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CONJECTURAL VARIATIONS

Morton I. Kamien and Nancy L. Schwartz¥*

A feature common to the perfectly competitive model and the monopoly
model is each firm's disregard of other firms' reactions to its price or
quantity decisions. In the former case, each firm regards itself as too small
to influence the market price and therefore to attract the attention of
rivals; in the latter case, the monopolist regards itself as having no
rivals. (In some dynamic monopoly models, the incumbent firm does take into
account the effect of its actions on potential entrants.) In many markets the
assumptions necessary for application of either of these two polar models are
not satisfied. The firms serving a market are neither so numerous that each
contributes only a negligible fraction of the total output, nor does just one
firm serve the market. 1Instead there are relatively few firms, each of whonm
has some influence over the total quantity supplied and the market price. 1In
these circumstances each firm can anticipate that its price or quantity
decisions may call forth a response from rivals. All this, as we know, was
recognized by Cournot almost one-hundred-and-fifty years ago. In the model of
oligopoly that he formulated, firms do not take reactions into account but
maximize myopically. That model has become widely employed to explain

competition among the few.

One of the most appealing features of the Cournot model of oligopoly is
that it yields the monopoly solution when there is just one firm and yields
the perfectly competitive solution when the number of firms increases
indefinitely, assuming average production costs are nondecreasing; see also
Ruffin. Thus, in terms of the traditional industrial organization

characterization of a market by its structure (number of firms), conduct



(their response to each others' actions), and performance (proximity of the
actual market equilibrium to the one that would prevail under perfect
competition), the Cournot model provides a direct link between structure and
performance. This link, however, rests on Cournot's assumption that each firm
regards the current output of its rivals as fixed in deciding its profit
maximizing level of output (under the supposition that firms choose
quantities, not prices). That is, each firm behaves as if its rivals will not
alter their levels of output in response to change in its own choice of
output. The firm's belief about the rivals' response to change in its own
decision variable was named the conjectural variation by Frisch. The Cournot

assumption is that the conjectural variation is zero.

A couple of definitions are of use here. Suppose, for ease of discussion
until indicated otherwise, that firms choose output levels. The firm's profit
maximizing output depends on the output levels chosen by its rivals. The

firm's reaction function specifies this relationship, giving its profit

maximizing output as a function of rivals' output levels. The slope of this
reaction function is the rate at which the firm's profit maximizing output
will change with a change in a rival's output. The firm may believe that its
rivals similarly have reaction functions. The rival's reaction function is
not known to the firm but the firm may nonetheless have conjectures about
it. In particular, the firm may make conjectures about the slopes of the
rivals' reaction functions. These conjectured slopes are called conjectural
variations. Constant conjectural variations imply that the conjectured
reaction function is linear. The particular Cournot assumption of zero
conjectural variations implies that it is horizontal. The conjectural
variation way depend on the output, rather than being constant. A nonconstant

conjectural variation implies a conjectured reaction function with a



nonconstant or variable slope.

The assumption of zero conjectural variation has been found objectionable
for some time for several reasons; see Fisher. First, if reactions of rivals
are thought to be sequential, as Cournot viewed them, then firms involved in
the process are bound to observe that rivals do in fact react to their
actions. Only if all other rivals produce their equilibrium output will they
not change their output when the firm produces its equilibrium output. But
this is really a very special event. In all other circumstances, one's change
of output will lead to a change in rivals' output levels. In particular, a
deviation from the equilibrium output (rather than to it) will generate a
change in rivals' output. If rivals ignore the observed reactions of rivals,
then the equilibrium is achieved for the wrong reasons, as Fellner pointed

out.

Second, the assumption of zero conjectural variation is suspect since it
leads to a logical inconsistency even if the equilibrium is attained through a
simultaneous rather than sequential process. To see this, suppose that each
participant has zero conjectural variations and determines his reaction
function, i.e. his profit maximizing output as a function of rivals' output
levels. Suppose further that the reaction functions of all participants are
then fed into a computer that determines the equilibrium output level. The
equilibrium is achieved nonsequentially in this situation. A logical
inconsistency occurs, however, because the firm's reaction function will
indicate that the firm itself should react to changes in rivals' output. Thus
the firm is in the position of believing that it is optimal to respond to its
rivals' actions while also believing that its rivals will not react to its
choices. This requires the belief that its rivals are either very different

from itself or not as smart. In the absence of such beliefs, the firm faces



logical inconsistency.

Third, the zero conjectural variations assumption has been criticized
indirectly because it leads to an equilibrium that does not maximize the joint
profits of the firms involved. This means that there are opportunities for
additional profits, either through exploitation of rivals' naivete, as
suggested by Stackelberg, or through tacit collusion as suggested by
Chamberlin. The supposition that tacit collusion occurs is appealing because
it is difficult to believe that rivals would not recognize and act on this
possibility for additional profit. Just as nature is thought to abhor a
vacuum, so a market may be thought to abhor an unexploited profit
opportunity. The emphasis on tacit collusion stems from the fact that, at

least in the U. S., overt collusion is unlawful.

Modelling of tacit collusion has taken two paths. The first is through
dropping Cournot's assumption of zero conjectural variation. Thus Fama and
Laffer and later Kamien and Anderson noted that an industry of any fixed
number (greater than one) of firms may produce the entire range of outputs
between the competitive and the monopolistic, depending on the conjectural
variations of the participants. Smithies and Savage seemed partially aware of
this result. Reinganum proved an analogous result in the context of a dynamic

differential game of research and development.

The second path to modelling tacit collusion has been through a dynamic
framework in which each firm seeks to maximize the discounted present value of
its profits. The firm chooses an entire sequence of outputs (or prices) in
these formulations instead of just one, as in the static models. Dynamic
oligopoly models have been presented by Friedman, Cyert and DeGroot, Marschak

and Selten, and Shapiro, among others. The underlying theme is that firms



having to compete with each other through time will recognize the mutual
advantage to tacit cooperation and that the resulting equilibrium will have
higher prices and lower quantities than predicted by the static Cournot
equilibrium. Moreover, because each firm has to face its rivals repeatedly,
any short run profit advantage it may gain by departing from the tacitly
collusive equilibrium strategy must be weighed against the adverse reactions

of its rivals in the future.

