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0. Abstract

We consider the sale of an object by sealed-bid auction, when one
bidder has private information and the others have access only to public
information. The equilibria of the bidding game are determined, and it
is shown that at equilibrium the informed bidder's distribution of bids
is the same as the distribution of the maximum of the others' bids. The
expected profit of the informed bidder is generally positive, while the
other bidders have zero expected profits. The equilibrium bid distri-
butions and the bidders' expected profits are shown to vary continuously

in the parameters of the bidding game.

1. Introduction

In a competitive setting, information plays two important roles.
Information about the physical state of the world can indicate the
quality of the goods one considers acquiring. In addition, information
about one's potential competitors - their number, their preferences, the
information which they in turn possess - can indicate the degree of
competition one must expect to encounter. A theory of competitive
bidding that incorporates these various aspects in a setting that is
symmetric with respect to the bidders has been presented in Milgrom and

Weber [1981a].



We consider in this paper the sale of a single indivisible object
of fixed, but unknown, value, when the bidders are asymmetrically
informed. 1In the case we treat, only one bidder is assumed to have
private information. Therefore, the privately-informed bidder has a
double advantage over his competitors: he has a more accurate estimate
of the object's value, and he knows precisely what information his
competitors possess.

The model we treat can be viewed as representing the sale by
auction of mineral rights on a tract of offshore territory. Each bidder
submits a nonnegative sealed bid. The highest bidder is awarded the
rights being sold, and pays the amount of his bid; the losers pay
nothing. All of the bidders have access to publicly available
geological data. However, one of the bidders has - and is known to
have ~ additional proprietary information acquired as a result of work
performed on an adjacent tract, or through a privately commissioned
survey.

Formally, we assume that there are mtl potential bidders, each of
whom knows the joint distribution of the random pair (g,g). The
variable Z represents the unknown value of the object being sold. We
assume that Z takes values in R, and has finite expectation. The
variable X represents the private information of the better-informed
bidder; only he is informed of the realization of X. We do not assume
that X 1is real-valued: 1its values may lie in any measurable space.

The model we treat generalizes one introduced by Wilson [1967],

which was based on a case study by Woods [1965].4 The model has been



partially analyzed by Wilson [1967], Hughart [1975], and Weverburgh
[1979].5 None of these earlier studies obtained a complete, correct
characterization of the equilibrium strategies of all the bidders, and
each made unnecessary assumptions about the joint disfribution of
(g,g). Our contributions in this paper are (1) providing a complete
characterization of the equilibrium strategies of all the bidders,
without imposing any restrictions® on (2,%X), (2) deriving the bid
distributions predicted by the model, (3) computing the bidders'
expected profits and the seller's expected revenue from the auction, and
(4) showing that the bid distributions, bidder profits, and seller
revenues depend continuously on the assumed joint distribution of
(2,X). Our analysis also sets the stage for a study of the bidders'
incentives to acquire private information and the seller's incentive to
bring additional information into the public domain (Milgrom and Weber

{1981al).

2. The Informed Bidder's Problenm

When the informed bidder observes a realization X = x of his
private information, his problem is to choose a bid b to maximize his
expected profit: P(b wins)-(E[§|§ = x] - b). There are two things to
notice here. First, the bidder's private information X enters his
decision problem only through H = E[glg]; consequently we may assume
without loss of generality that the informed bidder observes only the
real-valued variable H, rather than the more complicated variable X

whose values may lie, for example, in the space of geological reports.



Second, if b is an optimal bid when the realization of H is h, then
no lower bid b' can be optimal when the realization is any larger value
h' > h. For if b' < b, then P(b wins) > P(b' wins) (else b cannot

be optimal when H = h); hence, P(b wins)(h'-b) = P(b' wins)(h'~b') >

P(b wins)(h-b) = P(b' wins)(h-b') > O. Thus, b' 1is not as good as

b when H = h' and so cannot be optimal.

To accommodate both pure and mixed strategies for the informed
bidder, let U be a random variable that is independent of (g,g) and
has an atomless distribution. We assume that the informed bidder
observes U and uses it whenever he needs to randomize his bids. A
mixed strategy B8 for the informed bidder is then a function from
E@ >R, where B(h,u) is the amount bid when H=h and U = u.

There is no loss of generality in requiring that g(h,u) be

nondecreasing in u for every fixed value of h.

3. Equilibrium Strategies

For uninformed bidder i, a mixed strategy is a distribution Gj
on R4, where G;(b) is the probability that he tenders a bid not
exceeding b. Let G(b) = Gl(b)-...-Gm(b); G denotes the distribution
of the maximum of the bids made by the uninformed bidders. The

equilibria of the bidding game are described in the following theorem.

