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1. INTRODUCTION

In the utility theory developed by Von Neuman and Morgenstern [7] (see
also Marschak [5]), the preference ordering of probability distributions by
an individual is used to derive his utility indices of a finite set of
prizes Xl,f",xn to which the probabilities are assigned. It is shown
there that if the ordering of probability distributions satisfies certain,
so called, rationality conditions or rules (rules that any rational man,
according to Marschak [5] should follow in ordering the probability distri-
butions), then utility indices, UZ’ constant up to positive linear transfor-
mations, can be assigned to the prizes X in such a way that the individual
orders the probability distributions as if he were maximizing the expected
value of the utilities uz.

Professor Marschak in [6], pp. 504-5, proposes the alternative approach

of starting by defining what he calls the rule or aim of long run success

and then trying to study whether this aim can be satisfied by applying the
rule of maximizing expected utility. In other words, what Professor
Marschak proposes is to start out with the intuitively very appealing
common sense definition that 'the best policy or rule is the one that
succeeds in the long run'" and then try to determine whether the rule of
maximizing expected utility is a best rule according to this common sense
definition.

In this paper we plan to follow a similar approach. To this end we
will proceed as follows: First, I will define how the individual orders

sequences of prizes Xy ree Xy yeeer Xy for k = 1,2,,... Then, from the
1 i k

. J s .k c c .
ordering of these sequences of prizes, utility indices u;, =u (xi) (i =1,...

2

n)



will be obtained, which are constant up to positive linear transformations,

and possess the property that the sequence Xy X e Xy is at least as
1 2 k

k
2

k ¢
good as the seauencex.) ,x ,...,x 1if and only if 2 u'(x_ ) =
hl Xh2 th Xhi i

i=1 1 i

By using these utility indices u;s utility functions for finite sequences

of prizes ut (xh EREEEN ) are then defined in the obvious way. The rule
koohy K

of long run success is then formally stated. Finally, we will show that

given two lotteries L and L' assigning the prizes X; (i =1,...,n) with
n n
probabilities P, and P'  respectively (0 <P, <1, 0 =P', 1, Z P, = ZP',
i i i i j=1 1 ;=1 1

. n c .
the rule that prescribes choosing L over L' whenever 2 u, Pi is greater than
i=1
n ¢
2 u, Pi implies that the rule of long run success, as stated by us, will be
i=1

satisfied. We will also discuss the Van Neuman and Morgenstern rationality
. 1 c VoL . .
axioms and the utility indices u cerived from them in relation to the

i1 s . . c .
utility indices ug derived from our model and the rule of long run success.

T would like to point out here that we, like Marschak, do not assume

] ] C c c . .
the successive random variables Ul’ UZ""’ Uk, to be statistically in-

dependent. Neither do we assume, unlike Marschak, that their corresponding

2

2
17 Ogreees Oy converge to zero as k -+ e,

variances

Given the extremely subtle character of the problem of rationalizing
decision making under uncertainty, we will rely for the developing of our
model mainly on a very simple example. We will do this, even at the expense
of sacrificing generality, with the hope of reducing the probability of mis-

understandings to acceptable levels.

uc(x‘h.) .



2. THE ORDERING OF SEQUENCES OF PRIZES

The theory of utility to be presented here is a simplified version of
the one developed by this author in [2] (See also [3]).
Consider the following simple situation. An individual, say Mr. A,

will be offered every day after lunch either x a cup of coffee, or x

1) 2)

a cup of tea, or x a cup of camomile. Let us assume that Mr. A prefers

37
to have, after lunch, a cup of coffee to a cup of tea, and a cup of tea to
a cup of camomile. Thus he prefers X, over x, and X, OVer X,. Suppose
that our hostess for some reason, can serve each day only coffee or only
tea or only camomile, but that she can decide every day which of the three
different drinks will be served. Suppose further that besides Mr. A,
there are other guests with tastes different from his. And that our
hostess, who is a fair minded person, wants to know more about the prefer-
ences of Mr. A (and the other guests of course) in order to find out what
could be a fair proportion of days serving coffee, days serving tea, and
days serving camomile. Thus, she asks Mr. A the following question:
Suppose that one day I serve tea which, I know, is not vour favorite,
instead of coffee that you like the best. But other days, I can serve

tea instead of camomile, that you like the least, and thus compensate you
for the loss of pleasure suffered the day that I give you tea instead of
coffee. How many days do I have to serve tea instead of camomile in order
for you to feel compensated? We will assume that Mr. A can answer this
question precisely. We will also assume that if during a period of a

finite number of days, say k, coffee is served during k, days, tea during

1

days (of course k., + k, + k, = k), Mr. A

k, days and camomile during k 1 5 3

2 3



would not care regarding the order in which the different drinks are served

whenever the number of times that he has coffee, tea and camomile remain

k k, and k..

