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In this paper we extend the space DIFF of non atomic games
to a space NADIFF consisting of games with non~additive
derivatives., We use the properties of NADIFF to answer
questions like when a value on a subspace Q can be extended
to a diagonal value on (Q®J) V DIFF (the minimal space
contains Q, DIFF and Q+J where J is the set of all majority
games) .






In this paper we introduce the space NADIFF of nonatomic games which is
an extension of the space DIFF defined by Mertens [M]. WNADIFF contaias, in
addition to DIFF, gaumes with non additive derivatives. For example it
contains the market game v = min (ul,...,un) where uieNA (NA is the space of
all non atomic bounded measures) and all market games that have an extension
i.e. market games in EXT (the space EXT was defined first in [M] and is
defined below). The main purpose of this paper is to deal with the existence
of a value on the space (®J, where Q§ is a supsapce of NADIFF, J is the set of
all weighted majority games of the form faou (0 <a <1 is the quota and u is
the majority measure) and Q@J, is the minimal linear and symmetric space that
contains Q as well as all games of the form v-faou in Q*J. If Q is a space of
wmarket games which have an extension then the games v-faOU in QeJ are used to
describe economies in which taxation and redistribution are performed
according to majority rule. Such games play a central rule in Aumann-Kurz [A-
K]. In their model the market games u are differentiable and therefore are in
DIFF. 1In this paper we develop tools that will enable us to deal with
nondifferentiable wmarket games on which a majority rule is imposed. To that
end we first prove several properties of NADIFF and then provide conditions
that guarantee the existence of an extension of a value ¢ on a subspace Q to a
(diagonal) value on the space (QoJ) \y DIFF which is the minimal linear space
containing (Q®J and DIFF. Tauman [T] proved the existence of a value on the
space Q" generated by all n handed glove games, i.e., games of the form

v, = min(ul,...,un) where p; and My for i#¥j, are mutually singular. The
results below will enable us to extend this value to a value on the

space (Qn@J) V DIFF and moreover to provide a

formula for this value. We close the paper by showing the existence of a

value on the space generated by all games of the form v-faou where v is any



market game and faOu is in J. This value distributes the amount v(I) to the

players in the game v-faou according to their political power only.

Notations In this paper we shall basically follow the notation of Aumann and
Shapley [A-S]. Let (I,C ) be a measurable space which is isomorphic to
({0,11,8 ) where B is the set of all Borel subsets of fo,1]. Let J be the
set of all weighted majority games. i.e. J is the set of all games of the form

faOu where 0 < a < 1, ueNA1 and where Qx is the jump function defined by

=
fa(x) 4 or

~
(b 0< x< a { 0 0<x<ua
_ f (x) =

{1 a<x<1 *

1 a £ x<1

~

From now on whenever we will write Ea we will refer to the above definition.
Moreover denote fo(x) =1,
Let Q be a set of games. Q®J is the linear and symmetric space generated

by Q and by the set QeJ of all games of the for v-fa0u where veQ

m

and fQOuEJ. Any game in Q@®J is of the form I v,-f Oui where v;£Q,
i=1 © i -

fa OuieJ, 0 < o <1and 1 € 1< m, Let Q; and Qg be two sets of games.

i
Denote by Q Qy the minimal linear and symmetric supspace that contains Q)

and Qy. For every veBV define the game vt by
+
v (S) = sup I max {V(Si) - V(Si_l), O}
i
where the sup is taken over all chains of coalitions of the form

0=sO

are both non—-decreasing and

fiSl €. C S, = S. The game v~ is defined by vi - v. v' and v~

Il gy = v + v (D).

Let B;(I, C) be the set of real valued measurable functions on (I, C) with

values in [0,1]. Any function w on Bl(I, C) which is of bounded variation can



be represented as w = w' - w where w' and w  are defined similarily to v’ and
v_ respectively. Moreover we have
bl o= w (1) +w (1)
IBV ’
where "w"IBV is the variation norm of w over BI(I, C). Denote;
+ —
lwl = w +w .

Notice that by writing w(t) we consider the argument t as the constant
function f(x) = t.

