently, output will merely be used
as a signal about the actions taken by the agents.

Let y be the vector of signals observed, so that y can be used as the
basis for sharing. This vector may or may not contain x. The distribution of
y as a function of a is given by G(y,a), with density g(y,a). The welfare

problem can be stated as

(29) max J{E(xly,a) - = s (y)}d6(y,a)
a,si(y) i

sete (1) ui{si(y))dc(y,a) *v.(a) > Gi, i=1,e0.,n.

(ii) a e argmax f ui(si(y))dG(y,ai, a_i) + vi(ai), i=1,4e0,0

a'

1

dere, E(xly,a) is the expected output of x given y and a. It equals, of
course x if x is part of y.

I will first consider the single-agent case n=l1 and extend results in
Harris and Raviv (1979), Holmstrom (1979) and Shavell (1979). From this
extension the multi-agent results follow easily. Since n=1, the index i will
be temporarily dropped.

Definition: A function T(y) is said to be sufficient for y with respect to a,

if there exist functions h(*) » O, p(+) > U such that:

(30) g(y,a) = h(y)p(T(y),a), for all y and a.

Equation (30) is the well-known condition for a sufficient statistic in



ordinary statistical decision theory (deGroot, 1970). Note, however, that the
action a is not a parameter chosen by nature but by a strategic agent. This
notwithstanding, it will be shown below that sharing rules should be based
solely on T(y) if and only if T is sufficient for y, which parallels results

in statistical decision theory.

Theorem 8. Assume T(y) is sufficient for y with respect to a. Given any
scheme s(y), there exists a scheme E(T(y)], which weakly Pareto dominates

s(y).

Proof. Define E(T(y)) as follows:

(31) u(s(m)) = [ u(s(y))gly,a)dy = p(T,a) [ u(s(y))u(y)dy.
T(y)=T T(y)=T

By Jensen's inequality,

(32) (1) < s(y)g(y,a)dy.

T(y)=T
From (30) and (31) follows that the agent will enjoy the same expected utility
for all a, whether faced with s(y) or E(T(y)). Thus, he will not change his
action from that which he took under s(y). From this, and (32) follows that
the principal is at least as well off with E(T(y)) as with s(y).

Q.E.D.

The main import of Theorem 8 is that randomization does not pay if the agent's



utility function is separable.1 Indeed, any pure noise should be filtered
away from the agent's sharing rule. To the extent the sharing rule is random
it should be through signals that are informative about the agent's action.
The converse to theorem 8 requires brief preparation. We wish to state
that if T(y) is not sufficient, then we can improve welfare strictly by
observing y. There is a problem, however, with the meaning of an insufficient
statistic T(y). Equation (30) may not hold for all a and yet a particular
T(y) will be sufficient in the sense that welfare improvements cannot be
made. Such is obviously the case if we take T(y) equal to the optimal sharing
rule.2 Moreover, for a fixed action a,equation (30) can always be satisfied
by an appropriate choice of h(e) and p(e,s).

To rule out such cases, I will define T(y) as insufficient at a if it is

not the case that:

88(}’1,3) ga(y?_)a)
gy, gly,a)

(33) , for almost all yl,yze{yIT(y) = constant}.
Note thnat (33) follows from (30). Conversely, (33) implies (30) (by
integrating), if it holds for all a. I will say that T(y) is globally

insufficient if (33) is false for all a.

Theorem 9. Assume T(y) is globally insufficient for y with respect to a. Let
s(y) = E(T(y)) be a sharing rule such that the agent's response is unique.

Then there exists a sharing rule s(y) which yields a strict Pareto

1. Separability of the utility function is crucial for the
result that pure randomization does not pay; see Gjesdal

(1980). This is further evidence that our sufficient statistic
condition and the related theorems are not direct consequences of
the decision theoretic results (i.e. Blackwell's theorem).

2. I am indebted to Steve Ross for this observation.



improvement. Moreover s(y) can be chosen so as to induce the same action

response as s(y) unless s(y) is a constant.