1’7 72 3
These and other less crucial conditions will be presented below in a
formal way in the form of axioms characterizing the preferences of an indi-
vidual. And from these axioms utility indices uz = uc(xi) will be derived
which are constant up to positive linear transformations, and such that, for
any finite k, the sequence xhl, xhz,..., Xh."'”xhk is at least as good as
i

the sequence x; s xﬁ ,...,xh s e ny if and only if
1 2 i

k

We will proceed now to this formalization.

Let X = {x,,.--,%,,.--.,%X_} represent the set of the n alternative

1’ i n

prizes or consumption incomes. Thus in our previous example, n was set

equal to 3 and x, represented a cup of coffee, x, a cup of tea and x, a

1 2 3
cup of camomile. Let N = {1,...,i, ...,n} be the set of the n natural
numbers 1, 2, ..., i,..., n.

Write X = =X ¢ X x +-.: the countable infinite Cartesian product of

[o2]
X times itself; and let x ® be a generic element of X . Thus in a more
explicit way x ® represents an infinite sequence Xh s xh y ...y with
1 .
h, € N for all i.
i ©

Our first axiom now states:

Total Ordering Axiom. It is assumed that the individual possesses a




preference ordering Q (also written =) 1 of the elements of X m, i.e. Q
is a transitive, reflexive, connected relation defined on X ®. In economic
terms, Q is the relation '"is as good as'".

In terms of our example what the total ordering axiom means is that
Mr. A imagines himself having an after lunch drink day after day, after
day ... forever (he has not learned yet that he is going to die some day),
and that he is able to rank, according to his tastes, all the possible

alternative infinite sequences.

Remark. It should be emphasized that the preference ordering among infinite
sequences of prizes postulated in the previous axiom is to be considered
here in a timeless context. It is true that it is difficult to think of

a person receiving a sequence of prizes without time being involved. We
used a time reference in our example regarding Mr. A's after lunch drinks
and we will use a time reference again when presenting further examples in
order to facilitate their description and understanding. But we will assume
that our individual makes abstraction of the time intervals elapsing between
successive consumptions (because, say, these time intervals were previously
fixed by custom or otherwise and cannot be changed) and cares only about

the sequences of consumptions that he can receive.

Let us turn at this point to the permutation axiom. This axiom

roughly states that the preferences of the individual with regard to the

[o]
infinite sequences x = Xy seee xh e e s hi N fori=1, 2, » do
1 i

not depend on the way in which the prizes of any finite part of the sequence

are arranged. In other words, the individual does not care if the order of



any finite number of prizes of a sequence is altered. This is certainly

a very strong restriction on the preferences of the individual. To begin *
with, habit forming consumptions have to be excluded from our set of prizes.
Also, even if we exclude habit forming consumptions as prizes, we might
still have the case where the order in which the prizes are received and
consumed really matters. Consider for instance, the situation where a
consumer is offered dinners for two years, half of them fish food and the
other half meat food. There is no reason, of course, to assume that our
consumer should be indifferent between, say, dining on fish during the
whole first year and meat during the whole second year, or dining on meat
one night and fish the following night, etc., throughout the two years.
This last difficulty can be overcome to a certain extent by assuming that
each prize represents not a concrete consumption as a cup of coffee or a

steak, but a kind of '"opportunity set.'" as it is the case when each prize

represents a certain amount of monev. Thus, using a gastronomic example

again, we can consider prize x as a menu of fish and meat dishes of

1

high quality from which the consumer can choose, x as a similar menu

2)
but with lower quality, etc. --- 1n this case the order in which the indi-
vidual receives the prizes seems to us less important and the axiom can be

accepted as a good approximation of reality. In any event, the case where
the individual can alter his future preferences by means of his present
consumptions or through moral persuasion or through advertising, etc.,
although extremely interesting, is beyond the scope of this paper.

We now present in a formal way the

Permutation Axiom. Let k be any natural number greater than O. LetﬂK



1
and e be arbitrary one to one functions from the set of natural numbers

{1, 2, -.-} onto itself such that’Tk(m) =TT; (m) = m for all m > k. Then
we have: for any finite natural number k > 0 and any T, andrxﬁ,
(Xhl) ’Xh 5o Q (Xhl) s Xh“') )
e ( ’ ;X s ) Q ( ’ ’ o ’ )5
xhvkm khr'rkm th;{ (1) Xhﬂ;{m

where hi and h? both belong to N for i =1, 2,....