Let DNA (discrete NA topology) be the coarsest topology on the set B(I,C)
of bounded real valued measurable functions on (I, C) such that for any
peNA the mapping f » ffdu is continuous from B(I, C) to the real line with
the discrete topology. Denote by EXT the set of all games ve BV that have a
DNA continuous extension v* to B;(I, C) such that lv*¥|(t) is continuous at t=0
and t=1.

Any veEXT can be extended to v*¥ on B(I, C) by

vh(f) = v*([max(O,min(l,f))])

Definition (Mertens). DIFF is the set of all games wEXT s.t. for each

continuous function g on [0,1] the limit

1 % - g%
lin [g(t) » Y2LE +TXT) Ll CORF
>0
>0

g

exists (denote it by m%(x)) for any XeBI(I, ¢) and such that m is additive in

X+ If g=1 we write mi instead of m%.

The following theorem is due to Mertens [M].



Theorem ([M]) The space DIFF is linear symmetric and closed supspace of BV

1

that contains bv NA. A value ¢y on DIFF does exist and

o1
(1) ¢Dv =m,
(2) ¢Dv e NA.

Definition The set NADIFF is defined as DIFF but without the requirement that

the derivative m% is additive. Obviously NADIFF is a linear and summetric

subspace of BV that contains DIFF.

Proposition 1 Let Hyseeosly be n measures in NAl. Then the games

v, = min (ul,...,un)
v, = max (ul,...,un)
n
V3 = .H fao“i
i=1

are all in NADIFF and moreover

m% = v, ig(t) dt
1
o
mg = v, zg(t) dt
2
o
mV3 - vl. g(a)

(i.e. none of them are in DIFF).

Proof It is easy to check that v, v,, and v are in EXT.

1 .
g t +1 mln(u*(x),...,u*(x)—t
mVl (x) = lim £g(t) 1 = n dt

>0

>0

= lim }g(t)v?(x) = VT(X) . gg(t)dt.
0
>0
>0

The second equality follows in the same mannet.

n n
n® (x) = lim gg(t) e LM (E ouF)(t +1x) - T (£ our)(t)] dt
V3 >0 T =1 & 1 i=1 * 1t

t>0



1 a
= 1im—T—f g(t) dt.
™0

A L ] i * *
1on 7T min(uF(O), e e 0% (X))

Since g is continuous in (a—tvf(x),a) there exists c(t) in this interval such

that

m% (x) = lim vf(x)-(c(T)]
3 >0
1»0
= gla)-v§(x).
A game of the form vy is called n parlaments majority game.
For convenience let us use from now on the notation mi also as a function
on (when identified with the indicator functions) i.e. we will refer to

1 . . , ,
m sometimes as a function on B(I, C) and sometimes as a function on C .

Proposition 2 Let veEXT and let f be a continuous function on [0,1]. If for

each yeB(I,C ) the limit

vk (t + Ty )-v*(t) dt

2fG) = lim [ £(e)e
v T

20
>0
exists then for each a,beEl and for each xeB(I,C )
f £ £
mv(a + by) = a-mv(l) + b-mv(x).
Proof See [M, p. 527]

Proposition 3 The same conditions as Proposition 2 imply that for each

continuous function g on [0,1]

£ ,1
mgf(x) = mv-ég(t)dt.
ny

In particular if veEXT and if mi(x) is well defined for each x then,

Proof Follows immediately from Proposition 2.



Proposition 4 If ve NADIFF is nondecreasing on 8(I,C ) then mi is also

nondecreasing.

EESQE. A restatement of Lyapunov's theorem is that C (when identified with the
indicator functions) is DNA dense in Bl(I,C ). Therefore if veEXT is
nondecreasing then v* is nondecreasing. Thus for each X1 and X2 in B(I,C)

with Xy > X5

v*(t+Txl)-v*(t) v(t iTx )-v*(t)
2
T T

for each 1 > 0 and 0 < t < 1. Hence mi(xl) > mi(XZ)'

%
Proposition 5 TLet ve NADIFF and assume that for 0 < a € 1 v (t) is continuous

at t=o. Then mi[a’l] (1) = v*(1) - v*(a), where X[a,l] is the indicator of
[@,1]. In particular if a=0 then mi(l) = v(I).

