DISCUSSION PAPER NO. 467

VALUES OF MARKET WITH A MAJORITY RULE

Ъу

Yair Tauman */

May 1981

*/ J. L. Kellogg Graduate School of Management
Northwestern University
Evanston, Illinois 60201

In this paper we extend the space DIFF of non atomic games to a space NADIFF consisting of games with non-additive derivatives. We use the properties of NADIFF to answer questions like when a value on a subspace Q can be extended to a diagonal value on ($Q \circ J$) V DIFF (the minimal space contains Q, DIFF and $Q \circ J$ where J is the set of all majority games).

In this paper we introduce the space NADIFF of nonatomic games which is an extension of the space DIFF defined by Mertens [M]. NADIFF contains, in addition to DIFF, games with non additive derivatives. For example it contains the market game $v = \min (\mu_1, \dots, \mu_n)$ where $\mu_i \in NA$ (NA is the space of all non atomic bounded measures) and all market games that have an extension i.e. market games in EXT (the space EXT was defined first in [M] and is defined below). The main purpose of this paper is to deal with the existence of a value on the space Q⊕J, where Q is a supsapce of NADIFF, J is the set of all weighted majority games of the form $f_{\alpha} \, o\mu$ (0 < α < 1 is the quota and μ is the majority measure) and Q@J, is the minimal linear and symmetric space that contains Q as well as all games of the form $v \cdot f_{\alpha} \circ \mu$ in Q · J · If Q is a space of market games which have an extension then the games v• $f_{\alpha} \circ \mu$ in Q•J are used to describe economies in which taxation and redistribution are performed according to majority rule. Such games play a central rule in Aumann-Kurz [A-K]. In their model the market games µ are differentiable and therefore are in DIFF. In this paper we develop tools that will enable us to deal with nondifferentiable market games on which a majority rule is imposed. To that end we first prove several properties of NADIFF and then provide conditions that guarantee the existence of an extension of a value ϕ on a subspace Q to a (diagonal) value on the space (Q⊕J) ∨ DIFF which is the minimal linear space containing (@J and DIFF. Tauman [T] proved the existence of a value on the space $\mathbf{Q}^{\mathbf{n}}$ generated by all n handed glove games, i.e., games of the form $v_n = \min(\mu_1, \dots, \mu_n)$ where μ_i and μ_j , for $i \neq j$, are mutually singular. The results below will enable us to extend this value to a value on the space $(Q^{n} \circ J) \vee DIFF$ and moreover to provide a formula for this value. We close the paper by showing the existence of a value on the space generated by all games of the form $v \cdot f \circ \mu$ where v is any

market game and $f_{\alpha}^{\ \circ}\mu$ is in J. This value distributes the amount v(I) to the players in the game v·f_ $\alpha^{\ \circ}\mu$ according to their political power only.

Notations In this paper we shall basically follow the notation of Aumann and Shapley [A-S]. Let (I,C) be a measurable space which is isomorphic to ([0,1],B) where B is the set of all Borel subsets of [0,1]. Let J be the set of all weighted majority games. i.e. J is the set of all games of the form f_{α} oµ where $0 < \alpha < 1$, $\mu \in NA^1$ and where f_{α} is the jump function defined by

$$f_{\alpha}(x) = \begin{cases} 0 & 0 \le x \le \alpha \\ 1 & \alpha \le x \le 1 \end{cases} \quad \text{or} \quad f_{\alpha}(x) = \begin{cases} 0 & 0 \le x \le \alpha \\ 1 & \alpha \le x \le 1 \end{cases}$$

From now on whenever we will write f_{α} we will refer to the above definition. Moreover denote $f_{\alpha}(x) = 1$.

Let Q be a set of games. QeJ is the linear and symmetric space generated by Q and by the set QeJ of all games of the for vefqou where veQ and fqoueJ. Any game in QeJ is of the form $\sum_{i=1}^{\infty} v_i \cdot f_{\alpha_i} \circ \mu_i$ where $v_i \in Q$, i=1 of i=1

$$v^{+}(S) = \sup_{i} \sum_{i} \max \{v(S_{i}) - v(S_{i-1}), 0\}$$

where the sup is taken over all chains of coalitions of the form $\emptyset = S_0 \subseteq S_1 \subseteq \ldots \subseteq S_n = S. \quad \text{The game v^- is defined by $v^+ - v$. v^+ and v^- are both non-decreasing and }$

$$\|v\|_{RV} = v^{+}(I) + v^{-}(I).$$

Let $B_1(I, C)$ be the set of real valued measurable functions on (I, C) with values in [0,1]. Any function w on $B_1(I, C)$ which is of bounded variation can

be represented as $w = w^+ - w^-$ where w^+ and w^- are defined similarily to v^+ and v^- respectively. Moreover we have

$$\|w\|_{TBV} = w^{+}(1) + w^{-}(1),$$

where $\|\mathbf{w}\|_{TRV}$ is the variation norm of w over $B_1(I, C)$. Denote;

$$|w| = w^{+} + w^{-}$$
.

Notice that by writing w(t) we consider the argument t as the constant function f(x) = t.

Let DNA (discrete NA topology) be the coarsest topology on the set B(I,C) of bounded real valued measurable functions on (I,C) such that for any $\mu\epsilon$ NA the mapping $f \to \int f d\mu$ is continuous from B(I,C) to the real line with the discrete topology. Denote by EXT the set of all games $v\epsilon$ BV that have a DNA continuous extension v^* to $B_1(I,C)$ such that $|v^*|(t)$ is continuous at t=0 and t=1.

Any $v \in EXT$ can be extended to v * on B(I, C) by v * (f) = v * ([max(0,min(l,f))])

Definition (Mertens). DIFF is the set of all games veEXT s.t. for each continuous function g on [0,1] the limit

$$\lim_{\substack{\tau>0\\\tau \neq 0}} \int_0^1 g(t) \cdot \frac{v^*(t + \tau \chi) - v^*(t)}{\tau} dt$$

exists (denote it by $m_v^g(\chi)$) for any $\chi \in B_1(I, C)$ and such that m_v^g is additive in χ . If g=1 we write m_v^l instead of m_v^g .

The following theorem is due to Mertens [M].

Theorem ([M]) The space DIFF is linear symmetric and closed supspace of BV that contains bv 1 NA. A value $\phi_{\,D}$ on DIFF does exist and

$$(1) \quad \phi_{D} v = m_{v}^{1}$$

(2)
$$\phi_{D} v \in NA$$
.