Proof. Since T(y) is globally sufficient, there exists a T| and sets Y;;, Yy

which are disjoint and subsets of Y1 = {le(y) = Tl} such that

ga(Yll)a) ga(leja)

(34) g(Y,,a) g(Y,,a)

where a is the agent's response to s(y). Since s(y) is not constant, there
exists a T, # T; such that the set Y2= {le(y) = TZ} is non-empty and

E(Tl) # ;(TZ). Define the following variation:
s(y) = s(T(y)) + Ill(y) ds11 + Ilz(y) ds12 + Iz(y) dSZ’

where Ill(y) is the indicator function for the event {erll} and similarily
for Ilz(y), Iz(y). Let g(Yll,a) = Pr {erllla} and similarily for
g(YlZ,a), g(Yz,a).
The effect on the principal's and the agent's welfare (exluding any

~

change in action) from a change to s(y) is given by
(35) AP = —[dsllg(Yll,a) + dslzg(le,a) + dszg(Yz,a)],
= 1 '
(36) AA ul(dsllg(Yll,a) + dslzg(le,a)) + uyds,g(Y,,a).

LI Y et v (S : ~ ~ ' '
Here uj ul(s(Tl)) and uy uz(s(TZ)). Since S(Tl) # S(TZ)’ uy # ule
Assume for concreteness that ué < ui.

The effect on the agent's action from this variation is given by



= ' '
(37) Aa ul(dsllga(Yll’a) + dslzga(le,a)] + uzdszga(Yz,a).

Choose dsy, ds|,, ds, as follows. Let AP = 0, and substitute for ds; in (36)

requiring:

(38) BA = (u] - up)(ds  8(Y) ,a) ~ dslzg(le,a)] =k >0
Keeping d82 fixed, require furthermore:

(39) dsllga(Yll’a) + dlega(le’a) = —ué/ui dSZga(YZ’a)

This makes Aa = O. The system (38), (39) has a unique solution because (34)
implies that the determinant i1s non-zero. This shows that dsll’ dle’ dsz can
be chosen so that AP = 0, AA > 0 and Aa = O, in other words so that the
principal is no worse off and the agent is better off in terms of risk-sharing

while the action remains unchanged. Q.E.D.

Theorem 9 is the converse of 8 and says that if T(y) is not a globally
sufficient statistic for y, we can do strictly better by using all of y
instead of T(y) as a basis for the sharing rule. The intuition, of course, is
that y reveals more information about a than T(y) does if and only if T(y) is
not sufficient for y.

Theorem 9 differs in two respects from a correspounding theorem in
Holmstrom (1979). Rather importantly for the application to the multi-agent
case, the improvement in welfare is here achieved, not by forcing a change in

the agent's action, but by keeping the action the same and improving risk-



sharing instead. For this, s(y) had to be assumed non-constant, since
obviously a constant function cannot be improved upou for risk-sharing.
Secondly, theorem 9 is more general, as my earlier result concerned the

following special case:3

Application l: Informative signals.

Consider two information systems I, = xand I, = (x,z). In I, we observe
the outcome x, in I, we observe the outcome x and some additional signal z.
Suppose T(x,z) = x is not sufficient for (x,z). Then I called z an
informative signal in Holmstrom (1979), and showed that z can be used to
design a sharing rule s(x,z) which is strictly better than any s(x). This, of
course, is a special case of theorem 9.