The Independence Axiom. Using the example of Mr. A's after lunch drinks,

this axiom simply states that if two sequences of drinks

Xhl""’ Xhi"" and Xh%""’ Xh*i’ """ coincide from (y + 1)-th term

on, and Mr. A prefers the sequence Xy s X ... to the sequence
1 i

he will also prefer drinking X s X to drinking
1

Xgorr e Koo
1 i v

Xh*""’ Xh¢ the first u days no matter what he is offered to drink the
1 N

rest of the days whenever these drinks are the same in both cases.
Before we present in a formal way the independence axiom, it might

be convenient to develop some notation. Consider an infinite sequence

[1] Xhl):")xh"'" - (X ).
v

We will also represent the sequence [l] by (x"3 xm_v), where x" represents

oo
the first y terms of the sequence and x ° the remaining terms. Suppose
we obtain a new sequence from the sequence [1] by changing scme, all or

none of the first ,, terms. The resulting sequence will be represented by



; x° V). Similar changes on the remaining part of sequence [1] will be

("
represented accordingly.

We can now formally present the Independence Axiom. For any natural

number > 0,

o ol
< .

L=y

v, ®uy > *y ;o
s x ) 2 (x Yy x ) e (%Y x ) 2 (x Y x

(x7;

Remark. A preference ordering Q defined on xm, satisfying the Permutation
and Independence axioms, induces a preference ordering Qv, which also
satisfies the corresponding Permutation and Independence axioms, on the
Cartesian product XY = X , ..., X (y times; , being any finite natural number
greater than 0) as follows:

Write x° = (xh RERERE ) x Vo= (x e x; ). Then,
1

n
v 1 v
(xh s Ky ) Qv (xg yeees X ) if and only if
1 v 1 v
there is a (xm-v) such that (x"; X@'v) Q (xvv; xm—v). In particular we

have the preference ordering Q1 defined on the set of prizes X. We may write

= instead of Q when it is clear irom the context on which Cartesian product
v

\)

X" the preference ordering is defined.

The rate of substitution axiom tries to formalize the intuitive

notion that if an individual is disappointed because in one instance he

is given prize }% instead of prize x_that he likes better, he can be com-
P

pensated by giving him in a sufficiently large number of instances a prize

x_, instead of a prize Xq' that he likes less. Formally, we have

w

Rate of Substitution Axiom. If xh > xh and xh > xh then there exists
o) q * q“,‘:



a real and non-negative number (that depends on hpJ hq, hp*’ hq*)’

R (¢t ,h, h_, h ) such that the following is true:
p’ q’ p¥ g*

Iy

(a) If in a sequence xhl,..., xhi,..., we substitute th for xhp r times

(r > 0) and Xh for xh s times (s > 0), then the resulting sequence
p* q%

is >, <, or ~ with regard to the original one if and only if

S s s
¥ >R (h h,h_,h ) r <Rt ,h,h_ ,h. ), orr =R (t,h h ,, h )
r PJ q; p“J q* ) PJ qJ pA) q* ) P} q) P“} q* b
respectively.
(b) If in a sequence Xy reeen Xposee, We substitute X for X T times

1 i q

(r > 0) and for s times (s > 0), then the resulting sequence is
*h *h = d
* p*

>, <, or . with regard to the original one if and only if

S S
SR bbb )y v >R (b, B, o h

S
g S oryr =Rt ,h ,h ,h
P* q¥ r ( p) q) P“) );

q* q*

respectively.

We will sometimes represent a finite sequence containing ¢ times the

term X ot S times the term X where the ci's (i =1,...,k) are integer
1 k

and positive numbers, by Clx Xy ottt Cpx X This representation is
1 k

legitimate in view of the Permutation axiom.

We now turn to our last axiom, the

Repetition Axiom. For any integer and positive numbers k and c,
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xhl,..., xhk

1A

Xhi:)---) xhi: “« Cxxhl)"')cxxhk%cxxh.f}'-ucx xh""‘

The following theorem, whose proof we will postpone until the appendix,

enunciates some of the properties of the function R (b, h , h h ).

p?’:’ q*

Theroem 1. The function R (hp, hq, hp*’ hq*)’ that clearly is unique,

satisfies the following properties:

(i If R (h h h ., h ,) >0, then
) P, q; p"} q* ’

R(h_v.Jh.v,Jth) = 1
p" q“ p q R(h bl h bl h o) h J_)
1% q P~ q~
R (h h h )
(ii) R( ,h,h _ , b, = p’ g’ g’ Mk
1% q 12 q- R (h .o B p) h , h )
P* q k
(iii) 1€ > > .. > (2 <p<n,
N %
and xg > X then
R (hlihpig}k) = R(hlihz}gik) + R(hz}h3}ng) + e + R(hp_lihp}g}k) .