Theorem 1: The (mt+l)=-tuple (B’Gl""’cm) is an equilibrium

point if and only if
g(h,u) = E[gl d<h, or H=h and U< u] , and

G(b) = P(B(H,U) < b) .



Notice that 8(h,0) = E[H|H < h], while B8(h,1) = E[H|H < h]. 1If
H has no atom at h, then these two expressions are equal; in
particular, when H 1is atomless, @ describes a pure strategy.
Generally, if H has an atom at h, the equilibrium strategy involves
randomizing over the interval [B(h,0), B3(h,1)] when H = h.

We can exploit the special structure of B by working with
distributional types and distributional strategies (cf. Milgrom and
Weber [1981c]). Let {(ﬂ,g) < (h,u)} denote the event
{H<h, or H=h and U< u}, let T(h,u) be the probability of that

event, and define T = T(H,U). T is called the informed bidder's

distributional type and is uniformly distributed on [0,1]. Letting

H(t) = inf {hlP(g < h) > t}, we have H = H(T) almost surely.
Therefore, the distributional type T carries all the information that
the informed bidder needs in order to make an optimal bid. 1In essence,
the transformation of H into T “opens” each of the (at most
countably many) atoms of H 1into an interval, and permits us to proceed
with our analysis as we would have, had H originally been atomless.
Using the distributional type, we can express B conveniently in
its distributional form. When the informed bidder observes T = t,7 he

bids®

8(t) = E[H(D) T < t]

fg H(s) ds/t

H(t) - (1/¢t) fg s dH(s) .

Notice that in this form, B 1is continuous and nondecreasing,

B(0) = H(0), and B(1) = E[H].



Proof of Theorem 1 (first part): Let B and G be as specified

in the theorem. The range of B8 is [H(O0), E(g)]. Therefore, this
interval is also the support of G. Suppose that the uninformed bidders
adopt their equilibrium strategies and the informed bidder learns that

T =t. Consider a bid b by the informed bidder. If b < H(0), the
bid will surely lose and bring him a payoff of zero; if b > E[H], then
a bid of precisely E[H] would be strictly preferred (either bid would
win with certainty). Hence, an optimal bid lies in the range of B.

9

A bid of B(1) wins with probability 1,7 yielding an expected

payoff of
[H(t) - B(D)]et = [§ (H(£) - H(s))ds .

Hence, the derivative with respect to T of the informed bidder's
expected profit is H(t) - H(1), which is nonnegative for T < t and
nonpositive for Tt > t. This proves that B{(t) is an optimal bid
when T = t.

For any uninformed bidder, say bidder 1, a bid of less than H(0)
will always lose and will yield an expected profit of zero, while a bid
greater than E[H] will be strictly inferior to a bid of precisely

E[(H]. Consider a bid b = B(t). The resulting expected payoff is
E[Z = B(E)IT < t]eteG,(b)+.c.eG (D) .

But E[Z - B(t)IT < t] = E[H(D)|IT < t] - B(t) = 0. Hence, the

distribution G; has only optimal bids in its support. Q.E.D.



The preceding proof shows that the indicated strategies are in
equilibrium. We return later to the proof that there are no other
equilibria.

We have assumed for our analysis that the value of the object being
sold is the same to each bidder, that the bidders are all risk-neutral,
and that the poorly-informed bidders all have identical information.
None of these assumptions are necessary to conclude that the less-well-
informed bidders earn zero profits at equilibrium. The following is one
of several available results (cf. Milgrom [1979]) to the effect that a
bidder, all of whose information is known to some fixed competitor and
whose risk—adjusted reservation price for the object is no greater than

that of the competitor, cannot profit from a sealed-bid auction.

Theorem 2: Let zA denote the (unknown) value of the object to

the informed bidder and let !B denote the value to the first

uninformed bidder. Suppose that YB < YA almost surely. Let Uy and
Ug denote the bidders' respective utility functions (increasing and
continuous), and suppose that Ug 1is globally as risk averse as Up.

Then at any equilibrium point of the bidding game, the uninformed

bidder's expected utility is UB(O).