Application 2: Finer signals

Grossman and Hart (1980) and Gjesdal (1980) discuss the value of
different information systems from the point of view of Blackwell's notion of
fineness. The following discussion will reveal its relationship to the
sufficiency property used here.4

Let I} = y; and I, = y, be two information systems. I; is said to be

finer than I, if we have for all y,,a:

(40) g,(¥y,a) = [h(y,,y,) g (v ,a)dy ,

where g, and g; are the marginal densities of y, and y;. Condition (40) looks

much like (30) but is conceptually quite different, since (40) deals with

3. Gjesdal (1980) provides a closely related extension of my
earlier informativeness condition.
4. I am grteful to Paul Milgrom for discussing this

relationship.



marginal distributions only, whereas (30) presumes a joint distribution for
y=(y1s ¥9).
However, the solution to the Pareto problem with I, or I, does not depend

on the joint distribution of y; and y,. So we may define one by letting
(41) g(ylyyzra) = h(yZ)yl) gl(ylra)'

This will have as its marginals g; and gy (as in (40)). But (41) says that
T(y;,yp) = y; 1is sufficient for (yl,yz). Hence, we get as good results by
basing the sharing rule on y] as on (yl,yz). Therefore, I} = y;, is as good
an information system as I = (yl,yz). But, of course, I can be no wore than
I, = yp. The conclusion is that I, is as good as I,, if I} is finer than I

in the Blackwell sense. The Blackwell finessess result can therefore be

viewed as a corollary to the sufficiency results of theorems 8 and 9.

Let me now turn to the multi-agent case. Condition (30) will still

define the notion of a sufficient statistic.

Theorem 8': Assume T(y) is sufficient for y with respect to a. Given a set

of sharing rules {si(y)}, there exist another set {Ei[T(y))} which weakly

Pareto dominates {si(y)}.
Proof: As theorem 3. Q.E.D.

Theorem 9': Assume T(y) is globally insufficient for y with respect to a.
Let si(y) = Ei(T(y)), i=l,...,n, be a set of sharing rules for which the Nash
equilibrium is unique. Then there exists sharing rules {si(y)} which yield a

strict Pareto improvement.



Proof: As theorem 9. Note that since the variations ;i(y) do not change the

other agent's actions, we need not worry about the Nash equilibrium changing.
Q.E.D.

If one had employed the line of proof in Holmstrom (1979), in which the

agent's action is changed, one would have had to be concerned with the effects

5

of one agent's change in action on the other agents' choice of action.
g g g

Application 3: Dividing output in teams

Consider the team production case. Let total output be x(a,68). A finer

information system is obtained by measuring x(a,8) as the sum:

(42) x(a,8) = Xl(a,e) + xz(a,e).

From the general results obtained above, we know that T(x),xy) = %X + %) = X
is sufficient for (Xl’XZ) and hence as good as observing xj, X, separately if
and only if:

(43) g(xl,xz,a) = h(xl’XZ) p(xl + xz,a),

where g is the joint distribution of (xj,xy) and p is the distribution of x

induced by 6.

When will (43) hold? Suppose,

5. Baiman and Demski (1980) prove a special case of theorenm
9' using an extra assumption that appears unnecessary. This
assunption is called for, since they do not exploit the
possibility of improving risk-sharing benefits, but rather use
the line of proof in Holmstrom (1979).



xl(a,e) = m(x(a,e), 2(6)]
(44)

x2(a,6) = x(a,0) - m(x(a,e), 2(6)]

for some functions m(+) and 2(+) such that x(a,8) is independent of 2(8).
(44) maps x into two random variables x;, x, which are independent of x and
it follows easily that (43) holds. The converse is also true. Condition (43)
implies (44) with £(0) indepedent of x(a,0). From our general results we
know then that (44) implies that it is valueless to observe Xx;, x, rather than
X = x1 + X9, which is quite intuitive as we obtain x; and x; by going from x
to a given (possibly) random split.

However, whenever x; and x) divide x so that we can infer something more
about a from seeing x;, x, rather than x, such a finer accounting system is

valuable.

6. Relative Performance Measures

In this final section I will consider the case where total output is

given by

(45) x(a,8) = ; xi(ai,e).
i

All X;: s are assumed to be observed. We do not have team production since

each x; depends only on aj and some exogenous random shock 6. If § were not

random, efficiency would be easily achieved by holding each agent i

responsible for his output x; in accordance with the general principles of

responsibility accounting. We saw this in section 3.