Fourth, the classic criticism of the Cournot model due to Bertrand is
that the firm's decision variable is price, not quantity. The variable that
is subject to choice affects the predicted equilibrium outcome. For under the
usual assumptions of nondecreasing costs and zero conjectural variations, a
model of differentiated goods with price as decision variable yields an
equilibrium with a higher output and lower price than is predicted if quantity
is the decision variable. The formal relationship between the two equilibria
has been developed by Levitan and Shubik for linear demand functions and by
Hathaway and Rickard for more general demand functions. It has been
recognized, however, that the equilibrium attained depends not only on which
variable is subject to choice (price or quantity) but also on the assumption
regarding the conjectural variations. Zero conjectural variation in quantity
(price) does not correspond to zero conjectural variation in price
(quantity). Circumstances under which the zero conjectural variation
assumptions can be viewed as dual, arising in related but differing

circumstances, have been identified by Sonnenschein and Bergstrom.

Fifth, empirical studies by Iwata of the Japanese glass industry and by
Gollop and Roberts of the U. S. paint industry indicate that the conjectural
variations in these industries are not zero. Experimental studies by Dolbear

et. al. also support the finding of nonzero conjectural variations.



These five objections to the assumption of zero conjectural variations
have led us to study the implications of nonzero conjectural variations. Our
study involves three related topics. First we explore the role of noazero
conjectural variations in the link between market structure and performance.
Since the market equilibrium depends importantly on the conjectural variations
held by the producers, a measure or index of industry structure should reflect
more than the number or size distribution of firms if it is to capture
elements impinging upon market performance. Cowling and Waterson, Hause,
Dickson, and Dansby and Willig have addressed the question of industry
structure or performance indices, taking account of possible nonzero
conjectural variations. In this paper, we first show in a particularly simple
format how the industry and firm output depend on the conjectural variations
of the industry members. We also present some other industry structure or

performance indices within this simple format.

The dependence of the market equilibrium on the conjectural variations of
the industry members dilutes the predictive power of the theory linking the
number of firms with market performance. Any market equilibrium between the
perfectly competitive and the monopolistic is possible for any fixed number of
firms. Several independent attempts have been made to narrow the possible
market equilibria by imposing the additional constraint that the conjectural
variations be “"consistent.” These independent efforts include work by
Friedman, Laitner, Bresnaham with follow-ups by Perry and Farley, Holt,
Capozza and Van Order, Boyer, and this paper. The basic notion is that if
conjectural variations are consistent, then the firm's beliefs about rivals'
rates of response will coincide with the actual rates of response, at least at
the equilibrium. The formulations of this notion by the various contributors

differ in conceptual detail, as for instance by whether one's rivals are



viewed as a single composite firm or as a number of individual rivals, by
whether all actual responses are to be profit maximizing, by whether the
response to a firm's action involves only the direct response by its rivals or
somehow includes indirect responses of each to the others' responses as well,
and by whether the consistency is to hold at equilibrium or in a larger

neighborhood of equilibrium as well.

The requirement that the conjectural variations be consistent is, of
course, appealing in its own right, apart from any restrictions it may impose
on the possible market equilibria. For the absence of consistency is, as we
indicated above, a major flaw in the Cournot—-based theory of oligopoly.
However, as we will show, the requirement of consistent conjectural variations
need not significantly restrict the possible equilibria. What it does do is
imply a specific functional form for the industry demand function. This is an

important result in bridging theory and estimation.

In the second part of this paper we develop the implications of the
requirement that conjectural variations be consistent under the supposition
that all the firms are identical. We define consistency by the requirement
that at the equilibrium, each firm's conjecture about rivals' rates of change
of output in response to its own output change be equal to the actual profit-
maximizing output change in response to that exogenous output change. The
method of calculating the consistent conjectural variation is due to Holt.

Our analysis of consistent conjectural variations involves two phases. In the
first, we assume that the conjectural variations are constants, independent of
the total output level. Bounds on the conjectural variations restrict the
equilibrium between the perfectly competitive and the monopolistic. We
display the class of demand functions that gives rise to constant consistent

conjectural variations. The relationship between the conjectural variation



and the particular demand function is shown. In the second phase of this
analysis, we relax the assumption of constant conjectural variations, allowing
them instead to be functions of total output. We display the relationship
between the functional form of the conjectural variations function and the
functional form of the demand function that yield consistency at

equilibrium. The results are local, not global. That is, the functional
forms are required at the consistent equilibrium only; no restrictions are
implied (or relevent) on functional forms in portions of the domain away from

the equilibrium.

In the third part of the paper, the results in a differentiated market
when firms choose price are compared with those that obtain if they all choose
output instead. Specifically, we decribe the relationship between the
constant conjectural variations in quantity and in price that yield identical
equilibria. This is done because some oligopoly models are posed with
quantity as the decision variable while other employ price. For certain
conjectural variations, Levitan and Shubik explored various solutions that
result in differentiated markets, depending on which is the choice variable.
However, the general relationship between the conjectural variations in the
respective models has not been shown previously. This has resulted in some
apparent incomparability of the outcomes from the alternative formulations in
the literature. Consistency of conjectural variations is also discussed. It
is shown that study of the homogeneous good case does not provide very good
guidance for when to expect constant consistant conjectural variations to
exist in the differentiated good case. It is also shown that if demand is
linear, then the constant consistent conjectural variation in prices leads to
the same equilibrium in price and quantity as does the constant consistent

conjectural variation in quantities. This result need not hold for other



demand functions.