Utility indices. We try to determine now if they exist, utility indices

. . c C . .
for the different prizes X, u (xi) =u, 1= 1,..., n, that satisfy the

following condition:

fa]l x,_, y X > X ’ o e
hy by < by T
ko ¢ ko .
® 2z u 2 Z u., where k is any finite -natural number greater
i=1 i - i=1 i
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Theorem 2. (Proof in the Appendix.) There exist utility indices ui

satisfying condition [a] if and only if:

. c c
(i) u >u o x > x ; and

(iiy if x > x and x , > x __, then
- S I/\ S "~

r
c c
u.,. - u )
o s = R (f, s, T*, g%)
c c
u - u
rl\ S4\
. c _ c c 8 : c e
Write u = (ul,-~-, u'). We will call the vectors u , utility vectors.
n

Theorem 3. (Proof is in the Appendix)

- . c i1 s c .
(i) There exists a class 9y of utility vectors u that satisfy

conditions (i) and (ii) of Theorem 2 and therefore condition [a]. Two
— —_ —_— —C = —

vectors u. = (ui,.‘., ui) and uw - (u;,..., ui) belong to the classO(C

if and only if u e uc and ﬁ; = a uf +b for 1 =1,..., n, where a and b

are constants, a > 0.

(ii) If a utility vector u® satisfies conditions (i) and (ii) of
Theorem 2, then u® € UC

Now that we have developed a theory of utility for sequences of
prizes, we can attack the problem suggested by Marschak in [6] of relating
the rule of "long run success' to the rule of maximizing expected utility.

To this task we will turn in the next sections.
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3. MAXIMIZATION OF EXPECTED UTILITY AND THE RULE OF LONG RUN SUCCESS

Let us go back to our example regarding Mr. A and his after lunch drinks.
Suppose that our hostess decides to determine each day by means of a random
device, say a roulette, whether coffee, tea or camomile will be served.

Thus, the set of all possible outcomes of playing once the roulette is

E, and E., and the commitment is made

partitioned into three events El’ 5 3

that those days in which the outcome of playing the roulette belongs to

E1 coffee will be served, those in which the outcome belongs to E2 tea will

be served, and those in which E3 obtains camomile will be served.

Let Pi designate the probability of the event Ei (1 =1, 2, 3). The
word probability here will be used in the objective or statistical sense.
That 1is, Pi will be taken here as the limit to which the frequency of
occurrence of the event Ei "converges' when the random experiment is re-
peated infinite many times.

Let £ be the random experiment that corresponds to a partition of all

E, and E

the possible outcomes of playing cur roulette into three events El’ 5 3

with probabilities P,, P_ and P

TR 30 respectively. Let §' be the random

experiment that corresponds to the partition into the events E!, Eé, Eé

with probabilities P/, Pé, Pé. Suppose now that our hostess presents

Mr. A with the two random experiments and asks him which of the two he
prefers that be used every day in order to determine whether coffee, tea,
or camomile will be served. What random experiment should he choose &
or £'? Or equivalently, what probability distribution should he choose

' 1 vy 9
(Pl, P2, P3) or (Pl, P2, P3).
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Remark. We want to stress here that for Mr. A to choose the random exper-
iment, say 4, or equivalently its corresponding probability distribution
(Pl’ Py P3), means that each and every day the roulette is played; and
that coffee will be served when E1 obtains, tea when E2 and camomile when

E3. Also given the objective or statistical interpretation that we have

P, and P

1’ By 37 this means that by choosing

adopted for the probabilities P

the probability distribution (Pl’ P P3), Mr. A will obtain a sequence of

2)
drinks R N EEETE A such that the frequency with which coffee, tea
1 2 k

and camomile will be served 'converges', respectively, to the probabilities
Pl’ P2 and P3 when k + o.

The rule of long run success. Let s and seeey X!
by Ty "y By

designate, respectively, the sequences of the first k prizes generated by
the random devices # and &', or equivalently by their corresponding proba-
bility distributions (Pl’ P2, P3) and (P!, Pé, Pé). Clearly, the sequences

Ry 3 ees and %' , ..., x' are vandom and therefore we can calculate
h1 th h1 th

the probability that, say, the se juence X s X be preferred by Mr A
1 k

to the sequence x' ,,.., x' . Inr symbols P_ [( s ) > (x! 5 .Lox )],
Xhl th r 'y th hy ",

Now, we say that Mr. A satisfies or follows the rule of long run success

if he chooses the probability distribution (Pl’ P P3) over the probability

2)

distribution (P!, P!

9 Pé) whenever,

lim P [« 5 s ) > (%' ,..., x' )] = 1.
k+e [ Xh1 th Xhl th

It will be easy to prove now the proposition that if Mr. A orders the
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possible sequences of prizes x in a way that satisfies our

hl “ee hk o

permutation, independence, rate of substitution and repetition axioms, then
c . .
the rule of maximizing the expected value of the utilities u, implies that

the rule of long run success, as stated above, is satisfied.