(In fact we have defined mi only for continuous f but the definition can be
obviously extended to all bounded and measurable functions f).

Proof According to [M, p. 538] the limit

X -
o [a,1] (1) = lim } vk(t + 1)-v*(t) dt

v >0 o T
>0

exists (there, only games in DIFF are considered, however the proof does not

make any use of the additivity property of mi for games v in DIFF). Hence:

X 1+t
mv[a’ll (1) = lim %-[ f v*(t)dt - } v*(t)dt]
>0 o+t o
7+0
[lm*m L xceyae]
= lim | — vd(t)dt - = vk(t)dtj.
>0° { Toa
T+0

From the continuity of v*(t) at t=a and t=1 (veEXT)



X
mv[a’ll(l) = v¥(1)-v¥*(a).

Proposition 6 For each ve NADIFF

1
"mv"IBV < "V"BV
Proof Let
2:0 = Xo < Xy € ,eeeS Xy = 1

be a chain of functions from B/(I, ().

k-1

(1) nm‘l,uQ = I Imi(xiﬂ) - mi(xi)l =
i=0 '
k-1 1
= I |lim ?-j[v*(t+Txi+1) - V*(t+TXi)]dt|_
i=0 >0 '
>0
dsing v = vt - v~
k-1 1 1
z I?f[v*(t-i-'rxi_'_l) - v*(tﬁxi)]dt| <
i=0 0
k-1 1 + + 1 - -
iY;O = Z[(V*) (thx  )=(v%) "(thx ) ]de = = [[(v¥) (ehrx, )=(v%) (ebrx )] del .
k-1 )
<1l FERONCCNREIONCLMIET
k-1 1 1 - -
+ iio |?~£ [(v*) (t+Txi+1)—(v*) (t+Txi)]dt|

(v*)” and (v*)+ are nondecreasing on Bl(I,C) therefore the above inegrals

exist, Moreover, the last sums can be written as

ll [ (e -(v0 T (1) ]de +%l [ (v 7 (err)=(v%) ()] dt.

T

From the continuity of (v*) (t) and (v*)+(t) at t=0 and t=1 the last two



summands converge to (v*)+(1)—(v*)+(0) and (v*)7(1)-(v*)7(0) respectively as

t+0. Hence by (1)
um},uQ < (v - T 0)+H(v*) T(1)=(v*) T(0).

Since (v*) (0) = (v*)7(0) = 0 and since )T = vt (D) and (v¥)7(1) - v (D),

1 + - _
IIvaIﬂ S v (I) +v (I) = vi.
. . 1
The last inequality holds for each § therefore "mv"IBV < "V"BV

Proposition 7 let v be in NADIFF. If [v¥|(t) is continuous for each

0 < t <1 then for each faoueJ the game w = (faou)-v is in NADIFF and

(2) mi(x) = fla)v*(a) u*(x) + lim } f(t).V*(t+TX3—V*(t) it
>0 o
t>0

Proof According to [M,p.538] the limit

1 * —yk
lin [ (g o v (H"”T‘) vECE) 4y,
>0 ’
+0

exists for each xeB(I,¢) and for each ve NADIFF such that |v*|(t) is
continuous on [0,1]. The proof of proposition 2 of {M] will remain true if we
replace there the interval [0,t] by the function f.x[t,l]’ where £ is bounded
function which is continuous at each point in {0,1] but for a set of measure 0
with respect to the measure d|v*|(t). Moreover, in that case the limit

1

lim fa(t)'f(t)~
>0
>0

v¥(t+ry )-v*(t) dt
T

exists for each continuous function f on [0,1] and for each xeB(I, (). (Again,
the proof there is for games v in DIFF, however, it does not make any use of

the additivity property of mﬁ. Thus it is valid for games v in NADIFF).



Therefore, the right hand side of (2) is well defined and it remains to prove

that the equality (2) holds. Denote

1 -
Be(rx) = [ [£(e) « BHEIROTD) — yea)e £a)-ux(o) -

v*(t+ry)-v*(t)
X2 ldt

- fa(t)-f(t) .