Homogeneous Product—Firm and Industry Output

Let the industry inverse demand function be p(Q), where Q = Zi:1 q; is
industry output and q; is the output of the i® firm in the n firm industry.
The demand function is twice continuously differentiable, downward sloping,
and has a downward sloping associated marginal revenue function. The unit
cost of production is ¢, constant. The profit function of firm i, to be

maximized by choice of qi, is

(1) v(q;) = p(Qq; - cqy

Before discussing the profit maximization, we take up conjectural

variations and their properties. Let
n
(2) w; = 3Q/3qi =1 +.Z qu/Bqi i=1,ee.,n
J=1
j#i
be firm i's belief of the rate at which industry output will change with
increase in its own production. The term qu/aqi is the conjectural
variation, the rate of change in firm j's output anticipated by firm i in

response to its own change. The pertinent information about the conjectural

variations of firm i is summarized in Wi We assume that an increase in one's

own output is expected to raise industry output. Further, other firms are
expected to expand their own output at most at the same rate as does firm i in

response to i's increase. That is, each Wy satisfies 0 < w; < n. The

conjectural variations may, but need not, be constants; they may depend on

industry members' output.

Define W by

1
(3) /W= 1 (1/w)
i=1



W is 1/nth of the harmonic mean of the w;'s and will be called the harmonic
i

sum. Since 0 < w; < n, we have Zizi(l/wi) > n/n so that 0 < W< 1. The
harmonic mean (sum) is always smaller than the arithmetic mean (sum) unless
the components are identical. Thus for a fixed arithmetic sum, the harmonic
mean is largest (and equals the arithmetic mean) when the firms hold identical
beliefs: w; = w for all i. The harmonic sum W tends to zero if any single

1

component w; tends to zero. And the harmonic sum W =1 only if all

components w; = 1.

An optimal positive finite output 93 (that we assume to exist) satisfies

(4) V'(qy) = q4wip'(Q + p(Q) ~c =0
for i = 1,...,n. Since (4) holds for all firms, the product q;w; must be the

same for each firm. Hence q; = wjqy/w; so that

n n
Q= Lag=wap AW = e, /i
=] i=1

Therefore

(5) q3/Q = W/wy i=l,...,n0.
Equation (5) tells us that the market share of each firm depends only on the
beliefs of all the firms. Specifically, a firm's share of total output equals
its share in the harmonic sum of beliefs. Differing beliefs generate
differing market shares. A firm's market share varies inversely with its own
conjectural variation and directly with the conjectural variation of its

rivals.

From (5), it follows that w.

191 = WQ so that (4) can be written as

(6) Qwp'(Q) + p(Q) - c = 0.
Industry output depends on the harmonic sum W as well as on the unit cost and
the demand function. It does not depend on the number of firms as such. Of

course n affects the harmonic sum W . It is clear from (6) that the entire



impact of warket structure and of market conduct (conjectural variations) upon

market performance--industry output-—-is captured in the harmonic sum W.

Dansby and Willig have introduced an industry performance gradient index
defined by

2,1/2

n

(1) ¢ = (2 (py=ela /P 1",
1

In view of (6), this index becomes

(8) ¢ = ot/ 2w

where

(9 -p/p' (QQ

m
1]

is the elasticity of industry demand. While the industry output does not
depend on the number of firms as such, recall (6), the Dansby-Willig

performance index (8) does.
Other indices of market structure include the Lerner index

L = (p-c)/p = W/e
and the Herfindahl index
n n
2 2 2
H= I (q./Q" =W I (1/w))
. i . i
i=1 i=1
Both depend on the conjectural variations. The former depends on the demand

function while the latter does not. Note that if all firms have identical

beliefs, w; = w, then H = 1/n, independent of that belief.

The conjectural variations of each firm can be inferred from market
data. From (5), wy = w(qi/Q). The w; are proportional to market shares in
equilibrium, where the constant of proportionality W is found from (7) to be

W = e(p~c)/p.
Essentially this observation was employed by Iwata in his empirical

estimation.



The results to this point hold whether W is a constant or depends on the
outputs of the industry members. If W is constant, then we may ask how the

industry output varies with W. Differentiating (6) implicitly, we find that

(10) 3Q/swW = —-QP'(Q)/[WQP"+(1+W)P'].

To sign the denominator in the right side of (10), note that

WQP"+(1+W)P"' = W[QP"+(1+W)P'/W] < W(QP"+2P') < 0.
The first inequality holds since W < 1 implies that (14+W) /W > 2 and the
second inequality holds since the marginal revenue function is downward
sloping. Therefore, 3Q/3W < 0; industry output varies inversely with the
harmonic sum W. We noted above that for any given arithmetic sum of
conjectural variations, the harmonic sum W will be largest when the firms hold
identical beliefs. Thus the more homogeneous the firms' beliefs, ceteris

paribus, the smaller the industry output.

Industry output Q is maximized if W=0; that occurs if w;=0 for any 1i.
Thus if any firm believes that its output will have no impact on industry
output, then the industry produces the competitive output: p(Q) = c. (Review
(6)). This result was noted by Fama and Laffer. The competitive assumption
is usually stated as the firm believes it will have no impact on industry
price, but so long as the industry demand is downward sloping, this is

equivalent to the belief that it will have no impact on industry output.

At the other extreme, Q is minimized if W=1, which occurs if wi=n for all
i=l,...,n. The monopolistic output results if each firm expects its output

changes to be matched by each firm in the industry.

The standard Cournot output results if W=1/n; one of many ways for this
to happen is that w;=l for i=l,...,n so each firm expects others do not

respond to its output changes.



Thus the oligopoly can produce the monopoly output, the competitive
output, or any intermediate output, depending on the conjectural variations.
The more responsive the industry is thought to be to one's own action and the
more similar are the firms' beliefs about the others' respounsiveness, the

smaller the industry output and the larger the industry profit will be.