<u>Definition</u> The set NADIFF is defined as DIFF but without the requirement that the derivative $\mathbf{m}_{\mathbf{V}}^{\mathbf{g}}$ is additive. Obviously NADIFF is a linear and summetric subspace of BV that contains DIFF.

<u>Proposition 1</u> Let μ_1, \dots, μ_n be n measures in NA¹. Then the games

$$v_1 = \min (\mu_1, \dots, \mu_n)$$

$$v_2 = \max (\mu_1, \dots, \mu_n)$$

$$v_3 = \prod_{i=1}^{n} f_{\alpha} \circ \mu_i$$

are all in NADIFF and moreover

$$m_{v_1}^g = v_1 \int_0^1 g(t) dt$$

$$m_{v_2}^g = v_2 \int_0^1 g(t) dt$$

$$m_{v_3}^g = v_1 \cdot g(\alpha)$$

(i.e. none of them are in DIFF).

<u>Proof</u> It is easy to check that v_1 , v_2 , and v_3 are in EXT.

The second equality follows in the same manner.

$$m_{\mathbf{v}_{3}}^{\mathbf{g}}(\chi) = \lim_{\substack{\tau > 0 \\ t \neq 0}} \int_{0}^{1} g(t) \cdot \frac{1}{\tau} \left[\prod_{i=1}^{n} (f_{\alpha} \circ \mu_{i}^{*})(t + \tau \chi) - \prod_{i=1}^{n} (f_{\alpha} \circ \mu_{i}^{*})(t) \right] dt$$

$$= \lim_{\substack{\tau > 0 \\ \tau \neq 0}} \frac{1}{\tau} \int_{0}^{\alpha} g(t) dt.$$

Since g is continuous in $(\alpha - \tau v_1^*(\chi), \alpha)$ there exists $c(\tau)$ in this interval such that

$$m_{\mathbf{v}_{3}}^{g}(\chi) = \lim_{\tau > 0} v_{1}^{*}(\chi) \cdot (c(\tau))$$

$$\tau > 0$$

$$\tau \rightarrow 0$$

$$= g(\alpha) \cdot v_{1}^{*}(\chi).$$

A game of the form v_3 is called n parlaments majority game.

For convenience let us use from now on the notation m_V^l also as a function on (when identified with the indicator functions) i.e. we will refer to m_V^l sometimes as a function on B(I, C) and sometimes as a function on C. Proposition 2 Let veEXT and let f be a continuous function on [0,1]. If for each $\chi \epsilon \, B(I,C)$ the limit

$$m_{\mathbf{v}}^{\mathbf{f}}(\chi) = \lim_{\substack{\tau > 0 \\ \tau \neq 0}} \int_{0}^{1} f(t) \cdot \frac{\mathbf{v}^{*}(t + \tau \chi) - \mathbf{v}^{*}(t)}{\tau} dt$$

exists then for each a, be E^1 and for each $\chi \in B(I,C)$

$$m_{V}^{f}(a + b\chi) = a \cdot m_{V}^{f}(1) + b \cdot m_{V}^{f}(\chi).$$

<u>Proof</u> See [M, p. 527]

<u>Proposition 3</u> The same conditions as Proposition 2 imply that for each continuous function g on [0,1]

$$m_{v}^{g}(\chi) = m_{v}^{f} \cdot \int_{0}^{1} g(t) dt.$$

In particular if veEXT and if $m_v^1(\chi)$ is well defined for each χ then,

$$\mathbf{m}_{\mathbf{u}_{1}}^{1} = \mathbf{m}_{\mathbf{v}}^{1}.$$

Proof Follows immediately from Proposition 2.

Proposition 4 If ve NAD IFF is nondecreasing on B(I, C) then m_{V}^{1} is also nondecreasing.

<u>Proof</u> A restatement of Lyapunov's theorem is that C (when identified with the indicator functions) is DNA dense in $B_1(I,C)$. Therefore if vEEXT is nondecreasing then v* is nondecreasing. Thus for each χ_1 and χ_2 in B(I,C) with $\chi_1 \geqslant \chi_2$

$$\frac{v^*(t+\tau\chi_1)-v^*(t)}{\tau} \geqslant \frac{v(t \not \pm \tau\chi)-v^*(t)}{\tau}$$

for each $\tau > 0$ and $0 \le t \le 1$. Hence $m_v^1(\chi_1) > m_v^1(\chi_2)$.

Proposition 5 Let ve NADIFF and assume that for $0 \le \alpha \le 1$ v*(t) is continuous at t= α . Then $m_v^{\chi[\alpha,1]}$ (1) = v*(1) - v*(α), where $\chi_{[\alpha,1]}$ is the indicator of $[\alpha,1]$. In particular if α =0 then $m_v^1(1)$ = v(I).

(In fact we have defined m_{V}^{f} only for continuous f but the definition can be obviously extended to all bounded and measurable functions f).

Proof According to [M, p. 538] the limit

$$\begin{bmatrix}
x & (\alpha, 1) \\
y & (1) = \lim_{\tau > 0} \begin{cases}
\tau > 0
\end{cases} \frac{v * (t + \tau) - v * (t)}{\tau} dt$$

exists (there, only games in DIFF are considered, however the proof does not make any use of the additivity property of m_{ν}^{f} for games ν in DIFF). Hence:

From the continuity of $v^*(t)$ at $t=\alpha$ and t=1 ($v \in EXT$)

$$m_{v}^{\chi[\alpha,1]}(1) = v*(1)-v*(\alpha).$$

Proposition 6 For each ve NADIFF

Proof Let

$$\Omega:0=\chi_0 \leq \chi_1 \leq \ldots \leq \chi_k=1$$

be a chain of functions from $B_1(I, C)$.