What will interest us here is when it will be desirable to depart from
this general principle and actually have S{s the sharing rule of i, depend on
the vector of outcomes x=(x1,...,xn) rather than X§ alone. We frequently
observe agents being evaluated based on peer performance. Almost in all
organizations agents compete with each other in one form or another.

Sometimes there is an explicit prize for the best ones, as for instance, among
sales personnel (“salesman of the month” - awards etc.). The special case of
rank order tournaments, in which relative performance as measured by rank
alone, has been analyzed by Lazear and Rosen (1980). Further examples are
provided by the recent performance incentives for executives in which
executive performance is compared with that in competing firms.

The rationale for relative performance evaluation is easily understood in
light of the results on the value of information that are given in this paper
and in Holmstrom (1979). We have found that essentially any information that
is useful for inferring the agent's action is valuable and should enter the
contract (ignoring transactions and information costs). Therefore, if the

x;:s are correlated with each other (through 6), s; should depend not just on

1

X4 but on the whole vector x. This will help reduce the randomness in the

agent's share that stem from circumstances outside his control. It makes
sense (both intuitively and theoretically) to evaluate executive performance
against performance of other firms, because economy-wide shocks are thereby
absorbed. Recessions have made managerial stock option-plans pay off poorly
independently of managerial performance and it is possible that the above
cited move towards performance incentives was triggered by this fact.6
Before considering the form sharing rules may take when x{is are

correlated, let me first dispense with the independent case.

6. A similar result is proved in Biaman and Demski (1980).



Theorem 10: Suppose Xyis are independent. Then, optimal sharing rules si(x)

will only depend on X5

Proof: [If x;:s are independent, then

(46) f(x,a) = fi(xi,ai).

1

(=N

i

Considering agent i, we see at once that (46) implies that Ti(x) = x; is

sufficient for x with respect to aj. By theorem 8, it will be enough to let

s; depend on x; alone. Q.E.D.

The import of theorem 10 is that it does not pay to force agents to
compete with each other unless there is some common underlying uncertainty.
The benefits from competition itself are nil. What is of value, is the
information that may be gained from peer performance. Competition among
agents is a consequence of exploiting this information.

I have not investigated whether the converse of theorem 10 is true; does
dependence through 0 always imply that it is suboptimal to base the agent's
reward on his own outcome alone. The following general condition for when
rewards should depend only on x; for agent i follows from the previous

1

analysis:

(47) fi(x,a) = hi(x,a_i) pi(xi,a).

When (47) holds nothing can be gained by including X_y 1la sy. Note that a_j

can enter h; and p; since we can in equilibrium infer the actions of the



agents, given any particular schedule.
The opposite extreme to independence is complete dependence. This can be
phrased as the condition that given xj, X does not vary when actions are

fixed. We have the obvious:

Theorem 1l1: Assume x;:s are fully dependent. Then there exists a first—best

Nash equilibrium.

Proof: The following scheme will yield a first—best Nash equilibrium:

% i = * % g%
w¥, if X, ¢i(xj,(aj, O),ai,aj)

si(xi,xj) =
b, if not,

where bi is a sufficient penalty, wg is the first—-best (constant) payment, and
a* is the first—-best action and ¢i(-) is the assumed deterministic
relationship between xj and Xiy aj, aje

Q.E.D.

This theorem corresponds to theorem 4 in the certainty case. It could also
have been shown that as X; s become more dependent, first-best can be
approached in the limit.

A general characterization of how information about peer performance
should be optimally used with many agents can be formally developed as an
obvious extension of the characterizations in Mirrlees (1976) or Holustrom
(1979). The validity of such a characteriztion depends at least for the time
being on rather restrictive assumptions as explained in Grossman and Hart

(1980). I will not pursue that issue here. My purpose is to point out how

the sufficient statistic conditions developed above can be used to rationalize



schemes which only use aggregate information about peer performance. I will
also consider what happens when we have a large number of agents.
I will restrict attention to the following two particular output

structures:

I: xi(ai,e) = a; +n + €i» i=l,...,n,
I1: xi(ai,e) = ai(n + ei), i=l,...,0,
where 6 = (n, 81,...,€n) is a random vector.