It is sufficient to prove that

lim Bf(T,X) =0
>0
7+0
for any continuous function f on [0,1]. Indeed for each T > 0 if fa is

continuous from the right then

—

{ v*(t+ty) t > a~tu*(y)
wk(t+ry) = <
10 t <a-tu*{y)
{v*(t) t>a
w*(t) = (l‘
{0 t <a
Hence
a . 1
Ber) = [ £« YO g o ey vacadux (ot
T 0
a-tu*(x)
This implies
a 62
3 leaol s [ PEEDITVI@) G iae + f 0 Y9 jece)—ea) fat.
a~-tp*(x) a~Tu*(x)

|v*|(t) is continuous at t=x, therefore for any € > 0 there is §; > O such

that |[v*|(a+6,)-]v*|(a=6§,) < —5, where M = sup f(x). Thus, for each
1 1 2M
O<x<1
0<t <8  [a—mu*() < t<a==>ad < thry < a¥d ].

Therefore,
vk (t+ry)-v¥(a) = (V*)+(t+’rx)—(V*)—(tﬁ{)-(V*)+(a)+(v*)—(a)

< (v @ =) (@8 )= (v9) (@8 DH(vR) @k )



€
= * % - £
[v*| (a8 )=lv*](@=8 ) < 55 -
In the same way one can also derive
vk(a)-v¥(t+ryx) < |v¥|(a+s )=|v¥|(a-6,) < L
1 1 2M
Thus,
(4) Ivé(a) - v*(errx) | < S5 -
Hence if v*{a) = 0 our proof is complete. In case v*¥(a) # 0, from the
continuity of f at t=x there exists 52 > 0 such that for each 0 < 1 < 62 and
. I _ € .
for each t with a-Tp (X) < t< o |f(t) f(a)l < m
Together with (3) and (4) we then get for each 0 < T < min (61, 62)
1 o
|Bf(r, X)) < = f e dt € €.
T
a=-tp*(x)

The proof for the case where f, is continuous from the left is similar.

Definition the set DTAG* is the set of all games v in EXT such that the

following limit and equality

vE(t+ry )-v*(t) 4

t =0,
T

mi(x)'= 1im Z
™>0
>0

exists for each X€31(I,C)- roughly speaking v is in DIAG* if for each

xeBl(I, ) the average of the marginal contributions of the ideal coalition yx
to the diagnonal {f(x) =t | 0<g x< 1} is zero.

Definition A value ¢ on a symmetric subspace Q of EXT is called "strongly
diagnonal” if for each veQ [ DIAG* ¢v = 0.

The following proposition shows the connection betweea DIAG and DIAG*.

Proposition 8 1If veDIAG* has an extension which is DNA continuous then

ve DIAG* .,

Proof veDIAG implies the existence of a vector u =(ul,...,uq), of NAl




measures and € > 0 such that if Ue = {er:ld(x,[u(¢),u(I)]) < e} then
u(S)t—:U8 ==> v(8) = 0. We shall show that for each feBl(I,C)

u*(f)t—:U€ ==> v¥(f) = 0. Let us assume that er8 but v*(f) # 0. W.2.0.g.

let us assume that v*(f) > 0. Denote B = {xeBl(I, YvE(x) > 0}. v*¥ is DNA
continuous therefore B is open in the DNA topology and it contains f. Thus
there is a neighborhood B of £ of the form

Bf = {xeBl(I, )'v*(x) = v*(f)} for some vector measure v of measures in NAl,

which is contained in B. Using Lyapunov's theorem for (u,v) there is SC

such that (u*, v*)(f) = (u,v)(S). Hence, ¥ and therefore y _eB which

s 5 S
implies thatv(S) > 0. On the other hand u*(f)e Ue therefore

u(S)sU8 and hence v(8) = 0. This contradiction establishes the proof of the
proposition.