Proof. As it was shown in section 2, if the preference ordering, by Mr. A,

of the possible sequences Xy reeer Xy oo satisfies our axioms, then

1 k

s L. c c c . .
utility indices u (xl), u (XZ)’ u (x3), constant up to positive linear trans-

formations, can be assigned to the prizes Xy, X X, with the property that

2273

the sequence Ky seees Xy is at least as good as the sequence xﬁ ,...,xé
1 k 1 k

if and only if

I M=

uC (xh ) > uC (Xﬂ ). If the sequences
i=1 i 1

Xy v e Xh and N are generated, respectively, by the proba-
1 k 1 k

. - - . o he) 1 1 1]
bility distributions (-l, P2, P3) and (Pl, PZ, P3), then

MR

-1
e Tk .
1

M

uc(xh ) and Zé *:% uc(xﬂ ) are random variables
1 i Toi=l i

and by the law of large numbers /e know that Zk and Zé converge in

3
probability respectively to 7 P, uc(xi) and Z Pi uc(xi) as k 9 .
i=1 * i=1

c
Now, the rule of maximizing the expected value of the utilities u (Xi)

prescribes that the probability distribution (Pl, P P3) be preferred

2}

over the probability distribution (Pi, Pé, Pé) whenever

C
2Py u(xy)
1

I ™Moo

1

c
is greater than P! u (Xi)’ which implies that

1 1

[ NAS)

i
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lim P (2, >2)] = 1
k 9 o
But,
P iz, >2/] = Pr [k z, >k 2]
P[5 oSt ) > 5 uSe )] P [( ) > (x! '
u > u (x = 5 5 > (X b)
I rhy by hy )]
Thus,

3 c 3 c
2 Pi u (Xi) > % P'u (xi) implies that

lim Po{(x 5 ... ) > (x5 . o x' )] =1 Q. E. D.
L R K e

Remark. Observe that the rule of long run success, as stated by us, requires ,

to be satisfied, only that the probability distribution P = (Pl, PZ’ P3) be

ranked above the probability distribution P' = (P., Pé, Pé) whenever

3 c. . c . . 3 . c N c o,

2 P, u(x,) = E [u; P] is grz2ater than 2 P u (x,) =E [u;, ;| P'].
i=1 L 1 1 i=1 1 1 1

But it does not require that the probability distributions P and P' be
ranked as indifferent to each other when E [ui i P] = E[u ' P']. Thus,

if we designate by a[u?

{ i P] the standard deviation of the random

utility given P, i.e., the standard deviation of the random variable
taking the values ui with probabilities Pi (i =1, 2, 3), then the indi-
dual can order the probability distributions, without violating the rule
of long run success, according to the following lexicographic ordering:
. c
P > P ;le[“i

or if E [uz Pl = E f{u; { P'], 5 [u

. c .
| Pl > E [ui | P'],
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4. SOME FINAL REMARKS

Remark 1. 1In this paper we have presented a utility theory for sequences
of prizes that allows us to discuss rational behavior in terms of the
intuitively very appealing rule of long run success. Whether or not this
utility theory is a ''good" one to deal with sequences of prizes remains to
be seen. We are aware of the limitations of its applicability and we in-
dicated this fact in section 2 when we presented and discussed our axioms.
But in cases similar to the example regarding Mr. A and his after lunch
drinks we believe that both our axioms and the conclusions obtained from
our model by defining rational behavior as that behavior that does not
violate the rule of long run success are indeed r-.asonable. For those

situations only we will claim that our model and its conclusions are valid.

Remark 2. It should be noted that the utility indices ui that we have used
in this paper are derived from axioms which do not involve the ordering of
probability distributions or uncer:ain prospects. Thus, in the derivation of
the ug-no uncertainty is involvec. In the Von Neuman and Morgenstern
expected utility theory, on the ceontrary, the utility indices uz are derived
from axioms regarding the ordering of probability distributions or un-

certain prospects.

Remark 3. An interesting question then arises: What is the relationship
\Y c .

between the u, and the ui? More concrestely, suppose that Mr. A satisfies

our axioms and, consequently, by asking him the different rates of substi-

tution postulated by the Rate of Substitution Axiom, we can calculate his
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utility indices ui, UZ’ ug. Suppose also that Mr. A satisfies the

Von Neuman and Morgenstern, so called, rationality axioms and, conse-

quently, by observing how he orders the different probability distribu-

tions (Pl’ P2, P3) we can obtain his utility indices ug, u;, ug. What 1is
v

the relationship between these two sets of indices? Are the u, equal to

< H

c s . . . .
the u_., up to a positive linear transformation? Or, are the u, increasing
i

H

. 2 c
concave or convex transformations of the ul?

Remark 4. 1In situations where our model applies, it appears as reasonable
to adopt as the only rationality criterion the rule of long run success.
But then, the Von Neuman and Morgenstern rationality axioms imply ration-
ality in the sense of the rule of long run success only if the utility
indices uz derived from these axioms are equal to the utility indices uz
up to a positive linear transformation. Thus, suppose that after learning

from Mr. A what are his rate of substitution values, we make the necessary

calculations and obtain a set of utility indices ui, say, ui = 2 for the
utility of coffee, u; = 1 for the utility of tea and ug = 0 for the

o - L1 . v .
utility of camomile. To calculate the utility indices u;, assuming that

Mr. A satisfies the Von Neuman and Morgenstern rationality axioms, we can

put u¥ =2, ug = 0 and then calculate u; by asking Mr. A to reveal the

probability distribution (Pl’ 0, 1 - Pl) that is indifferent from his point

of view to having tea with certainty. In order for Mr. A to satisfy the

rule of long run success, as stated by us, he must choose P1 = L, that

v

will give u, = 1. But he can choose, without violating the rationality
. _3 . . v _ 3 g ] ]
axioms, say, Pl = that will give u2 = E; or Pl = 2, in which case
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u; = %, etc. And in all these cases he will be violating the rule of long
run success although he behaves in accordance with the Von Neuman and

Morgenstern rationality axioms.