Theorem 12: Let the technology be given by either I or II. Assume

T,
. . = i
Ny€p5eee,€ are independent and normally distributed. Let X = LI — X, be
T
the weighted average of the agents' outcomes, where t: is the precision (the

1

inverse of the variance) of € and T = Zri. An optimal set of sharing rules

{si(x)} will have s;

; depend on x and X; alone; in other words, each agent

will be judged relative to a weighted average, which will be equal to the mean

outcome if precisions are equal.

Proof: Consider technology I. The joint density function for x given a is:

2 2
(48) f(x,a) = K [ exp {— [ ; Tj(Xj‘ aj— uj— n) + To(n - UO) ]}dﬂ

J

| —

where K is a constant, T, 1s the precision and p, is the mean of n, and TioMj

are the precision and mean of ¢ In view of theorems 8 and 9 we need to show

jo

that we can write (48) in the form:

(49) £(x,a) = h.(x,a_) p, (x,x,,a)



for each i=l,...,n. The reason we may allow h; and p; to depend on a_; is
that the other agents' actions can be taken as given when designing agent i's
scheme S (confer proofs of theorems 8' and 9'). Let

z, =1 Tk/r_i(xk— a, - uk), TS LT
k#i k#i

Then we can write:

2

I 1. (x~-a,~py.-n) =
. J 1] J uJ
J

- - 2

- - - + —_ <+ -~ - =

IoTx, S R n) T (xmam )
J¥1i

- 2 - 2 2

- a .~y .- + (n- - + - a - .

jii T,.(x, aj uj Z-i) (n l)(z_i n) 'ri(xi a, ui)

Substituting this expression into (48), we find upon integrating over n that

we can write
f(x,a) = h.(x,a_.) p,(z_,,%;,a).

However, since

z_y = (x - wx)/r_ -2 o/t (a +u),
k#1

p.(z i,xi,a) = pi(g,xia),

completing the proof of writing (48) in the form (49).

The proof for technology II is similar and is omitted.



=A

LI X,, 1i.e. the average of

0f course, if T, 5T for all i, then x = i

observations. Q.E.D.

Notice that theorem 11 does not make the claim that s; should depend on

1

X, - 2, only that it will have the form si(xi,;). The fact that the outputs

of different agents are generally weighted differently in calculating ;,

reflects possible differences in values of these information sources. If Ej

has high precision (low variance) then % tells rather sharply the value of n

and should count more in the average. This is another way of saying that Xyis
which are correlated strongly with Xj should be more significant indicators in

evaluating agent i:s performance. Conversely, as t. + 0, x

i will essentially

j

tell nothing about n because of the noise in €.

i and hence should count very

little.

Theorem 12 suggests that sometimes (perhaps quite often) an aggregate
measure like the weighted average of peer performance will capture all the
relevant information about the common uncertainty. This provides a rationale
for the common practice of comparing performance against peer aggregates,
though, of course, the sufficiency of a weighted average is specific to the
normal distribution. Other distributions will have other sufficient
statistics.

At this point it is appropriate to comment on the use of rank-order
tournaments (Lazear and Rosen, 1980). A rank-order tournament awards agents
merely on their performance rank, not on the value of the output itself. With

n agents there are n prizes w, 2....> W The agent with the highest output

1
gets w;, second highest gets w; and so on.