(1)
$$\|\mathbf{m}_{\mathbf{v}}^{1}\|_{\Omega} = \sum_{i=0}^{k-1} |\mathbf{m}_{\mathbf{v}}^{1}(\chi_{i+1}) - \mathbf{m}_{\mathbf{v}}^{1}(\chi_{i})| =$$

$$= \sum_{i=0}^{k-1} |\lim_{\substack{\tau > 0 \\ \tau \neq 0}} \frac{1}{\tau} \int_{0}^{\tau} [\mathbf{v}^{*}(t+\tau\chi_{i+1}) - \mathbf{v}^{*}(t+\tau\chi_{i})] dt|,$$

 $using v = v^+ - v^-$

$$\sum_{i=0}^{k-1} \left| \frac{1}{\tau} \int_{0}^{1} \left[v^{*}(t + \tau \chi_{i+1}) - v^{*}(t + \tau \chi_{i}) \right] dt \right| \leq$$

$$\sum_{i=0}^{k-1} |\frac{1}{\tau}|_0^1 [(v^*)^+ (t+\tau \chi_{i+1})^- (v^*)^+ (t+\tau \chi_i)] dt - \frac{1}{\tau} \int [(v^*)^- (t+\tau \chi_{i+1})^- (v^*)^- (t+\tau \chi_i)] dt|.$$

$$\begin{cases} \frac{k-1}{2} & \frac{1}{\tau} \int_{0}^{1} [(v^*)^{+}(t+\tau \chi_{i+1})^{-}(v^*)^{+}(t+\tau \chi_{i})] dt \end{cases}$$

$$+\sum_{i=0}^{k-1} \left| \frac{1}{\tau} \int_{0}^{1} [(v^{*})^{-}(t+\tau \chi_{i+1})^{-}(v^{*})^{-}(t+\tau \chi_{i})] dt \right|$$

 $(v^*)^-$ and $(v^*)^+$ are nondecreasing on $B_1(I,C)$ therefore the above inegrals exist. Moreover, the last sums can be written as

$$\frac{1}{\tau} \int_{0}^{1} \left[(v^{*})^{+} (t+\tau)^{-} (v^{*})^{+} (t) \right] dt + \frac{1}{\tau} \int_{0}^{1} \left[(v^{*})^{-} (t+\tau)^{-} (v^{*})^{-} (t) \right] dt.$$

From the continuity of $(v^*)^-(t)$ and $(v^*)^+(t)$ at t=0 and t=1 the last two

summands converge to $(v^*)^+(1)^-(v^*)^+(0)$ and $(v^*)^-(1)^-(v^*)^-(0)$ respectively as $\tau \to 0$. Hence by (1)

$$\|\mathbf{m}_{\mathbf{v}}^{1}\|_{\Omega} \le (\mathbf{v}^{*})^{+}(1) - (\mathbf{v}^{*})^{+}(0) + (\mathbf{v}^{*})^{-}(1) - (\mathbf{v}^{*})^{-}(0).$$

Since $(v^*)^-(0) = (v^*)^-(0) = 0$ and since $(v^*)^+(1) = v^+(1)$ and $(v^*)^-(1) - v^-(1)$, $\|m_v^1\|_{\Omega} \le v^+(1) + v^-(1) = \|v\|.$

The last inequality holds for each Ω therefore $\|\mathbf{m}_{\mathbf{v}}^{1}\|_{\mathrm{IBV}} \leq \|\mathbf{v}\|_{\mathrm{BV}}$ Proposition 7 Let \mathbf{v} be in NADIFF. If $\|\mathbf{v}^*\|_{\mathrm{L}}$ is continuous for each $0 \leq t \leq 1$ then for each $\mathbf{f}_{\alpha}^{\circ} \circ \mu \in J$ the game $\mathbf{w} = (\mathbf{f}_{\alpha}^{\circ} \circ \mu) \cdot \mathbf{v}$ is in NADIFF and

(2)
$$m_{W}^{f}(\chi) = f(\alpha)v^{*}(\alpha) \mu^{*}(\chi) + \lim_{\substack{\tau > 0 \\ t \neq 0}} \int_{\alpha}^{t} f(t) \cdot \frac{v^{*}(t+\tau\chi)-v^{*}(t)}{\tau} dt$$

Proof According to [M,p.538] the limit

$$\lim_{\tau > 0} \int_{0}^{1} \chi_{[0,\alpha]} \frac{v^{*}(t+\tau\chi)-v^{*}(t)}{\tau} dt,$$

exists for each $\chi \in B(I,C)$ and for each $v \in NADIFF$ such that $|v^*|(t)$ is continuous on [0,1]. The proof of proposition 2 of [M] will remain true if we replace there the interval [0,t] by the function $f \cdot \chi_{[t,1]}$, where f is bounded function which is continuous at each point in [0,1] but for a set of measure 0 with respect to the measure $d|v^*|(t)$. Moreover, in that case the limit

$$\lim_{\tau > 0} \int_{0}^{1} f_{\alpha}(t) \cdot f(t) \cdot \frac{v^{*}(t+\tau \chi) - v^{*}(t)}{\tau} dt$$

$$\tau + 0$$

exists for each continuous function f on [0,1] and for each $\chi \in B(I,C)$. (Again, the proof there is for games v in DIFF, however, it does not make any use of the additivity property of m_V^f . Thus it is valid for games v in NADIFF).

Therefore, the right hand side of (2) is well defined and it remains to prove that the equality (2) holds. Denote

$$\beta_{f}(\tau,\chi) = \int_{0}^{1} \left[f(t) \cdot \frac{w^{*}(t+\tau\chi)-w^{*}(t)}{\tau} - v^{*}(\alpha) \cdot f(\alpha) \cdot \mu^{*}(\chi) - f(\alpha) \cdot f(\alpha) \cdot \mu^{*}(\chi) \right] dt$$

It is sufficient to prove that

$$\lim_{\tau>0} \beta_{f}(\tau,\chi) = 0$$

$$\tau>0$$

for any continuous function f on [0,1]. Indeed for each $\tau>0$ if f_α is continuous from the right then

$$w^*(t+\tau\chi) = \begin{cases} v^*(t+\tau\chi) & t \ge \alpha - \tau\mu^*(\chi) \\ 0 & t < \alpha - \tau\mu^*(\chi) \end{cases}$$

$$w^*(t) = \begin{cases} v^*(t) & t \ge \alpha \\ 0 & t < \alpha \end{cases}$$

Hence

$$\beta_{f}(\tau,\chi) = \int_{\alpha-\tau\mu^{*}(\chi)}^{\alpha} f(t) \cdot \frac{v^{*}(t+\tau\chi)}{\tau} dt - \int_{0}^{1} f(\alpha)v^{*}(\alpha)\mu^{*}(\chi)dt.$$