Homogeneous Product — Consistent Conjectural Variations

The Cournot assumption of zero conjectural variation is naive and
experience usually shows it to be inappropriate. To illustrate, consider a
simple two firm example with a linear industry demand p = A-B(q;+q;). If
firm 1 selects its output to maximize its own profit, taking q, as given, it
chooses q; = (A-c)/2B - qy/2. This implies that a change in firm 2's output
will lead to a change in firm 1's output in the opposite direction and half as
large; i.e. the slope of firm l's reaction curve is dql/dq2 = -1/2. Thus with
a linear demand curve, a firm that makes the Cournot assumption will always
respond to its rival's change in output and so will not itself satisfy the

Cournot assumption.

Can some other conjectural variation lead to consistent expectations in
symmetric equilibrium if demand is linear? If firm 1 of the previous
paragraph believed that 1its rival's output would change with its own at rate

dqz/dql = ky, then it would select its profit maximizing output to be q; =
(A—c—BqZ)/(2+k1)B. This means firm 1's output changes with firm 2's output at
rate dql/dq2 = = 1/(2+ky). At a symmetric equilibrium with consistent
expectations, the actual rate of change of firm 1's output with firm 2's
output should equal the rate conjectured by firm 2 so —1/(2+k1) = k2‘ With k1
= ky = k by the assumed symmetry, this condition can be satisfied by k = -1

only. Only if both firms act as though they are in a perfectly competitive



situation will their expectations about each other be fulfilled in symmetric

equilibrium!

The discussion above rests on the supposition that the duopolists face
linear demand. If the firms are identical, is there any family of demand
functions and any uniformly held ccajectural variation for which expectations

will be fulfilled in symmetric equilibrium?

Before answering this query, a few more words on the notion of consistent
conjectural variations are appropriate. For a duopoly such as in the example
above, a consistent conjectural variation is such that the actual profit
maximizing rate of change of firm l's output when firm 2's output changes—-
i.e. the slope of firm 1's reaction function--equals the rate conjectured by
firm 2. The actual slope of firm 1's reaction function is the slope that firm

2 believes it to be.

For an oligopoly, the requirement of consistency is again that the actual
rate of change of firm i's output with firm n's output equals the rate
conjectured by firm n. However, it is not simply the slope of the reaction
function, a partial derivative holding fixed the output of the other n-2
firms. Rather, as Holt pointed out, in responding to firm n's output change,
firm i should take into account not only the instigating change in firm n's
output but also the profit-maximizing adjustments of their n-2 rivals. Thus
the rate of change of each firm's output in response to a change in firm n's
output is profit-maximizing for each, given the exogenous change in firm n's
output and given the simultaneous adjustments of all n-2 rivals. This common
consistent rate of output change of any firm in response to a change in
another's output is denoted k. To relate the present notation with that of

the previous section, we observe that w = l+{(n-1)k. The rate at which



industry output is expected to change with one's own is one's own output (rate
1) plus the contribution of each of the n-1 rivals at rate k (the conjectural

variation). Since 0 < w < n, we have -1/(n-1) < k < L.

We will address in three parts the question of the existence of families
of demand functions p(Q) and corresponding conjectural variations k for which
the conjectural variations will be consistent in equilibrium. We will first
discuss the results under the restriction that the conjectural variations be
constants, independent of output. This is the hypothesis most frequently
maintained in the emerging literature on consistent conjectural variations.
Second we will discuss the results under the more general hypothesis that the
conjectural variations depend on industry output. Third, the verification of
the results will be provided.

In the limiting case that k = -1/(n~1) (so w = 0), each firm believes
that any output change it initiates will be exactly offset by its rivals so
industry output will be unchanged. It will be shown that in this case, the
conjectural variation is consistent for any demand function. If each firm
believes it will have no impact on industry output, it will have none, and the

industry will produce the competitive output.

We will also show that if the conjectural variations are constant and
larger than -~1/(n-1) and are to lead to consistent expectations in an n-firm

symmnetric equilibrium, then at the equilibrium the demand function must be

A+ BQl—r

(11) p

where

(12) r = (1+k)a/(1+(n-1)k), -1/(n-1) < k < 1, A< c, B > 0.

Note that the demand function depends on the conjectural

variation aqi/aqj = k parametrically. The parameter r > 2 so the quantity



demanded varies inversely with price. The bounds on k correspond exactly to
the requirement that 0 < w < n (since w = l+(n-1)k). The bound on the
parameter A assures positive output at equilibrium. Note that this result is
local. It relates the consistent conjectural variation and the demand
function for which expectations will be satisfied at equilibrium. No
restriction is placed on the demand function or conjectural variation away

from the equilibrium.

If n = 2, then r = 2, independent of k for duopoly. Thus, for a duopoly
facing a unitary elastic demand p(Q)=B/Q, any conjectural variation less than
one can be consistent in equilibrium. Firm 1's reaction function near

equilibrium 1is

q; = [~(Bk+2cq,) + (B2k*+4Be(1+)a,) /2] /2¢
and firm 2's reaction function is analogous. These reaction functions are
sketched for various values of k (with B=1, c=1/2). Note that our results are
for the equilibrium only so no restriction is placed on the functional form

away from the equilibrium.
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If the conjectural variations are zero, then r = n. This--demand
function (11) with r replaced by n-—-is the only case that the Cournot

assumption will be appropriate in symmetric equilibrium.

If A=0, demand function (l11) has constant price elasticity equal to
1/(r-1) < 1. Since r is a decreasing function of k for n > 2 and it is an
increasing function of n, it follows that the isoelastic demand function for
which constant conjectural variations are consistant is less inelastic if the
conjectural variation is larger or the number of rivals is smaller. As we

have noted before, for duopoly it has unitary elasticity regardless of k.

The industry equilibrium that will be attained if the demand function is
(11) and if firms have the corresponding constant consistent conjectural
variations is

p = A+ n(c-A)/(1-k), Q = [B(1-k)/n(c-a)]1/(x~1),
The second order condition for a profit maximum is always satisfied under the

stated conditions and profit is positive.