From theorem 10 follows that if the agents' outcomes are unrelated, then

rank-order tournaments will perform worse than rewarding agents based on their



individual outcomes alone. Pitching agents against each other will only
result in more randomness in the reward scheme without any gains in the power
of inference about actions. On the other hand, rank-order tournaments may be
valuable if outcomes are related as was first noted by lazear and Rosen. The
analysis above supports this contention. But it should be observed that rank-
order tournaments may be informationally quite wasteful if performance levels
can be measured cardinally rather than ordinally. It is clear that the
mapping from the agents' outcomes x=(x1,..,xn) into the statistic T(x) =
(kl(x),...,kn(x)), where ki(x) is the rank-order of agent i, is not a
sufficient statistic for a, except in trivial cases. Therefore, theorem 9'
tells us that there should be a better way of making use of x than what the
rank—-order tournament does.

Let me finally turn to an analysis of large teams under the simplifying
(but unnecessary) assumption that the technology is given by I or II. First,
note that if we knew n ex post, this common uncertainty could and should be
"tiltered” away to yield an improved solution to the agency problem (c.f. the
discussion of finer signals in Application 2). And if we knew n ex post then
there would be no need to compare individual agents' outputs, since
conditional on n they are independent (theorem 10). Thus, the solution to the
incentive problem with n agents coincides with the solution of the n
individual agency problems when n is known ex post. For these individual
problems we will have the optimal schemes depend on a; + e; (for I) and aj €4
(for II), since the observation of n will allow us to observe these variables.

Now, n is not observed ex post. But it is intuitively clear that as the
number of agents grows large, we can essentially observe n by infering it from
the independent signals about n provided by the x::s. Therefore we would

L

expect that with many agents we will be able to achieve approximately the same



solution as if there were no common uncertainty at all. This is correct:

Theorem 13: Consider technology I or II where n, € seve,€E are independent
and €;:s identical. Then the solution to the single agent problem without
common uncertainty (i.e. n = 0) can be approximated arbitrarily closely as the

number of agents grows large.

Proof: Consider technology I. Let

qj =n + Ej’ j=l,eee,ne
.= i-1 n
q_i n—1 jii qj) LI

Let s;(xi) be the optimal solution to the single—agent problem when there is
no common uncertainty, and let ag be the agent's optimal response.

By the strong law of large numbers, ai goes a.s. to n. Therefore,
*(a* +n +¢.- q
f ui(si(ai n Ei q_i)) dP(n)EI) )En)
converges to
*(a% + .
f ui(si(ai Ei)) dP(Ei)
Provided ag is a unique solution to

max [ ui(s;(ai + ei)) dP(ei) + Vi(ai)’

a,
1



we find that for large enough n, the agent will choose an action arbitrarily

close to ag when solving

*( g% - q .
max [ ui(si(ai tnte, qi)) dp(n, el,...,en)

a,
1

Since a-i can be inferred from the other agents' outcomes by calculating
xj - aj =n + Ej’ where aj is the response of agent j, this proves the claim.
The proof of technology II is similar.

Q.E.D.

It is clear that constraining attention to technology I and II is quite
inessential. A number of other specifications will yield the same result and
a quite general statement of the theorem should be possible to prove. In
particular, the assumption that e;:s are identically distributed can be
avoided in a way similar to theorem 12. The assumption that €;:s are
independent while n is common is a natural way of providing a limit to what
can be gained from relative performance evaluations.

Results analogous to theorem 13 could be arrived at with different
informational assumptions. For instance, suppose the agent observes

n + €5s i.e. n with a noise term, before taking his action. I conjecture
that with many agents one would be able to come close to the solution of the
same problem with n ex post known. Alternatively, if agents observe n before
taking their actions, we can in the limit get the same solution as when n is
commonly observed ex ante (this is simple to prove for the two technologies I
and II).

The result that one may use relative performance measures to filter away

common uncertainties has an interesting connection to financial theory. A



standard model of financial markets is the capital asset pricing model. One
of its normative implications is that investments carried out by firms should
be decided upon without reference to the investment's idiosyncratic risk as
the market through diversification can neutralize such risk (see e.g. Mossia,
1969). Investment decisions should instead be made with reference to
systematic risk alone.