This implies

$$(3) \qquad |\beta_{f}(\tau,\chi)| \leq \int_{\alpha-\tau\mu^{*}(\chi)}^{\alpha} |\frac{v^{*}(t+\tau\chi)-v^{*}(\alpha)}{\tau}| \cdot |f(t)| dt + \int_{\alpha-\tau\mu^{*}(\chi)}^{\alpha} \frac{v^{*}(\alpha)}{\tau} |f(t)-f(\alpha)| dt.$$

$$\begin{split} |v*|(t) \text{ is continuous at } t=&\alpha\text{, therefore for any }\epsilon>0 \text{ there is }\delta_1>0 \text{ such}\\ \text{that } |v*|(\alpha+\delta_1)-|v*|(\alpha-\delta_1)<\frac{\epsilon}{2M}\text{, where } M=\sup_{0\leqslant x\leqslant 1}f(x)\text{. Thus, for each}\\ 0<\tau<\delta_1 \qquad \left[\alpha-\tau\mu*(\chi)\leqslant t\leqslant\alpha\Longrightarrow\alpha-\delta_1\leqslant t+\tau\chi\leqslant\alpha+\delta_1\right]\text{.} \end{split}$$

Therefore,

$$v^{*}(t+\tau_{\chi})-v^{*}(\alpha) = (v^{*})^{+}(t+\tau_{\chi})-(v^{*})^{-}(t+\tau_{\chi})-(v^{*})^{+}(\alpha)+(v^{*})^{-}(\alpha)$$

$$\leq (v^{*})^{+}(\alpha+\delta_{1})-(v^{*})^{-}(\alpha-\delta_{1})-(v^{*})^{+}(\alpha-\delta_{1})+(v^{*})^{-}(\alpha+\delta_{1})$$

=
$$|v*|(\alpha+\delta_1)-|v*|(\alpha-\delta_1) < \frac{\varepsilon}{2M}$$
.

In the same way one can also derive

$$v*(\alpha)-v*(t+\tau\chi) \leq |v*|(\alpha+\delta_1)-|v*|(\alpha-\delta_1) \leq \frac{\varepsilon}{2M}$$
.

Thus,

(4)
$$|v*(\alpha) - v*(t+\tau_X)| < \frac{\varepsilon}{2M}$$
.

Hence if $v*(\alpha)=0$ our proof is complete. In case $v*(\alpha)\neq 0$, from the continuity of f at t= α there exists $\delta_2>0$ such that for each $0<\tau<\delta_2$ and for each t with $\alpha-\tau\mu*(\chi)\leqslant t\leqslant \alpha$ $|f(t)-f(\alpha)|<\frac{\varepsilon}{2|v*(\alpha)|}$. Together with (3) and (4) we then get for each $0<\tau<\min(\delta_1,\delta_2)$

$$|\beta_{f}(\tau, \chi)| \leq \frac{1}{\tau} \int_{\alpha-\tau\mu^{*}(\chi)}^{\alpha} \epsilon dt \leq \epsilon.$$

The proof for the case where f_2 is continuous from the left is similar. <u>Definition</u> the set DIAG* is the set of all games v in EXT such that the following limit and equality

$$\mathbf{w}_{\mathbf{v}}^{1}(\chi) = \lim_{\tau \to 0} \begin{cases} \frac{\mathbf{v}^{*}(t+\tau\chi)-\mathbf{v}^{*}(t)}{\tau} & \text{dt} = 0, \\ \frac{\tau}{\tau} & \text{otherwise} \end{cases}$$

exists for each $\chi \in B_1(I,C)$. roughly speaking v is in DIAG* if for each $\chi \in B_1(I,) \text{ the average of the marginal contributions of the ideal coalition } \chi \text{ to the diagnonal } \{f(x) \equiv t \mid 0 \leqslant x \leqslant 1\} \text{ is zero.}$

Definition A value ϕ on a symmetric subspace Q of EXT is called "strongly diagnonal" if for each veQ \cap DIAG* ϕ v = 0.

The following proposition shows the connection between DIAG and DIAG*.

Proposition 8 If $v \in D IAG*$ has an extension which is DNA continuous then $v \in D IAG*$.

<u>Proof</u> veDIAG implies the existence of a vector $\mu = (\mu_1, \dots, \mu_n)$, of NA

measures and $\epsilon > 0$ such that if $U_{\epsilon} = \left\{ x \epsilon E_{+}^{n} | d(x, [\mu(\phi), \mu(I)]) < \epsilon \right\}$ then $\mu(S) \in U_{\epsilon} \implies v(S) = 0$. We shall show that for each $f \in B_1(I,C)$ $\mu*(f)\epsilon U_{\epsilon} \Longrightarrow v*(f) = 0$. Let us assume that $f\epsilon U_{\epsilon}$ but $v*(f) \neq 0$. W.l.o.g. let us assume that v*(f) > 0. Denote $B = \{\chi \in B_1(I,) | v*(\chi) > 0\}$. v* is DNA continuous therefore B is open in the DNA topology and it contains f. Thus there is a neighborhood B_f of f of the form

 $B_f = \{\chi \in B_1(I,) | v*(\chi) = v*(f) \}$ for some vector measure v of measures in NA^1 , which is contained in B. Using Lyapunov's theorem for (μ, ν) there is & Csuch that $(\mu^*, \nu^*)(f) = (\mu, \nu)(S)$. Hence, $\chi_S \in B_f$ and therefore $\chi_S \in B$ which implies that v(S) > 0. On the other hand $\mu*(f)\epsilon U_{\epsilon}$ therefore $\mu(S)\epsilon U_{\epsilon}$ and hence v(S)=0. This contradiction establishes the proof of the proposition.

Remark There are games which are not in DIAG although it is natural to include them there. For example consider the game v = max (μ_1 , $2\mu_2$) where μ_1 and μ_2 are two measures in NA $^{\rm l}$ which are mutually singular. For any automorphism θ which preserves μ_2 but not

 μ_1 (i.e. $\theta * \mu_2 = \mu_2$ but $\theta * \mu_1 \neq \mu_1$) the game $w = v - \Theta * v$ vanishes in a neighborhood of the diagnonal, determined by the vector measure $\mu = (\mu_1, \theta * \mu_1, \mu_2)$, except for the origin. i.e. there is a neighborhood U of the half open interval ((0,0,0),(1,1,1)] such that for each &C if $\mu(S) \in U$ then $\nu(S) = 0$. Formally w $\notin DIAG$, however it is natural to expect that a diagnonal value ϕ on the linear and symmetric supspace Q(v) that generated by v will vanish on w. It turns out that this is false. With the same technique as in [T] one can prove the existence of a diagonal value γ on Q(v) which satisfies $\gamma v = \frac{2}{3} (\mu_1 + 2 \mu_2)$. This implies $\gamma w = \frac{2}{3}(\mu_1 - \Theta * \mu_1) \neq 0$. On the other hand weDIAG* (since veNADIFF and

 m_{tr}^{1} = 0) and therefore each strong diagonal value ϕ on Q(v) will satisfy

 $\phi w = 0$.