Remark There are games which are not in DIAG although it is natural to
include them there. For example consider the game v = max (“l’ 2u2) where u
and My are two measures in NA1 which are mutually singular. For any
automorphism O which preserves Ho but not

My (i.e. S*uz =, but 6*u1¢ ul) the game w = v - O*v vanishes in a
neighborhood of the diagnonal, determined by the vector measure

n o= (ul, G*ul, uz), except for the origin. i.e. there is a neighborhood U of
the half open interval ((0,0,0), (1,1,1)] such that for each &C

if p(S)eU then v(3) = 0. Formally w ¢DIAG, however it is natural to expect
that a diagnonal value ¢ on the linear and symmetric supspace Q(v) that
generated by v will vanish on w. It turns out that this is false. With the
same technique as in [T] one can prove the existence of a diagonal value y on
Q(v) which satisfies vyv =-% (ul + 2 uz). This implies

YW =-—§—(u1 - G*ul) # 0. On the other hand wDIAG* (since ve NADIFF and

1

m
w

0) and therefore each strong diagonal value ¢ on Q(v) will satisfy



Definition A subset B of EXT is invariant if for each veB

m\lleB. If BCHADIFF we denote by ml the set of all m‘ll for veB.

B

Examples the spaces pNA, bv'NA, DIFF and Q" are all invariance spaces.

Notice that

1 1 1
m = m = m = NA
PNA bleA DIFF
and all of them contain NA. By proposition 1 and from the linearity of the
. 1 n 1
mapping m > m for any veQ mo = V.

Remark It is easy to verify that a value ¢ on a symmetric supspace Q of EXT
is a strong diagonal value if and only if ¢v = ¢mi. Denote by ¢D the value
on DIFF. Since ¢Du = for any peNA ¢D is a strong diagonal value.

Definition For any game v the integral of v is denoted by fv and is defined

to be the set of all games w in EXT for which mé is well defined and
v = mi. In the same way the integral of the set of games B is denoted by

/B and is defined by

fp= U fv

Remarks (1) From the main theorem of [M] we have fNA C DIFF.
In fact one can show that a strictly inclusion holds.
(2) If Q is a linear and symmetric space of games then fQ is a
linear and symmetric space of games in EXT which contains DIAG*
(Notice that SO = DIAG*).
(3) It might be the case where fv = P for ve NADIFF. Indeed
proposition 2 implies mé(t) =t mé(l) for each we NADIF aund each
0< t < 1l. Thus mi(t) is contianuous at t and hence
ffaou = f for each faou e J.

Theorem 9 Let ¢ be a value of a linear and symmetric subspace Q of NADIFF,1f



(1) Nac Q.

(2) For each veQ |[v*|(t) is continuous oun [0,1]

Xa,1]
(3) For each 0 < t € 1 and for each veQ m

€Q,
then there exists a strong diagonal value of Y on (Q@J)V/Q which is an

extension of ¢ on DIFF and which satisfies for each veQ and fGOueJ

X

Y((E0u)ev) = vr(ou + ¢ (m 1]y,

Moreover Iyl < li¢l.

Proof Any game w in (QJ) Vv [Q is of the form

W =
i

I ™Mg

(ft'oui)-vi + v
1 i

where ve[Q, v.eQ, 0<t, <1, uisNAl and 1 < i < m.
Define v:(Q@J) v [Q + FA by
IR IR

1
*
vF(thu, + I ¢[mv' i) + ¢m_
1 i=1 i

Y =
i

I ™Ms

If v is well defined then by definition it is linear and symmetric. By

proposition 5 (¢mi)(I) = mi(I) = v(I), and for each 1< i < m

1

Xle,,1]
Y[(ftiOui)-vi)(I) vE(e u (D + [¢mvi i’ (D)=

I

X
vi(e,) + mviti’ll (1) =

vg(ti) + v;(l) - v;(ti) = v;(l) = Vi(I)'

Thus v is efficient.
By proving that y is positive we would conclude that y is well defined.
Indeed if w is nondecreasing mé is nondecreasing (Proposition 4), and by