This prescription is in apparent contradiction with the analysis above.
What we found was that the manager need not worry about systematic risk as
that risk will be filtered away. Instead, he will have to be concerned with
the idiosyncratic risk of an investment as that risk will have a ma jor
influence on how the firm and the managerial labor market will evaluate his
managerial performance. This conflict of interests has not been studied here,

but deserves attention in future research.

7. Summary

This paper has been concerned with ways of alleviating moral hazard when
there are many agents. In contrast to the situation with a single agent, a
multi-agent organization may experience moral hazard problems even under
certainty. An analysis of the certainty case was first presented, which
served as an introduction to the subsequent discussion of the more realistic
case of uncertainty.

The paper has not attempted a characterization of a solution to moral
hazard in teams. Instead, its objective has been to explore two common ways
of alleviating the problem. One is to separate ownership and labor so as to
neutralize externalities in joint production. The other is to use monitoring,

richer measures of output and other additional information to discern more



accurately the actions of agents.
Despite its simplicity, the model provides us with a number of positive

and normative implications. The main ones are summarized here:

1. When there is no state uncertainty, moral hazard can be resolved
by a threat to punish agents as a group if the appropriate level of output is
not attained. This can be done without violating endowment constraints
independently of the number of agents. Thus, no monitoring is needed and no
constraints on firm size are imposed. The key is to break the budget-
balancing constraint, which is suggestive of the value of separating ownership
and labor in organizing productien.

2. If one attempts to resolve the certainty case through monitoring
while maintaining budget-balancing, it may suffice to have only two measures
of output. However, for an efficient monotone control system in which shares
are positively related to output measures, it is necessary to have as many
measures as there are agents and these measures should effectively discern
actions. This is in accordance with common principles of control, which
attempt to hold agents responsible only for what they alone can have influence
over.

3. The use of group penalties may be an effective way to control
joint production even under uncertainty, but in contrast to the certainty case
limited endowments will constrain the effectiveness of such a solution. These
constraints will be felt more the larger the number of agents, which generally
implies that the size of a team which can be effectively controlled through
penalties is limited. This points to inefficiencies in large partnerships,
when there is uncertain production.

4. Since group penalties will frequently be an insufficient means to



control moral hazard under uncertainty, monitoring becomes essential. As in
the single—agent case valuable monitoring is characterized by the condition
that it improves the ability to infer the agents' actions — a condition that
extends a well-known result in statistical decision theory to the realm of
strategic games.

5. Relative performance evaluation, as commonly observed, can be
understood as a way of using information about state uncertainty
efficiently. In accordance with the above mentioned necessary and sufficient
criterion for what type of additional information is valuable, one finds that
relative performance evalatuion is valuable if and only if agents face some
common uncertainties. Thus, inducing competition among agents does not have
intrinsic value. Rather, coupetition is a consequence of efficient
information usage. An example of relative performance evaluation across firms
is the new trend towards performance incentives for executives. These are
rationalized by the analysis as a way of reducing unnecessary risk imposed on
executives from factors outside their control.

6. Another example of performance evaluation that can be rationalized by
the theory is the use of rank-order tournaments that have recently been
discussed in the literature. It was noted, though, that they generally fail
to make efficient use of available information.

7. Relative performance evaluation may often involve an index of
comparison which aggregates peer performance, for instance through an average,
without any loss of efficiency.

8. With a large reference group of agents, the cost of uncertainty
that comes from a common source, can essentially be eliminated through
relative performance measures. What remains to be coped with are the

idiosyncratic risks of individual agents. This implies, from an agency



theoretic point of view, a particular concern for idiosyncratic risks in
nanagerial decision making as these (but not systematic risks) will enter into
the evaluation process of managers. This stands in contrast to implications
of the capital asset pricing model, which prescribes the opposite, namely to
ignore idiosyncratic risks and only to be concerned with systematic risk when

making investment and production decisions.
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