Definition A subset B of EXT is invariant if for each $v \in B$ $m_V^1 \in B$. If B $\subseteq NAD$ IFF we denote by m_B^1 the set of all m_V^1 for $v \in B$.

Examples the spaces pNA, bv'NA, DIFF and Q^{Ω} are all invariance spaces.

Notice that

$$m_{PNA}^1 = m_{DIFF}^1 = NA$$

and all of them contain NA. By proposition 1 and from the linearity of the mapping $m \to m_v^1$ for any $v \in Q^n$ $m_v^1 = v$.

Remark It is easy to verify that a value ϕ on a symmetric supspace Q of EXT is a strong diagonal value if and only if $\phi v = \phi m_V^1$. Denote by ϕ_D the value on DIFF. Since $\phi_D \mu = \mu$ for any $\mu \epsilon NA \phi_D$ is a strong diagonal value.

<u>Definition</u> For any game v the <u>integral of v is denoted by $\int v$ and is defined to be the set of all games w in EXT for which m_W^l is well defined and $v = m_W^l$. In the same way the integral of the set of games B is denoted by $\int B$ and is defined by</u>

$$\int B = \frac{U}{v \epsilon B} \int v$$

Remarks

(1) From the main theorem of [M] we have $\int NA \subseteq DIFF$.

In fact one can show that a strictly inclusion holds.

- (2) If Q is a linear and symmetric space of games then fQ is a linear and symmetric space of games in EXT which contains DIAG*

 (Notice that fQ = DIAG*).
- (3) It might be the case where $\int v = \emptyset$ for $v \in NADIFF$. Indeed proposition 2 implies $m_W^1(t) = t m_W^1(1)$ for each $w \in NADIF$ and each $0 \le t \le 1$. Thus $m_W^1(t)$ is continuous at t and hence $\int f_\alpha \circ \mu = \emptyset \text{ for each } f_\alpha \circ \mu \in J.$

Theorem 9 Let ϕ be a value of a linear and symmetric subspace Q of NADIFF. If

- (1) NAC Q.
- (2) For each $v \in Q \mid v^* \mid (t)$ is continuous on [0,1]
- (3) For each $0 \le t \le 1$ and for each $v \in Q$ $m_v^{\chi[\alpha,1]} \in Q$,

then there exists a strong diagonal value of γ on $(Q \circ J) \bigvee \int Q$ which is an extension of ϕ_D on DIFF and which satisfies for each $v \in Q$ and $f \circ \mu \in J$

$$\gamma((f_{\alpha} \circ \mu) \cdot v) = v*(t)\mu + \phi(m_{v}^{\chi[\alpha,1]}).$$

Moreover $\|\gamma\| \le \|\phi\|$.

Proof Any game w in $(Q \circ J) \vee \int Q$ is of the form

$$w = \sum_{i=1}^{n} (f_{t_i} \circ \mu_i) \cdot v_i + v$$

where $v \in Q$, $v_i \in Q$, $0 \le t_i \le 1$, $\mu_i \in NA^1$ and $1 \le i \le m$. Define $\gamma : (Q \ni J) \bigvee Q \rightarrow FA$ by

$$\gamma w = \sum_{i=1}^{n} v^*(t) \mu_i + \sum_{i=1}^{n} \phi(m_{v_i}^{\chi[t_i, l]}) + \phi m_{v_i}^{l}.$$

If γ is well defined then by definition it is linear and symmetric. By proposition 5 $(\phi m_V^1)(I) = m_V^1(I) = v(I)$, and for each $1 \le i \le m$

$$\gamma((f_{t_{i}}^{o\mu_{i}}) \cdot v_{i})(I) = v_{i}^{*}(t_{i})\mu_{i}(I) + [\phi m_{v_{i}}^{X[t_{i},1]}](I) =$$

$$= v_{i}^{*}(t_{i}) + m_{v_{i}}^{X[t_{i},1]}(1) =$$

$$= v_{i}^{*}(t_{i}) + v_{i}^{*}(1) - v_{i}^{*}(t_{i}) = v_{i}^{*}(1) = v_{i}(I).$$

Thus γ is efficient.

By proving that γ is positive we would conclude that γ is well defined. Indeed if w is nondecreasing m_W^l is nondecreasing (Proposition 4), and by Proposition 7,

$$\mathbf{m}_{\mathbf{w}}^{1} = \sum_{i=1}^{n} \mathbf{v}_{i}^{*}(\mathbf{t}_{i}) \cdot \mu_{i} + \sum_{i=1}^{n} \mathbf{w}_{i}^{[t_{i},1]} + \mathbf{m}_{\mathbf{v}}^{1}$$

Since $m_{V_{i}}^{X[t_{i},1]}$ and m_{V}^{1} are in Q and since $NA^{1}\subseteq Q$ $m_{W}^{1}\in Q$. ϕ is a value on Q and m_{W}^{1} is non-decreasing, thus $\phi m_{W}^{1}\geqslant 0$. Now, since the unique value on NA is the identify functional i.e. $\phi\mu=\mu$ for each $\mu\epsilon$ NA we have

(5)
$$0 \le \phi m_w^1 = \sum_{i=1}^n v * (t_i) \mu_i + \sum_{i=1}^n \phi (m_v^{X}[t_i, 1] + \phi m_v^1 = \gamma w.$$

Thus, γ is positive and hence γ is a value on $(Q \circ J) \vee \int Q$. To show that γ is a strong diagonal value denote $u_i = \int_{V_i}^{X_i} [t_i, 1], 1 \le i \le m$.

$$\gamma m_w^1 = \sum_{i=1}^m v_i^*(t) \cdot \mu_i + \sum_{i=1}^m \phi m_i^i + \phi m_1^1.$$

Hence by proposition 3 we derive that $\gamma m_W^1 = \gamma w$, which proves that γ is strongly diagonal. γ is an extension of ϕ_D since for each veDIFF $m_V^1 \in NA$ and $\phi_D v = m_V^1$. On the other hand DIFF $\subseteq \int NA$ and for each $v \in \int NA$ $\gamma v = \phi m_V^1 = m_V^1 = \phi_D v$.