Proposition 7,

n X
vi(t,)ep. + I nm [ti’l]+ ml
M i=1 Vi v

=]
I
i ™Mo

i



X
Since mv[ti’lland mi are in Q and since NAIEZQ mégQ. ¢ is a value on Q and

i
1, . 1 . : .
m is non~decreasing, thus ¢mw > 0. Now, since the unique value on MA is

the identify functional i.e. ¢p = u for each peNA we have

n X [t
V*(ti)ui+ _z cp(mv

i’lg‘*' ¢m1 = Yw-
. v
1 i=1 i

1 _
(5) 0 < cbmw = .

t Mg

Thus, Yy is positive and hence y is a value on (QoJ) v fQ. To show that vy is

X
a strong diagonal value denote u, = mv[ti’ll, 1< 1< m.
i
m mo 1
ym = I v*(t)ep, + I ¢m + ¢m .
. 1 i . u, 1
i=1 i=1 i m

Hence by proposition 3 we derive that Ymé = yw, which proves that v is
strongly diagonal. Yy is an extension of ¢ since for each veDIFF

mieNA and ¢, v = mi. On the other hand DIFF € [NA and for each ve[NA

1
v

]

v = bl =
Yv = ¢mv = m ¢DV-

The inequality Uyl < I4l is derived by (5) and by Proposition 6 as
follows

< H¢H°ﬂmé"

~ 1
= Igpm il o

1y wil Nllellwl

BV IBVg BV®

Thus the proof is coumplete.

Remark Condition (3) of Theorem 9 holds, for example, for the spaces
pNA,bv'NA, DIFF and Q™.

Our purpose now is to apply the above theorem to subspaces Q of NADIFF which
consists of games which are homogenous of degree 1. To that end we need first
the following proposition.

Proposition 10 If ve NADIFF is homogenous of degree 1 then

(1) lv¥] (t) is continuous for each 0 < t < 1
X
(2) For each 0 < a < 1 m [a, 1]= (l—a)mi.

Proof (1) v is homogenous of degree 1, therefore v and vt are hom. of



degree 1. Thus for each 0<€ t <1
rx(8) = (v) )+ (@) = [ ()T W) W] = £ v,
Hence |v*|(t) is continuous on [0,1].

(2) For each 0 < a <1

a ¢ lim %—z[v*(t+Tx)—v*(t)]dt = lim %b}[v*(at+atx)—v*(at)]dt

>0
>0
= lim L i[v*(s+arx) - v*(s)]ds
aT
>0
1+0
= lim + }[V*(S+Tx) - v*(s)]ds.
T
>0
0
X X
Hence a‘m1 = [0’u]or (l—a)m1 =n [u,l]'
V V V V

Theorem 11 Let ¢ be a value on an invariant space Q of games in NADIFF which
are homogenous of degree one. If Q contains NA then there exists a strong
diagonal value vy on (Q®J)\/ [Q which is an extension of ¢p on DIFF. Moreover
(1) Y((£0n)¥) = av(Den + (1-a)n,
(2) Iyl < Nl
Proof Follows immediately from theorem 9 and proposition 10.

Corollary 12 Let Q = QY Vv NA. Then there exists a strong diagonal value Y on

(@) V’fQ which coincides with ¢y, on DIFF and with the unique value ¢, on
Q™. Moreover

p1+o . ¢+'|Jn
Y(Vn° fQOu) = gev(Depy + (1) & ————

n
where vn = min (ul,...,un) and ui and uj are mutually singular for i#j.
Proof The space Q = Qn\/ NA is invariant space that contains NA. Moreover

v = mi for each weqQ. By [T] there exists a (unique) value ¢, on Q. Hence

by Theorem 11 there exists a strong diagonal value which is an extension of ¢



on DIFF such that for each veQ™

av(Du + (1-w) ¢n mi.

]

Y((faou)'V)

oav(Dp + (1=a) ¢nv.
This together with the fact

. ul‘*-o-'i'un
¢nﬂmn1(u1,.”,unn = =1

n
completes the proof of the theorem.
Definition A market game is a game in EXT which is supper—additive and

homogenous of degree 1. Denote by MA the set of all market games.