Remark 5. 1If we define rational behavior, as we have proposed before for

those situations where our model applies, as any behavior that does not
violate the rule of long run success then it follows that the rationality
axioms are neither necessary nor sufficient for rational behavior. They
are not necessary because the lexicographic ordering of probability
distributions

E [uz | Pl > E [u | P'I,
P> P' if and only if

. c . _ c 7 c c
or if E [u; | P] = E [u; | P'], o [ug | P] > ¢ [uilP']

does satisfy the rule of long run success but not the rationality axioms.
They are not sufficient because the ucility indices uz derived from them
are not necessarily equal to the utility indices ui, up to a positive linear
transformation, and when this is the case the rule of maximizing the ex-

v .
pected value of the utilities ug does violate the rule of long run success.

Remark 6. Since no uncertainty is involved in obtaining the utility indices
c v X .

uss and, on the other hand, the ui's are derived from the ordering of prob-
ability distributions, it appears attractive to try to characterize the

behuvior toward risk of Mr. A by the relationship between his utility

. c v v c . .
indices u, and ugotouy = F(ui). Thus, we propose on a tentative basis the
following definitions:

(1) Mr. A is risk neutral if F is a positive linear transformation.
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(ii) Mr. A is risk averse if F is a monotonic increasing and strictly

concave transformation.

(iii) Mr. A is risk loving if F is a monotonic increasing and strictly

convex transformations.

It is worth noting here that both risk averse and risk loving
behaviors are not rational in the sense that they do not satisfy the rule
of long run success. We do not plan to study here the advantages or dis-
advantages of these definitions. We want to point out however that they
allow us to make comparisons of risk averseness with many commodities
without restricting those comparisons, as Kihlstrom and Mirman do [4],

to cases where the ordinal preferences are the same.
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APPENDIX

Proof of Theorem 1.

Part (i). Assume that R (hp, hq, h o b *) > 0

1
#
and R (hp*; hq*; hp; hq R (hp; h , h L h *)

Then, either (@) R (h ., h ., h h - R (h h h ., h > 1
s (@) ( P“, q* P, q) ( p; q; P“, ) s

Rt ,,h_ ,h,h Rt ,h,h_ ,h ) < 1.
or (B) ( P“, q* P, q) ( p; q’ P", h)

Assume that (o) holds. Since R (th , h , h ,, h ) >0 and
P q P” q~

Rt ,, h_ ,h h - R (h h h ., h > 1, there exist two
( p“’ Q“, p; q) P, q; P"} Q“) ’

numbers a and b integer and positive such that,
R(h,h,h. ,h.) > 2 andR(h ., h,, h,h) > 2
P’ q’ p¥ g b’ p* g’ Tp’ g a’

Consider now a finite sequence containing b times the term X
2

and a times the term X, We can write this finite sequence as follows:
q*
b « Xp oo X . By applying the Rate of Substitution Axiom, we have:
r q*
. % a
(@1) Since R (hp, hq, hp*’ hq ) > B’

b xhp, a y th* > b ‘ Xh , a Xxh K
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(ql) and (qz) imply that b , X, o0 ax X > by N
P * P kS

which is impossible. Therefore (2) cannot hold. 1In a similar way we

can show that (B) cannot hold, which completes the proof of part (i).

Part (ii). Assume that R (hp, hq, hp*’ hq*) > 0 and that

R(t ,h,h,h
( .p/ q} g} )

R ,h,h ,h,)#

= R(h h h h,)*R(h h h ..
o’ Mo Tpw el PROM TR TR TRy TR g g M) TR P B g

q*
Then either
() R¢(h h h ., h,) > R¢( h h h.) - R(h h ., h )
p} q) p"} q" p) q} g} k g} }1k} p“} q“ 2
or

h ., h ).

() Rth , h ,h ., h.,) < R(h,h,h,h ) ,
B p; q; P"’ q* ( p’ > ) k’ p¥ q*

¢ Mg M) R b

Suppose that () holds. Then, there exist numbers b, ¢ and d integer and

positive such that:

(onsider the finite sequence ¢ X by X d X
D .