The inequality $\|\gamma\| \le \|\phi\|$ is derived by (5) and by Proposition 6 as follows

$$\|\gamma w\|_{BV} = \|\phi m_w^1\|_{BV} \le \|\phi\| \cdot \|m_w^1\|_{BV} \le \|\phi\| \cdot \|w\|_{BV} \cdot$$

Thus the proof is complete.

Remark Condition (3) of Theorem 9 holds, for example, for the spaces pNA, bv'NA, DIFF and Q^n .

Our purpose now is to apply the above theorem to subspaces Q of NADIFF which consists of games which are homogenous of degree 1. To that end we need first the following proposition.

Proposition 10 If ve NAD IFF is homogenous of degree 1 then

- (1) $|v^*|$ (t) is continuous for each $0 \le t \le 1$
- (2) For each $0 \le \alpha < 1$ $m^{\chi[\alpha, 1]} = (1-\alpha)m_{\chi}^{1}$.

<u>Proof</u> (1) v is homogenous of degree 1, therefore v^- and v^+ are hom. of

degree 1. Thus for each $0 \le t \le 1$

$$|v^*|(t) = (v^*)^+(t) + (v^*)^-(t) = t[(v^*)^+(1) + (v^*)^-(1)] = t ||v||.$$

Hence $|v^*|(t)$ is continuous on [0,1].

(2) For each $0 \le \alpha < 1$

$$\alpha \cdot \lim_{\substack{\tau > 0 \\ \tau > 0}} \frac{1}{\tau} \int_{0}^{1} \left[v^{*}(t+\tau_{\chi}) - v^{*}(t) \right] dt = \lim_{\substack{\tau > 0 \\ \tau + 0}} \frac{1}{\tau} \int_{0}^{1} \left[v^{*}(\alpha t + \alpha t_{\chi}) - v^{*}(\alpha t) \right] dt$$

$$= \lim_{\substack{\tau > 0 \\ \tau + 0}} \frac{1}{\alpha \tau} \int_{0}^{1} \left[v^{*}(s + \alpha \tau_{\chi}) - v^{*}(s) \right] ds$$

$$= \lim_{\substack{\tau > 0 \\ \tau + 0}} \frac{1}{\tau} \int_{0}^{1} \left[v^{*}(s + \tau_{\chi}) - v^{*}(s) \right] ds.$$

Hence $\alpha \cdot m_v^1 = m_v^{\chi[0,\alpha]}$ or $(1-\alpha)m_v^1 = m_v^{\chi[\alpha,1]}$.

Theorem 11 Let ϕ be a value on an invariant space Q of games in NADIFF which are homogenous of degree one. If Q contains NA then there exists a strong diagonal value γ on $(Q \circ J) \bigvee \int Q$ which is an extension of ϕ_D on DIFF. Moreover

(1)
$$\gamma((f_{\alpha}\circ\mu)\cdot v) = \alpha v(I)\cdot\mu + (1-\alpha)\phi m_{v}^{1}$$

(2) ||Y|| ≤ ||φ||.

Proof Follows immediately from theorem 9 and proposition 10.

Corollary 12 Let $Q = Q^n \vee NA$. Then there exists a strong diagonal value γ on $(Q \circ J) \vee \int Q$ which coincides with ϕ_D on DIFF and with the unique value ϕ_n on Q^n . Moreover

$$\gamma(v_n \cdot f_\alpha \circ \mu) = \alpha \cdot v(1) \cdot \mu + (1-\alpha) \cdot \frac{\mu_1 + \cdots + \mu_n}{n}$$

where $v_n = \min (\mu_1, \dots, \mu_n)$ and μ_i and μ_j are mutually singular for $i \neq j$. Proof The space $Q = Q^n \vee NA$ is invariant space that contains NA. Moreover $v = m_V^l$ for each $v \in Q$. By [T] there exists a (unique) value ϕ_n on Q. Hence by Theorem 11 there exists a strong diagonal value which is an extension of ϕ_D on DIFF such that for each $v \in Q^n$

$$\gamma((f_{\alpha} \circ \mu) \cdot v) = \alpha v(I)\mu + (1-\alpha) \phi_{n} m_{v}^{1}.$$

$$= \alpha v(I)\mu + (1-\alpha) \phi_{n} v.$$

This together with the fact

$$\phi_n(\min(\mu_1,\ldots,\mu_n)) = \frac{\mu_1,\ldots,\mu_n}{n}$$

completes the proof of the theorem.

Definition A market game is a game in EXT which is supper-additive and homogenous of degree 1. Denote by MA the set of all market games.

Proposition 13 Any market game is in NADIFF. Moreover for each bounded measurable (Borel) function g on [0,1] and for each veMA

$$\lim_{\tau > 0} \int_{0}^{1} g(t) \cdot \frac{v^{*}(t+\tau\chi)-v^{*}(t)}{\tau} dt = \int_{0}^{1} g(t)dt \lim_{\tau > 0} \frac{v^{*}(t+\tau\chi)-v^{*}(t)}{\tau}$$

Proof Follows from [M,p.540].

 $\|\mathbf{v}_{\mathbf{n}} - \mathbf{v}\|_{\mathbf{RV}} \to 0 \text{ as } \mathbf{n} \to \infty.$

Definition Let NF be the closure in the BW-norm of the set of all games in NADIFF which are function of finite number of NA measure. Let F be defined in the same way except that the BW-norm is replaced by the sup-norm.

Proposition 14 NF is invariance subspace of NADIFF and $v - m_V^1$ is in DIAG* \cap NADIFF.