Next we discuss the consequences for consistency of supposing that the
conjectural variation need not be constant. Suppose now that k depends on
industry output Q: k = k(Q). Then, as we will show, if the conjectural
variation is to be consistent in symmetric equilibrium, the industry demand
function p(Q) must have slope

(13) p'(Q) = ~(a/(1+(n-1)k))eJ [RUFH)/(IH(a-1)i)QIdQ 5 g

This equation shows the slope of the demand function corresponding to any
conjectural variation function k(Q) that may be specified, such that the

conjectural variation will be consistent in equilibrium. That is, if the
conjectural variation is k(Q) and if the industry demand function has the

slope specified in (13), depending on that k(Q), then the expectations of a



firm regarding the others' profit maximizing responses to changes in its own
output will be fulfilled in equilibrium. It is evident from (13) that a range
of demand functions can be generated by specifying a range of conjectural

variation functions.

Because of the complexity of (13), we will give some examples for
duopoly only. With n=2, (13) reduces to

p' = -a/Q2(1+k(Q)), a > 0.
Examples of consistent pairs of demand functions and conjectural variation

functions for duopoly are therefore as follows:

p(Q) 1+k(Q) = -a/p'(QQ?
A + B/Q? aQ/2B
A + B/Q a/B
A - B 1n Q a/BQ
A - BQ a/BQ?

All four demand functions are downward sloping. But k(Q) may be an increasing
function (first example), constant (second example), or decreasing (third and
fourth examples.)

To validate our claims, we use the technique proposed by Holt to
determine the symmetric consistent conjectural variation. Firm i will choose

its profit maximizing output qi to satisfy

(14) q;(1+(n=1)k(Q))p'(Q) + p(Q) - c = 0.
This is (4) with w = l+(n-1)k. The total differential of this first order

condition is

n
(15)  (L+(a=Dk(@)p' (Qda, + (n=1)q;p'k'Tdq +
1
n n
+ q, (1+(n-1)k(Q))p"Zdq + p'Zdq, = O.
19 1 J



If firm n were to exogenously change its output from the equilibrium quantity
by dqn, the first n-1 firms would adjust their output to maximize their own
profits, i.e. maintain their respective first order conditions (14) or,
equivalently, (15). Divide (15) through by dq, and denote the other n-I

[irms' responses by k(Q) = dqj/dqn’ j=l,...,n-1. Then (15) gives

[1+(n=1k(Q) ] [p' (1+kH(n-1)q;k") + (1+(n-1)k)q;p"] = 0.

Write Qi = Q/n (by symmetry). Then this equation implies that

(16) p'(1+k+k'(n-1)Q/n) + (1+(n-1)k)Qp"/n = 0.
Equation (16) is a differential equation for the demand function p(Q); it
depends on the conjectural variation function k{Q). To solve, multiply

through by n/{(1+(n-1)k)Qp' to get

n(1+k)/(1+(n-1)k)Q + (n-1)k'/(1+(n-1)k) + p"/p' = 0,
or equivalently, after noting that f'/f = d ln f/dx for any function f(x) and
separating variables,

[n(1+k)/(1+(n-1)k)QJdQ + d@ in (1+{n~-1)k) + d 1n (-p') = C.

Integrating gives

[(n(1+k)/(1+(n-1)k)Q)dQ + ln (1+(a-1)k) + 1ln (-p') = ln a, where a > 0.
Rearranging the results gives (13).

In the limiting case that k = -1/(n-1), the first order condition (14)
becomes p - ¢ = 0. Its total differential is (l+k(n-1))p' = 0, which is
satisfied for any demand function in this case. Therefore our assertion that
k = -1/(n-1) is always consistent is verified.

Now that we have derived (13) for the other cases, we can use it to
obtain the remaining conclusions. If k is a constant, then (13) simplifies to

p'(Q) = ~ (a/(1+(n-1)k))e T M Q= — (a/(1+(n-1)k))QT



where v = (l+k)n/(1+(n-1)k). Separating variables and integrating produces
p(Q) = A+ BQl—r, as claimed (where B = a/(1+{(n-1)k)(r-1) > 0). Finally, if

k is not constant, then we have (13).

Differentiated Product

Suppose there are n symmetric firms, each selling a single good that is
an imperfect substitute for the goods of the n-1 other firms. For instance,
one may think of the products differing in color or flavor. The price each
firm receives for its product can be written as a function of the quantity

made available by each firm. For the first firm

(17)  py = P(qp,qp,+++,9y)-
The price received by the ith firm, i=2,3,...,n is written similarly, except
that the positioms of q; and q; are interchanged on the right. Letting
h

subscript j indicate the partial derivative with respect to the jt argument,

we assume the functions

(18) Pj = Py for j=2,...,n

(symmetry) and

(19) P <P, < 0.
An increase in the quantity supplied by any firm will depress the price
received by firm 1. Further, an increase in his own output will depress his
price more than will an equal increase in the output of a rival. (If the

goods were perfect substitutes, in the limit, the impacts would be equal.)
As examples of the general model, one may think of the linear form

n
(20) Py = A - qu - D'Z qj

j=1
or the iscelastic (loglinear) form



(21) py = Aqi_B(ql...qn)—D,
where B > 0, D > 0. For (20), P = - (B+D) and P, = -D; for (21), P, =
- (B+D)p;/q; and Py = ~ Dpi/qj' It is readily checked that (18) and (19) are

satisfied in each case in symmetric equilibrium.
Each firm has a constaat unit cost of c. Firm 1 chooses his output q; to

maximize his profit:

max [P(ql,q?_,...,qn)—c]ql
4
A positive finite symmetric solution in which all n firms behave identically

satisfies

(22) P - c + (Pl+(n—l)P2k)ql = 0
where k = dqj/dql’ j=12,e4s,n is firm 1's conjectural variation in
quantities, the assumed rate at which each rival will adjust output in
response to its own output change. The second order condition is assumed to

be satisfied.