By applying the Rate of Substitution Axiom we have:

(1) cx X o byx sdox >cxx o, byxox > dx x , since
P ' q p* k

q‘n‘ k

(ii) ¢ X b «x Xy d « X < ¢ x X b «x X d x X since
P * q * g
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(1ii) C!Xh’bxxh :dxXh<CxXh;beh :dxxh:
q q* g q ’

b
- < —_—
since R (hg’ by hp*’ hq*) a’

(i), (ii) and (iii) cannot be satisfied simultaneously, therefore
(o) cannot hold.
In the same way we can see that (B) cannot hold which completes the

proof of Part (ii) of Theorem 1.

Part (iii). It suffices to prove that if > X > and x > , then
M, 7 Ky 7y 30 E 2

R(h, by, g, K) = R(hp, by, g, K) + R(h,, by, g K.

Suppose not. Then, either

(a) R(hl; h3; g, k) > R(hlJ th g, k) r R(th h3: g, k), or

g, k) + Ry, hy, g, K.

(B) R, hy, g, K < Ry, by,

Assume that (=) holds. Then, there exist three numbers b b and c

b b
integers and positive such that ZJ s R(hl’ hz, g, k), ~§ > R(hz, h3, g, k)

1} 2J

b1 + b2
and e < R(hl’ h3, g, k). The rest of the proof consists in con-

structing an appropriate finite sequence as in Part (ii), and show by using
the Rate of Substitution Axiom thst the assumption that () holds leads to

an impossible result. Case (B) can be dealt with in a similar way.

Proof of Theorem 2. We will first prove that if there exist utility

.. c . . s . .
indices ug satisfying condition [a], then they must satisfy conditions



-23-

(i) and (ii) of theorem 2. That they must satisfy condition (i) is obvious.
We will then show that they must satisfy condition (ii). Suppose they do

not. Suppose, for instance, that

c c
u - u
r 3 v
X_ >%X ,%x_, >x, and -¢" ¢ > R(r, s, r¥*, s¥%).
r S e | u e u
o S

> R(r, s, r¥, s%),

ol

“ 0Oln O
\%
|

Now compare the finite sequences ¢ y X , by x , and ¢ yx x , b« X g
r g% s %

c c c
. > C gy u + t x u_,, we should have

, c
Since ¢ u_ + b ( u
T ' s r

. > Cx x, byox

. b \ ,
But, since — > R(r, s, r¥%, s¥%),
s s ¥ (&

Cx X, by x
T

., which is not

W

we should also have ¢ Xs’ by x_, > ¢cx x, bx x
r r S

possible. Thus our assumption that

c c
u =-u , , .
T s > R(r, s, r*, s*) cannot hold. We can dispose of the case
T T
u .- u
T+ S
c c
u - u U U 3 . -
r g < Ry, s, r*, s¥) 1in a similar way.
—_—
u .- u .
r+~ S“

Let us now conclude the proof of Theorem 2. Suppose that we have
utility indices ui that satisfy conditions (i) and (ii) of Theorem 2,

but not condition [«]. Suppose, for instance, that

It =
N M=
[e]

c
<
1 uhi i

DRy > O AR et and
M T e

1 h¥* .

i
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Without loss of generality, we can assume that

u; < “ﬁ* for i =1,..., j (1< j<k); and
i i
C C . .
uh. > Yok fori=j3+1,..., k.
1 1

By condition (i) of Theorem 2, we have:

It
—
-
(-
-

X > X for i
i i

h% -~
i i
, k- k¢
Since Z u < 2 u, ., we have that
., h. _, h¥
i=1 i i=1 i
3 c c k c c
e P T 2
i=1 i i i=j+1 i i

By now dividing both members of the previous inequality by u;*- u; >0
1 1

we obtain, taking into account condition (ii) of Theorem 2,

'% RGE, by, bf, B > 3 RGy, b b, hp).
i=1 i=j+1

We can find integer and positive numbers c, b b, such that:

177 Tk

K kK b i b

P R, h¥ hf, o) < 2 i< i< % R, b, b, )
i=j¢1 ¢t i=j+l ¢ i<l ¢ i=1 t
b, , . .
i < R(h*, h_, hi’ hl), for i =1, y g3
C
b,
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Consider now the sequence,

j K
cy yeees C ¢ X, Cy X N , ( 2Db.) X 4 ( 2 b.), x
Xhl khj B th i=1 * 1 i=j+1 * by

b,

Since — < R(h¥*, h,, h¥
[ 1 1

T hl) for i = 1,...,j,we have by using the Rate

of Substitution Axiom that,

3 k
(1) ¢ x seery C g » C oy 3 5C x s ( g b.) w0 2 b ) x <
Ty “h Xhj+1 LRI A & i=j41 T b

i k
<Cxxh~.'<""’cx X ©x Xy "".’Cxxh’(.g b_i)xxh,( Z bi)XXh'
J =

1 j+ ko i=l 1 i=j+1 1

b
Since i > R(hi, h?, h

g hl) for 1 = j+1,..., k, we can obtain by

0

applying the Rate of Substitution Axiom,

j k
(i1) c ¢ w2ty Cox w2 € x sty Cox , (2 b) X , ( % b)) X <
Xhl th th+1 th N i=j+1 hy