Proof Let veNF. Let $(v_n)_{n=1}^{\infty}$ be a sequence of games in NADIFF of the form $v_n = f_n o \mu_n$ where μ_n is a vector of finite number of NA measures such that

$$\mathbf{w}_{\mathbf{v}_n}^1$$
 is a function of μ_n since if χ_1 , $\chi_2 \in \mathbf{B}_1(\mathbf{I}, \cdot)$ and if $\mu_n^*(\chi_1) = \mu_n^*(\chi_2)$

$$v_n^*(t+\tau\chi_1) = f_n\big(t\mu_n(I) + \tau\mu_n^*(\chi_1)\big) = f_n\big(t\mu_n(I) + \tau\mu_n^*(\chi_2)\big) = v_n^*(t+\tau\chi_2).$$

Therefore $\mathbf{m}_{\mathbf{v}_{\mathbf{n}}}^{\mathbf{l}}(\mathbf{x}_{1}) = \mathbf{m}_{\mathbf{v}_{\mathbf{n}}}^{\mathbf{l}}(\mathbf{x}_{2})$ and $\mathbf{m}_{\mathbf{v}_{\mathbf{n}}}^{\mathbf{l}} \in \mathbf{F}$. Now, by Proposition 6 $\|\mathbf{m}_{\mathbf{v}_{\mathbf{n}}}^{\mathbf{l}} - \mathbf{m}_{\mathbf{v}_{\mathbf{n}}}^{\mathbf{l}}\|_{\mathbf{IBV}} = \|\mathbf{m}_{\mathbf{v}_{\mathbf{n}}}^{\mathbf{l}} - \mathbf{v}\|_{\mathbf{IBV}} \leq \|\mathbf{v}_{\mathbf{n}} - \mathbf{v}\|_{\mathbf{BV}} \rightarrow 0$ as $\mathbf{m} \rightarrow \infty$.

$$\|\mathbf{m}_{\mathbf{v}_{\mathbf{n}}}^{1} - \mathbf{m}_{\mathbf{v}}^{1}\|_{\sup} \rightarrow 0 \text{ as } \mathbf{n} \rightarrow \infty,$$

hence $m_V^1 \in F$ and m_V^1 is DNA continuous. Let us prove now that $m_V^1 \in EXT$. Notice first that $m_V^1 \in EV$ since $v \in EV$ and $\|m_V^1\|_{EV} \le \|v\|_{EV}$. Now, m_V^1 , is homogenous of degree 1 (Proposition 2) therefore $(m_V^1)^+$ and $(m_V^1)^-$ are homogenous of degree 1. Hence, for each $0 \le t \le 1$

$$|m_{v}^{1}|(t) = (m_{v}^{1})^{+}(t) + (m_{v}^{1})^{-}(t) = t ||m_{v}^{1}||_{IBV}.$$

Thus $|m_V^1|(t)$ is continuous in t and $m_V^1 \epsilon EXT$. Proposition 2 implies that m_V^1 is in NADIFF and

$$m_{v}^{1} = m_{v}^{1} - m_{v}^{1} = 0.$$

Thus $v - m_v^1 \in DIAG^* \cap NADIFF$.

Theorem 15

- (1) The space MA \cap NF is invariant
- (2) Each veMA \cap NF is of the form $w + m_v^1$ where weDIFF \cap DIAG*.

Proof Let v be in MA \cap NF. By Proposition 13 MA \subseteq NADIFF and for each $\chi \in B_1(I,C)$ and t>0

$$m_{\mathbf{v}}^{1}(\chi) = \lim_{\substack{\tau > 0 \\ \tau \neq 0}} \frac{1}{\tau} \left[\mathbf{v}^{*}(t+\tau\chi) - \mathbf{v}^{*}(t) \right].$$

Together with the super-additivity of v*, for each χ_1 , χ_2 in B_1 (I,C) such that $\chi_1 + \chi_2 \in B_1$ (I,C)

$$m_{v}^{l}(\chi_{1} + \chi_{2}) = \lim_{\substack{\tau > 0 \\ \tau \neq 0}} \frac{1}{\tau} \left[v*(t+\tau(\chi_{1} + \chi_{2})) - v*(t) \right] > 0$$

Hence

$$m_v^1(\chi_1 + \chi_2) > m_v^1(\chi_1) + m_v^1(\chi_2),$$

and thus m_V^1 is superadditive. $m_V^1 \in NF$ (Proposition 14) Hence $m_V^1 \in MA \cap NF$. Now, by Proposition 13 for each continuous function f on [0,1]

$$m_{v - m_{v}}^{f} = m_{v}^{f} - m_{m_{v}}^{f} = m_{v}^{f} - m_{v}^{l} \cdot 0^{\int_{0}^{l} f(t) dt} = m_{v}^{f} - m_{v}^{f} = 0.$$

Therefore $\int_{v_{v}}^{t} \int_{v_{v}}^{1} \int_{v_{v}}^{t} \int_{v$

Theorem 11 can be restated for supspace Q of market games that are spanned by games which are function of finite number of measures as follows.

Theorem 16 Let ϕ be a value on a supspace Q of MA \cap NF that contains NA. Then there exists a strong diagonal value γ on $(Q \circ J) \bigvee \int Q$ which is an extension of ϕ_D on DIFF. γ obeys

(1)
$$\gamma ((f_{\alpha} \circ \mu) \cdot v) = \alpha \ v(I) \cdot \mu + (1-\alpha) \phi m_{V}^{1}$$

(2)
$$\|\gamma\| \le \|\phi\|$$
.

The rest of the paper is conceptually connected to the previous discussion however it is completely independent. Denote by H' the set of all games in F which are homogenous of degree one and NA continuous at 1. H'•J is the set of all games of the form $(f_{\alpha} \circ \mu) \cdot \nu$ where $f_{\alpha} \circ \mu \in J$ and $\nu \in H'$. Let H'J be the minimal linear and symmetric space that contains H'• J. It turns out that the measure $\nu(I) \cdot \mu$ that distributes the amount $\nu(I)$ among the players according to their political power only, defines a value on H'J.

Theorem 17

- (1) A value ϕ on H'J does exist. ϕ satisfies $\phi((f_{\alpha} \circ \mu) \cdot v) = v(I) \cdot \mu$.
- (2) A semi-value $\bar{\phi}$ on H'J does exist. $\bar{\phi}$ satisfies $\bar{\phi} \big((f_{\alpha} \circ \mu) \cdot v \big) = \alpha \cdot v (I) \cdot \mu$. Proof Each we H'J is of the form

$$w = \sum_{i=1}^{n} (f_{t_i} \circ \mu_i) v_i$$

where $v_i \in H'$, $f_{t_i} \circ \mu_i \in J$, $l \le i \le n$. Let us define ϕ and $\bar{\phi}$ on H'J by

$$\phi w = \sum_{i=1}^{n} v_{i}(I) \mu_{i}, \qquad \overline{\phi} w = \sum_{i=1}^{n} t_{i} v_{i}(I) \mu_{i}$$