In symmetric equilibrium, each firm behaves identically, ;5 = 4 for
j=l,...,n and (22) holds for each firm, i.e. with qq replaced by q in (22) and

with k = dqj/dqi for all i#j. The same price is received by each firm.

Alternatively, the firms may perceive the problem as one of choosing
prices. The system of n price equations represented by (17) can be inverted
to express the quantities that can be sold by each firm as a function of the

prices charged by each. For firm 1, the demand function is

(23) qp = QPy,Ppse-+,Py)e

For example, corresponding to (20) is
n
q, = [A~p,)B - I (p,-p.)D]/B(B+nD)
1 1 =2 1 %]
while corresponding to (21) is



D/B, 1/(B+nD)

n
A .

= [E' w (BJ)
1 2 Pl

The demand functions for the other firms are similar; in the demand function

9, ]
for fim i, P| and p; are interchanged on the right. The properties of demand
functions (23) are obtained using the price equations from which they have
been derived, together with the implicit function theorem. To determine the
partial derivatives of (23), differentiate totally the n equations represented

by (17), yielding in symmetric equilibrium (qj=q, j=1,...,n) the system

n

dqj + 'Z Pqui s j = lyeae,ne
i=1
i#]

(24) dpj = P1

Solving this system by Cramer's rule (see appendix) gives

(25) aqi/api (Pl+(n—2)P2)/(P1+(n—l)Pz)(Pl—Pz) <0, i=1,+4.,n

= - - - i,9=1,00.,n; i#]

(26) 3qi/8pj PZ/(P1+(n l)Pz)(Pl PZ) > 0, i,j=1, ,0; 1%
where the signs follow from (19). As expected, the quantity demanded from
firm i will increase if either firm i reduces its price or any rival raises

price.

If firm | perceives the problem as one of selecting price, it chooses Py

to maximize its profit

max [(Pl'C)Q(Pl)PZ,-“’Pn)]
P
The first order condition satisfied by a positive finite price in symmetric

equilibrium is

(27) Q+ (p;=)[Q) + (n-1)Qym] =0
where Q) and Q, denote the partial derivatives of Q with respect to its first
and second arguments respectively (and Q2 = Qj, j=2,...,n by the assumption

of symmetric equilibrium) and where



(28) m = Bpj/Spl y j = 2,00.,n
is firm 1's conjectural variation in prices, the rate at which it believes any
rival will adjust price in response to a change in its own. By symmetry,
equations (27)-(28) hold for each firm; p; may be replaced by p in (27) and

by p; with i=l,...,n; i#j, in (28).

If the conjectural variation in quantities is zero, so each firm believes
that its rivals will not change their quantities sold in response to an
increase in its own sales, it then implicitly assumes that the rivals will
lower price to maintain sales in the face of its own price reduction (that
must accompany a planned increase in sales). Any conjectural variation in
quantities or in prices implicitly implies a corresponding equivalent
conjectural variation in prices or in quantities respectively that yields the
same symmetric equilibrium price and quantity. To see more generally how the
conjectural variations in prices and in quantities are related, we observe

that (22) and (27) can give identical price-output prescriptions only if

(29)  -(p-c)/q = P{+(n-1)kP, = 1/[Q;+(n-1)mQy].
This was obtained by arranging both (22) and (27) to give expressions for

-(p-c)/q and equating the expressions.
Using (25)-(26) as expressions for Q; and Q) respectively,

(30) Ql+(n—l)mQ2 = [Pl+(n—2)P2—(n—l)mP2]/[Pl+(n—l)P2](Pl—Pz).
Substitute (30) into (29) and collect terms. Rearranging the result gives
(31) 1-m = (1-k)(1-2)/[1+(n-1)kZ]
where
(32) z = Py/Py, 0<z<K1
reflects the extent of perceived product differentiation. The bounds on Z

follow from (19). The limiting case of Z=0 indicates independent products



while the limiting case of Z=1 indicates perfect substitutes. For both the
linear (20) and loglinear (21) forms of inverse demand function, Z = D/(B+D),

a constant.

Equation (31) is our objective, relating the conjectural variation in
prices m to the equivalent conjectural variation in quantities k. In our
simple model, that relationship depends parametrically on the number of rivals
and on the extent of perceived product differentiation. In the limit, 1if k=I,
then m=1; if the firms expect their changes in output to be followed exactly,
then they implicitly expect their price changes to be followed exactly, and
vice versa. At the other extreme, if k = -1/(n-1), then m = -1/(n-1). If
each firm believes that its increase in quantity will be just offset by
reductions in quantity by each of its rivals so industry output is unchanged,
then it implicitly expects that its price increase will be offset by price

reductions by each of its rivals to maintain industry sales.

We can now check our assertions about the meaning of zero conjectural
variations. 1If k=0, then wm=Z. If the firm expects rivals tc keep their
quantities fixed despite an increase in its own output, it is implicitly
expecting others to change their price in the same direction as it changes its
own price, but by a lesser amount (since 0 < Z < 1). On the other hand, if m
= 0, then k = -Z/(1+(n-2)Z) < 0. To understand this, suppose we raise our
price and thereby reduce sales. If rivals are expected to wmaintaian their
prices unchanged (m = 0), then they must increase their output (to accommodate
the customers we lose by raising our price). Thus their output is expected to
move in the opposite direction that ours does. That is, the conjectural
variation in quantities is negative if the conjectural variation in prices is

Zero.



Having discussed (31) at several interesting points, we next look at the
relationship between m and k, for given values of n and Z. It is an

increasing, concave relationship from (-1/(n-1),-1/(n-1)) to (l,1).

m (price c.v.)

k (quantity c.v.)

Thus an increase in one conjectural variation implies an increase in the
other. Nonetheless, the conjectural variations need not always have the same
sign, as we saw earlier. There is an interval in which a positive conjectural

variation in prices implies a negative conjectural variation in quantities.

Comparative statics analysis applied to the first order condition (22) or
(27) indicates, as expected, that an increase in the conjectural variation
(either k or m) will lead to a reduction in the equilibrium quantity, an
increase in the equilibrium price, and an increase in profits. The maximum
profit is achieved by perfect coordimation: w = k = 1.