Proposition 13 Any market game is in NADIFF. Moreover for each bounded

measurable (Borel) function g on [0,1] and for each veMA

L&

1 * —yk 1 * —y*
lim [g(t) » 2 (t+1¥) V) 4¢ = [g(e)dt lim 2 (t+1x3 vE(e)
>0 >0
720 7+0

Proof Follows from [M,p.540].

Definition Let NF be the closure in the BV-norm of the set of all games in
NAD IFF which are function of finite number of NA measure. Let F be defined in
the same way except that the BV-norm is replaced by the sup-norm.

Proposition 14 NF is invariance subspace of NADIFF and v - mi is in DIAG* N

NAD IFF.

Proof Let veNF. Let (vn)°° be a sequence of games in NADIFF of the form

n=1

V.= fn0un where B is a vector of finite number of NA measures such that

uvn - vllBV + 0 as m,

1, . o koY
mVn is a function of p, since if X1> xszl(I, ) and if un(xl) un(xz)

vE(tiTy ) = fn(tun(l) + Tu;(xl))

£t (D + tu* () = vA(tHy,).

Therefore m! (x,) = al (x,) and ol eF. Now, by Proposition 6
v 1 v 2 v
n n n

1

1 1
Hmvn— mV"IBV = Hmvn_ v"IBV< an V"BV+ 0 as m =,



Since for each weBV Iwl > lwl
BV sup
lm - m | 0 as m =,
q Vv sup

1 .
hence mie F and mi is DNA continuous. Let us prove now that m € EXT. Notice

X 1 1 1 .
i )i i < .
first that m e BV since ve BV and "mv"IBV "V"BV Now, m o, is homogenous of

degree 1 (Proposition 2) therefore (mi)+ and (mi)_ are homogenous of degree

l. Heace, for each 0 < t < 1

Im\lll (t) = (m\1,)+(t) + (m\ll)—(t) =t umiu IRV "

Thus |mi|(t) is continuous in t and mieEXT. Proposition 2 implies that mi is

in NADIFF and

Thus v - mi € DIAG* N\ NADIFF.

Theorem 15
(1) The space MA M1 NF is invariant
(2) Each veMA (I NF is of the form w + mi where weDIFF (1 DIAG*.
Proof Let v be in MA 1l NF. By Proposition 13 MA C NADIFF and for each
xeBl(I,C) and t>0
ml(x) = lim i-[v*(t+Tx) - v*(t)].
v T
>0
T+0

Together with the super-additivity of v*, for each X1s Xy in BI(I’C) such

that x,+ x, eBI(I,C)

1 1
m (x,+ x,) = Ha = [v¥{th G +xy)) - v¥(0)] >
>0
0
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O g —e 3
> lim = [v (2 + Txl) v (2)] +
>0
7+0
1 t t
im — | vk(= - yk(=
+ lim p [ (2 + TXZ) v (2)].
>0
7+0

Hence
1 1 1
m (x, + x2) >m (x ) + o (x,),

and thus mi is superadditive. mieNF (Proposition 14) Hence

mie MAN NF. Now, by Proposition 13 for each continuous function f on [0,1]

1
mf 1 - mf ~ mf = mf - m1 . ff(t)dt = mf— mf= 0.
Vv —m v 1 v vV g v v
v m
v
Therefore mf 1 is additive and v - mi e DIFF.
v - mV

Theorem 11 can be restated for supspace Q of market games that are spanned by
games which are function of finite number of measures as follows.
Theorem 16 Let ¢ be a value on a supspace Q of MANNF that contains NA. Then
there exists a strong diagonal value Yy on (QOJ)\/[Q which is an extension of
¢p on DIFF. vy obeys

(1) ¥((£ou)v) =a v(Deu + (1-a)¢m]

(2) Iyt < Ngl.

The rest of the paper is conceptually connected to the previous
discussion however it is completely independent. Denote by H' the set of all
games in F which are homogenous of degree one and NA continuous at l. H'+J is
the set of all games of the form (faou)-v where faOueJ and veH'. Let H'J be
the minimal linear and symmetric space that coantains H'e J. It turns out that
the measure v(I)ep that distributes the amount v(I) among the players

according to their political power only, defines a value on H'J.