i k
CC o Koy K Cx K seees Cy X ( > bi) x Xy oo (2 bi) X Kpw -
J j L=

1 J+1 ko i=1 1 i=j+l 1
j k
Since 2 b, > = b, by using again the Rate of Substitution Axiom, we
i=1 b i=jHl
obtain,
(ii1) ( ; b.) ( g b.)
111) ¢ g 200G xX . s Cox x 2" 5C % ) 2 i) X ; 2.) x % <
T 3 th+1 L "y i=j+41 * 1
( ] ) ( 3 b.)
< ¢ g ettty Cox w2 € x g 27ty Cox o 2 Z b,) x w2 2z ) x X
Xhl th Xhj+1 " ko i=l * Xhl i=j+1 * By

(1), (ii) and (iii) imply that,
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J
c x Xh sy € X th7 Cx Xh 3ty C x th; (iz bi) X Xh* , (X bi) X Xh

j+1

j j
< cy X R RN ) C x z w7 C v o s...5 Cy w ( Z b- X ) ( Z b-)
by “h i Xhj+1 “ R Y

which in view of the Independence Axiom implies that

C x xhl,..., C y xhk < ¢y xh*l,..., cyxy X Lk. And by using now the

Repetition Axiom, we finally obtain, x ce < X s .
P p) y p) hl; > th hT’ p) Xhﬁ’

which contradicts the assumption that X ot > Kot Xy
) "

We can dispose of the other cases in a similar way.

Proof of Theorem 3. Without loss of generality we can assume

X Xy > -0+ > X > X .
17 %2 n-1 ~ “n
. . -c _ ,-c -cC -c - -c
Consider now the following vector u = (ul, Upyeoes Uiyeess U1 uh):
-c -c -c -c . .
u = 03 U1 " 1; u; = uy + R(i. i+l, n-1, =n), for i =1, , n-2.

Since R(i, i+l, n-1, n) > O for i =1,--., n-2, it follows that the ﬁi's

satisfy condition (i) of Theorem 2. They also satisfy the following

condition (ii)':

5? ) l-lti:+1

e e = R(i, i+l, n-1, n), for i =1,...,0n-1. By taking into
u -u

n-1 n

account now conditions (i), (ii) and (iii) of Theorem 1, it can be seen
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easily that the ﬁz's also satisfy condition (ii) of Theorem 2.

Ifl:lc:(‘j;)"'7 u?7"'7 = o

=c
) is any vector such that u; T aug + b,

cn

c
i n
where a and b are real numbers, a > 0, it follows immediately that as
also satisfies conditions (i) and (ii) of Theorem 2. This completes the
proof of Part (i) of Theorem 3.

Part (ii) of Theorem 3 is easily proved by observing that if a vector

c .. . . s
u satisfies conditions (i) and (ii) of Theorem 2, then it also satisfies

!
condition (ii) stated above and therefore

c c -c -c
i T %a 0 Y% T %41 which implies that
c c B -c -c
Yh-1"" un-l_un
c -c .
ug = a uy + b, a>0, for i =1,---,n.
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Footnotes

T e o x * ;. >

=2] -]
We will write x > X to mean x > X but not x > X

o) % oo o) % o % eo © A
X o~ X means x > X and x > x . We will +se also ">"

(">) to express that the real number written to the left of > is

greater or equal (greater) than the real number written to the right.

0

v . .
A transformation F from the u,'s to the ui's is said to be:

(eI

(i) positive linear if F(u

C
) = a u; + b, with a > O0;

H

. . c c . . c c

(ii) monotonic increasing if uj > ui implies that F(uj) > F(ui);
c c

(iii) strictly concave (convex) if uj > ug and

u; = u§ + (1 - o) ui, 0 <a<1, implies that

a F(u§) + (1-a) F(ui) < () Fla u? + (1 - @) ui].

The conclusion of Remark 5 is similar tc the contention made by

M. Allais [See [1] p. 505, (9) and (10)]. He asserts there that for
the rational man there does not exist in general utility indices UZ
(he calls them utility indicators B(Xi)) such that the decision maker
orders the probability distribucions as if he were maximizing the
expected value of uz. This would be the case if we define ''rational

" as one that does not violste the rule of long run success and he

man
happens to order the probability distributions according to the
lexicographic order described in Remark 4. He also asserts that when
such utility indactor B(xi) exists it must coincide, up to a positive
linear transformation, with what he calls the psychological value
§(xi). If E(Xi) is equal to uc(xi), up to a positive linear transfor-
mation, then the same conclusion is reached in this paper. M. Allais,

however, does not justify his assertions by using the rule of long run

success and the law of large numbers as we do.