In our earlier study of homogeneous goods, we saw that constant
conjectural variations could be consistent only if the demand function were in
a certain class. For differentiated goods, we will show that constant
conjectural variations can be consistent in different circumstances.
Consistant constant conjectural variations in quantities may, but need not,
correspond to consistent constant conjectural variations in prices. To
support this assertion, we show that in an oligopoly facing linear demand,

consistency in price conjectures corresponds exactly to consistency in



quantity conjectures. We will also show that in a duopoly facing loglinear
demand, there may be consistent constant conjectural variations in quantities
but none in prices. In this case, consistent conjectural variations may not

be constant.

In order to perform our demonstration, it will be useful to develop the
conditions satisfied by constant consistent conjectural variations and the
demand function at symmetric equilibrium, if one exists. The total

differential of the first order condition (22) is

[ZP1 + (n=1)Pok + q (P} +(n-1)Py k) ]1dq; +
n _ -
Divide by dq,, write k = dqj/dqn, j # n, and collect terms to get in symmetric

equilibrium

(33)  (n-1)k2[P, + q(Py+(n-2)Py,)]

+ k[ZPl +(n—2)P2 + q(Pll +(n—2)P12 + (n—l)Pzz)] + Py + qPyy = 0.
This equation relates the constant consistent conjectural variation in
quantities with the characteristics (derivatives) of the demand function at
symmetric equilibrium, if any. In symmetric equilibrium, the common output g
and the consistent constant conjectural variation are simultaneously
determined by the first order condition (22) and this consistency condition
(33), provided that such solutions q and k exist. For economic sense, we

require q > 0 and - 1/(n-1) < k <1 as well.
Similarly, the total differential of the first order condition (27) is
[le + (n—l)sz + (Pl“C)(Q11+(H—1)mQ21)]dpl

n
+ [Qy + (p;—¢)(Qpt(n-1)mQy,) | 22 de = 0.
Divide by dp,, write m = dpj/dpn, j # n, and collect terms to get in symmetric

equilibrium



(35) m%(n=1)[Q + (p=c)(Qy;+(n=2)Qy5)]
+m[2Q; + (n-2)Qy + (p-c)(Q)+(n-1)Qyy + (n=2)Q;;)]

+Qp + (p—c)Ql2 = 0.
Equation (34) relates the constant consistent conjectural variation in prices
with the derivatives of the demand function at the symmetric equilibrium, if
such a consistent equilibrium exists. In symmetric equilibrium, the common
price p and the consistent constant conjectural variation in prices m are
simultaneously determined by the first order condition (27) and the
consistency condition (34), if such p and m exist. For sense, we need p > 0

and -1/(n-1) < m < 1.

If industry demand is linear (20), then (33) specializes to a quadratic

equation in k

(35) (n-1)Dk? + (2B+nD)k + D = 0

with real roots - Y % [Y2 - l/(n—l)]l/2 where

(36) Y = (2B+nD)/2(n-1)D.
The smaller root is less than -1/(n-1) and so is outside the relevant range.

The larger root

(37) k =-Y+ (v2 - 1/(a-1))1/2
lies between - 1/(n-1) and zero; it is the relevant one. Since it is
negative, a constant consistent conjectural variation with linear demand will
be such that rivals expect their output changes to be partially but not wholly
offset by rivals. This consistent conjectural variation will be discussed

further after the consistent conjectural variation in prices is developed.

Substituting the demand function (20) and the value of k from (37) into

the first order condition (22) yields the symmetric equilibrium output per



firm at which the constant conjectural variations in quantities are consistent

(38) q = (A-c)/[B + (n+2)D/2 + (BZ+nBD+(n-2)2D2/2)1/2],

If firms face linear demand (20) but consider price as the decision
variable, then (34) must be satisfied by a constant consistent conjectural
variation in prices. For the linear demand, Q; = - (B+(n-1)D)/B(B+nD) while

Q, = D/B(B+nD) so (34) specializes to a quadratic equation in m

(n—l)Dm2 - (2B+nD)m + D = 0
with roots Y % [YZ - 1/([1—1)]1/2 where Y is as defined in (36). The larger
root exceeds one and so is outside the economic range. The smaller root
(39) m =Y - [¥2 - 1/(a~1)]1/2
is the relevant one. It is positive and less than one. With linear demand,
in an equilibrium with consistent conjectural variation in prices, firms

expect that price changes will be partially followed by rivals.

It can be verified by substitution and lengthy algebra that (37) and (39)
satisfy (31) when Z = D/(B+D). This means that the consistent conjectural
variations in quantities and the consistent conjectural variation in prices
lead to the same equilibrium output (38) and hence the same equilibrium market
price as well.

It is worth noting a few points about the consistent conjectural
variation and the resulting equilibrium for this example. First, the reaction
functions are linear and therefore have constant slope. This suggests that we
might not have been surprised to find that there is a consistent constant
conjectural variation. On the other hand, for linear demand and a homogeneous
good, we found that the only constant consistent conjectural variation is
~1. Second, comparing (37) and (39) indicates that 0 < m = - k < 1; the

consistent constant conjectural variations are equal in magnitude and opposite



in sign. In the earlier sketch, the consistent conjectural variations are at
the intersection of the curve with the 135° line from the origin. A price
increase will be followed, but less than fully. A quantity increase will be
partially offset by the rival.

Third, the absolute value of the consistant constant conjectural
variations is decreasing with B and increasing with D. The larger is D, i.e.
the better substitutes the goods are, the greater is the responsiveness
expected of the rival. The less differentiated the goods in the minds of the
consumer, the more a price change will be followed and the more a quantity
change will be offset. In the limit, as D approaches zero, reflecting nearly
independent products, the consistent conjectural variations approach zero as
well. If the products are perceived to be nearly unrelated by consumers, the
rivals consistently expect no response from the rival to any change in their
decision variable. The equilibrium approaches the monopoly price and

quantity.