Theorem 17
(1) A value ¢ on H'J does exist. ¢ satisfies ¢((fa0u)-v) = y(Dey.
(2) A semi-value ¢ on H'J does exist. ¢ satisfies 5((fa0u)-v) = qev(ID)ep.

Proof Each weH'J is of the form

=]

wo= I(f, oug)vy
i=1 "1i

where visH', ft OuisJ, 1 € 1 € n. Let us define ¢ and b on H'J by
i

oW =

(=]
-]

vi(I) My bw =

Ity (Duy
1 i

i 1

By definition if ¢ is well defined then it is linear symmetric and efficient,
and if ¢ is well defined then it is linear and symmetric. Hence in opder to
complete the proof of theorem 17 it is sufficient to prove that if w is non-
decreasing then both I vi(I)ui > 0 and tivi(I)'ui > 0 (providing that we

also prove that ¢ and 5 are well defined). Denote N = {l, 2,...,n}. Let us

partition N into sets Ni, Noyeooh N according to the jumps location i.e.
.L-
N =N, N N, =9 for i#j and
=1
b, Cti<==>35k, 38 K k<L<L[ieN, EN].

Now for each 1 € k < Lz%et us partition Nk according to the majority
: r r S
measures. i.e. = \UN N M = 0 for r#s and
T N N

. . i
¥i,j Wy < uj {==>3m, | €< mx< Zk (i, je N%).

For each m, 1 € m < 2k’ let us choose a representative i in NE and let us
L
“)

m 1
denote n, = My Let nk = (nk,...,nk

K and let k, 1< k < L be fixed. n

k
consists of Zk different NA1 measures. Therefore there exists a coalition

Te C such that ni(T) # ni(T) for each i#j, 1< i, j < 2k (for a proof see the

proof of Proposition 8.11 of [A-S]). W.L.o.g. let us assume that



L

1 2 , k
nk(T) < nk(T) Ceeee <np

().
For any € > O define 8 in Bl(I,C) by

8 = &Xp + (l—s)XI.

€

For each 1 € i < j < 2k

(e < ).

Therefore, since 8 —=—> ] in the NA topology as € > O

*
TN " (1-g ) | < min e, - ¢t.1,
P € ttt, ]
i

for each 1 < p< L and 1 < q < Zp.

Let us fix jO’ 1< j0 € %, and let us choose 0 < BO < 1 such that

k
Jo
T]k (BO. gE) = tk'

Assume that ft is continuous from the left on [0,1] for each
i
1< i< n. Since wF is nondecreasing w* is nondecreasing on Bl(I,C) and

thus for each B > BO

(6) 0 < w(Beg ) - w*(Byeg ) = I [(ft'ou;)-v;](s-gs) +
. k=1 i
ie N
p=1 p
+ i [(ftiOu§)-v;](B'g€) - kﬁl[(ft ou¥)] (B +5.)
N ieJ N
ALY p=1
=iy

= I [(£, oup)evi](Byrg, )-

Zk j1
18.\4 Nk
J=J0+l

For each i, 1 € 1 € n, v, is homogenous of degree 1l thus if g ~» 80, g > BO we



have
. %Yo yk
Bpr T [(£, oubvil(g) > 0
JO 1
ieNk

If € > 0 is small enough such that ui(gs) > ti for each 1< i< n

v¥ (o
§ $(g.) > 0.
ie Nk

v; is NA continuous in 1 hence if € tends to zero we have

z vi(I) > 0.
h|
ie N 0
Jo
By the definition of Nk

X ‘:Iii(I)ui > 0.
ieNko

The last inequality holds for each jO’ 1 < jO < 2 Therefore

k.
.Z vi(I)ui 2 0.
1€Nk

and

by tm Vi(I)“i > 0,

. k
1€Nk
where tn =ty for each ieNk. The last two inequalitites hold for each k therefore
i
n
ow = -Z vi(I)ui >0
i=1
and
_ n
ow = iil tivi(I) ui> 0

Hence the proof is complete. In case there are i's for which ft is
i
continuous from the right on [0,1] we will use (6) twice, once for B > BO and



once for B < 80.
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