By definition if ϕ is well defined then it is linear symmetric and efficient, and if $\overline{\phi}$ is well defined then it is linear and symmetric. Hence in order to complete the proof of theorem 17 it is sufficient to prove that if w is non-decreasing then both Σ $v_i(I)\mu_i > 0$ and Σ $t_iv_i(I)\cdot\mu_i > 0$ (providing that we also prove that ϕ and $\overline{\phi}$ are well defined). Denote $N = \{1, 2, \ldots, n\}$. Let us partition N into sets N_1 , N_2 ,..., N_L according to the jumps location i.e.

$$\begin{split} N &= \bigcup_{i=1}^{L} N_{i} & N_{i} \cap N_{j} = \emptyset \quad \text{for } i \neq j \text{ and} \\ & \qquad \qquad t_{i} < t_{j} <==> \exists \ k, \exists \ \ell \ 1 \leq k < \ell \leq L \left[i \epsilon N_{k}, \ j \epsilon N_{\ell} \right]. \end{split}$$

Now for each $1 \le k \le L_{k}$ let us partition N_{k} according to the majority measures. i.e. $N_{k} = \bigcup_{r=1}^{k} N_{k}^{r} \cap N_{k}^{s} = \emptyset$ for r \neq s and

$$\forall i, j \mu_i = \mu_j \iff \exists m, l \leqslant m \leqslant \ell_k (i, j \epsilon N_k^m).$$

For each m, $1 \le m \le \ell_k$, let us choose a representative i in N_k^m and let us denote $\eta_k^m = \mu_i$. Let $\eta_k = \left(\eta_k^1, \ldots, \eta_k^k\right)$ and let k, $1 \le k \le L$ be fixed. η_k consists of ℓ_k different NA^l measures. Therefore there exists a coalition Te C such that $\eta_k^i(T) \ne \eta_k^j(T)$ for each $i \ne j$, $1 \le i$, $j \le \ell_k$ (for a proof see the proof of Proposition 8.11 of [A-S]). W.l.o.g. let us assume that

$$\eta_k^1(T) < \eta_k^2(T) < \cdots < \eta_k^k(T).$$

For any $\epsilon > 0$ define g_{ϵ} in B_1 (I, C) by

$$g_{\varepsilon} = \varepsilon \chi_{T} + (1-\varepsilon)\chi_{I}$$

For each $l \le i \le j \le l_k$

$$(\eta_k^i)^*(g_{\varepsilon}) < (\eta_k^j)^*(g_{\varepsilon}).$$

Therefore, since $g_{\epsilon} \longrightarrow 1$ in the NA topology as $\epsilon \rightarrow 0$

$$|(\eta_{p}^{q})^{*}(1-g_{\varepsilon})| < \min_{\substack{t_{i} \neq t_{j}}} |t_{i} - t_{j}|,$$

for each $1 \le p \le L$ and $1 \le q \le l_p$.

Let us fix j_0 , $1 \le j_0 \le l_k$ and let us choose $0 \le \beta_0 \le 1$ such that

$$\eta_{k}^{j_{0}}(\beta_{0} \cdot g_{\varepsilon}) = t_{k}.$$

Assume that f_{t_i} is continuous from the left on [0,1] for each

 $1 \leqslant i \leqslant n$. Since we F is nondecreasing w* is nondecreasing on $B_1(\text{I},\text{C})$ and thus for each $\beta > \beta_0$

(6)
$$0 \le w^*(\beta \cdot g_{\varepsilon}) - w^*(\beta_0 \cdot g_{\varepsilon}) = \sum_{\substack{i \in k - 1 \\ p = 1}} \left[(f_{t_i} \circ \mu_i^*) \cdot v_i^* \right] (\beta \cdot g_{\varepsilon}) + i$$

$$+ \sum_{\substack{i \in \bigcup_{j=j_0}^{k} N_k^j \\ j = j_0}} [(f_t \circ \mu_i^*) \cdot v_i^*] (\beta \cdot g_{\varepsilon}) - \sum_{\substack{i \in \bigcup_{p=1}^{k-1} N \\ p = 1}} [(f_t \circ \mu_i^*)] (\beta_0 \cdot g_{\varepsilon})$$

$$= \sum_{\substack{k \\ \text{i} \in \bigcup_{j=j_0+1}^{k} +1}} [(f_t \circ \mu_i^*) \cdot v_i^*] (\beta_0 \cdot g_{\epsilon}).$$

For each i, $l \le i \le n$, v_i is homogenous of degree l thus if $\beta \rightarrow \beta_0$, $\beta > \beta_0$ we

have

$$\beta_0 \cdot \sum_{\substack{j_0 \\ i \in N_k}} \left[(f_t \circ \mu_i^*) \cdot v_i^* \right] (g_{\epsilon}) > 0$$

If $\epsilon > 0$ is small enough such that $\mu_{\mathbf{i}}(g_{\epsilon}) > t_{\mathbf{i}}$ for each $1 \leq \mathbf{i} \leq n$

$$\sum_{\substack{j_0\\i\in N_k}} v_i^*(g_{\epsilon}) > 0.$$

 $v_{\,i}^{\,\star}$ is NA continuous in 1 hence if ϵ tends to zero we have

$$\sum_{\substack{j\\i\in N}} v_i(I) > 0.$$

By the definition of N_k

The last inequality holds for each j_0 , $l \leq j_0 \leq l_k$. Therefore

$$\sum_{i \in N_{L}} v_{i}(I)\mu_{i} \ge 0.$$

and

$$\Sigma t_{m_k} v_i(I) \mu_i > 0,$$

 $i \in N_k$

where $t_{m_{i}} = t_{i}$ for each is N_{k} . The last two inequalitites hold for each k therefore

$$\phi w = \sum_{i=1}^{n} v_{i}(I) \mu_{i} > 0$$

and

$$\phi_{\overline{w}} = \sum_{i=1}^{n} t_{i} v_{i}(I) \mu_{i} > 0$$

Hence the proof is complete. In case there are i's for which f_{t} is continuous from the right on [0,1] we will use (6) twice, once for $\beta > \beta_0$ and

once for $\beta < \beta_0$.

References

- [A-K] Aumann, R.J., and M. Kurz "Power and Taxes in a Multi-Commodity Economy," Israel J. Math. 27 (1977), 195-234.
- [A-S] Aumann, R.J. and L.S. Shapley, "Values of Non-Atomic Games",
 Princeton University Press, 1974.
- [M] Mertens, J.F., "Values and Derivatives" Math of Oper. Res. 4(1980), 521-552.
- [T] Tauman, Y. "Values of Non Differentiable Games", (1979) to appear in the Int. Journal of Game Theory.