The simplicity and elegance of constant consistent conjectural variations
in the case of linear demand need not carry over for other demand functions.
To illustrate, we consider loglinear demand.

Suppose duopoly faces demand (21) with B+D < 1 so the inverse demand

function for firm 1 is

(40) P; = Aql_(B+D)q2—D where B + D < 1.
Then (33) specializes to
k2 + Rk + 1 = 0
where
_ _n2_ 2 —R—
R = [B-D“-(B+D)~]/D(1-B-D).

This has roots



Kk = -(R + (RZ-4)1/2y ), ky = (-R + (RZ-4)1/2y/2,

In order for a real k to exist, it 1is necessary that RZ > 4o If R > 2, then
the smaller root k; < -1, outside the relevant range. Only the larger root L3)
is relevant; k, is an increasing function of R and lies in the range -1 < kj <
0.

If -2 < R < 2, there is no real k since the argument of the square root
is negative. If R < -2. the smaller root k; is increasing and lies in the
range 0 < kl_i_l. The larger root k, exceeds unity and therefore is not
relevant. Hence the magnitude of R and resulting consistent conjectural

variations in quantities are related as follows:

parameters R k
(1-8)/2 <D R -2 0 <ky; <1
B(1-B)/2 < D < (1-B)/2 -2 <R 2 none
D < B(1-B)/2 R>2 -1 <k, <0

Thus for a duopoly facing loglinear demand, there may or may not be consistent
constant conjectural variations, depending on the relation of the parameters B
and D. These conjectural variations, if they exist, may be positive or

negative, again depending on the relation of these two parameters.

When we seek consistent constant conjectural variations in prices, we
find that none exist. The first order condition and consistency condition for

a duopoly facing loglinear demand give us

p = c/[1-(B+2D)1/ 2}, m = (B+D)/D - B(B+20)Y/2/p
Since price must be positive, we have the restriction that B+2D < 1. But when
B+2D < 1, we have m > 1 which is outside the economic range. Hence there is
no constant consistent conjectural variation in prices in this case. O0f
course we know from (31) that there is a constant conjectural variation in

prices that leads to the same equilibrium as does the consistent conjectural



variation in quantities, but it will not itself be consistent. We may surmise
(but have not verified) that corresponding to the constant consistent
conjectural variation in quantities is a nonconstant consistent conjectural

variation in prices.

Summary

We have discussed several facts about conjectural variations in static
equilibrium. We showed that a harmonic sum of conjectural variations in a
homogeneous market contains all the relevant information about market
structure (numbers) and conduct (beliefs or coordination) for determining
market performance (industry output). The role of similarity of beliefs in
market performance was noted; the more homogeneneous the beliefs, the smaller
the industry output. We also wrote several established structure and
performance indices in our format using the harmonic sum of conjectural

variations.

It was shown that even in symmetric equilibrium, firms' constant
conjectural variations are unlikely to be correct since there is only a very
narrow class of demand functions and associated interior conjectural
variations for which this is possible. This class was derived. It was also
shown that the limiting conjectural variation that leads to the competitive
output can be consistent for any demand function. Of course, the conjectural
variation need not be constant; it may for instance depend on industry
output. In that case, conjectural variations can be consistent for a far
broader range of demand functions. We developed and discussed the
relationship between the functional form of the conjectural variations
function and that of the demand function for which expectations can be

consistent in equilibrium.



Finally, we have demonstrated the relationship between conjectural
variations in prices and conjectural variations in quantities that are
equivalent in the sense of yielding the same price and output within the
context of a differentiated product market in symmetric equilibrium.
Consistent conjectural variations were also examined. We found that if the
demand is linear, then constant consistent conjectural variations in quantity
correspond to constant consistent conjectural variations in price in the sense
that the same equilibrium price and quantity will be attained if either
conjectural variation is consistent. The consistent equilibrium is such that
price changes will be partially followed and quantity changes will be
partially offset, each to the same degree. For other demand functions, such a
neat relationship need not hold. For instance, we showed that for the
loglinear demand function, there is a constant conjectural variation in
quantities but none in prices. There is a constant conjectural variation in
prices that leads to the same equilibrium as does the consistent conjectural
variation in quantity but it is not consistent. We surmise that there may be
a corresponding nonconstant consistent conjectural variation in that

instance.



Appendix

We will show how to solve the system of linear equations ia (24) using
Cramer's rule. To evaluate the determinant of an n X n matrix with a on the
main diagonal and b elsewhere, subtract the first column from each of the
other columns. Then add each of the last n-1 rows to the first row. Finally

expand by the first row:

(Al)
a b b... b a b-a b-a ... b-a a+(n-1)b 0 0 ... 0
b a b LY b b a—b O e O b a_b O s e O
e'
b b b eee A b O O s o0 a_b b O 0 ...a—b

= [a+(n-1)b](a-b)™" 1L,

If the first column is replaced with a vector with 1 in the first row and
zero elsewhere, the determinant is readily evaluated by expanding by the first

column and then applying the above result:

1 b beeee b
O a b «ee b
(A2) e = [a+(n-2)b](a-b)""2

0 b b ... a

If the first column of the original matrix is replaced by a vector with 1
in the second row and zeros elsewhere, the determinant may be evaluated by
expanding by the first column, subtracting the first column of the reduced
determinant from each of the other columns, and then expanding by the first

row.



(A3)
O b b... b b b be... b b 0 0 ... O
1 a b ... Db b a b ... b b a-b 0 ... O
O b b ..o a b b b... a b 0 0 ... a-b
(n x n) ((n-1)x(n-1)) ((n—=1)x(n-1))
= -b(a-b)""2,

Let a = P; and b = Py). The determinant of the coefficient matrix on the right
in (24) is given by (Al). Using Cramer's rule, (25) is the ratio of (A2)

divided by (Al) and (26) is the ratio of (A3) divided by (Al).
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