Proof: We call the informed bidder A and the first uninformed
bidder B. Without loss of generality, let U,(0) = Ug(0) = 0. Fix
some equilibrium point (B,Gy,...,G ). Let G(b) = Gy(b)e...+G (b), and
let G(b) = 6 (b)G(b). Definel® b = inf {blG (b) > 0}. If b <

inf {bra(b) > O}, then B's bids near b will never win, and B's



expected payoff will be UB(O). Hence, we can restrict our attention to
the case where b > inf {bIG(b) > 0} = inf {blG(Db) > 0}. There are two
subcases to consider: either G has an atom at b, or it does not.
If G has an atom at b, then A will bid above b when

E[UA(YA - b)IX] > 0, because a bid of b < b brings a zero expected
payoff and the expected payoff, as a function of b, jumps up
discontinuously at b. Let S be the event {E[UA(EA - b)IX] > 0}.

If P(S) =1, then A will always bid above b, and therefore B's
expected payoff when he bids b + & will be 0(e). If P(S) < 1, then,
letting S denote the complement of S, B's expected payoff

conditional on winning with a bid of b + e is
E[UL(Y, - b)IS] + 0(e)
= E[E[U,(Y, - D)IXIIS] + 0Ce) .

Since Up 1is globally as risk averse as Ups there is some
increasing concave function g such that Up = g(UA). Then, since

V. <V, almost surely, we have that if E[UA(YA -.E)I§] < UA(O) =0,

E[U;(V; - b)IX] < Elg(U,(V, = b))IX]

|~

g(E[U, (Y, - B)IX])

| A

g(U,(0)) = U,(0) =0 ,

using Jensen's inequality. So B's expected payoff, conditional on

winning with a bid of b + e, is at most 0(e).



Similarly, if G has no atom at b, then A can never win by
bidding b or less, but he can earn a positive payoff by bidding more
than b whenever E[UA(YA -.E)IX] > 0. Hence, the argument from the
preceding paragraph applies: When B bids b + e, either his
probability of winning or his conditional expected payoff must be
0(e). 1In either event, his expected payoff is 0(e).

At equilibrium, B must be indifferent among all his bids.
Therefore his expected payoff must be constant, and by the argument just
given it must be O0(e) for bids of b + e. Hence, his expected payoff

must be zero. Q.E.D.
Using Theorem 2, we can complete the proof of Theorem 1.

Proof of Theorem 1 (conclusion): Adapting arguments given by

Griesmer, Levitan, and Shubik [1967], one can show that at equilibrium
each bidder's distribution of bids is atomless, except possibly at its
lower bound. We leave the treatment of that possible atom to the
reader.

If the bid distributions are atomless and if an uninformed bidder
wins with a bid of b, then his expected payoff conditional on winning
is E[zZ - b|B(g,g) < b], where B denotes the strategy of the informed
bidder. Recall that there is no loss of generality in requiring that
the equilibrium strategy B be nondecreasing. The arguments of
Griesmer, Levitan, and Shubik can be used to show that the range of
B must be convex. But when b = B(h,u), the conditional expected
payoff is E[g - B(h,u)l(g,g) < (h,u)], which must be zero by

Theorem 2. Consequently, 8(h,u) = E[ZI(H,1) < (h,w].
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Since B is optimal, we know that B(h,u) solves
max (h-b)G(b). The first~order necessary condition for optimality is
Ob= -G(b) + (h-b)G'(b), a first-order linear differeantial equation in
G that must hold for all (h,b)-pairs for which b 1is in the range of
B(h,+). The supremum of the range of 8 1is E[H], and so, as we noted
earlier, no uninformed bidder can bid more than E[H] at equilibrium.
That determines the boundary condition: G(E[g]) = 1. Since the range
of B 1is convex, there can be only one function G satisfying the
differential equation and the boundary condition. Therefore, the

distribution G given in Theorem 1 is the unique equilibrium bid

distribution for the maximum bid of the uninformed bidders. Q.E.D.

4, Continuity

Since T is uniformly distributed on [0,1], the information about
the distribution of (Z,X) that we need to determine the equilibrium
strategies is all encoded in the function H. The coding works as
follows: If F 1is the distribution of H, then H(t) =
inf {h|F(h) > t} and F(h) = inf {tlH(t) > h}. Notice that H is
essentially the inverse of F: for any h in the support of F, we
have H(F(h)) = h.

The same remarks apply to the distributional form of R, i.e., if
Gy 1is the bid distribution of the informed bidder, then
B(t) = inf {blGy(b) > t} and Gy(b) = inf {t|B(t) > b}. For bids in
the support of Go>» B(Go(b)) = b. These observations lead to the

following result.
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Theorem 3: When the weak topology for distributions is used, the
equilibrium distribution of bids varies continuously with the assumed

distribution of H.

Proof: Let {Fk} be the sequence of distribution functions of the
variables {gk}, and let {(Bk,GT,...,G;)} be corresponding equilibrium
points. Weak convergence of the Fk—sequence is equivalent to almost
everywhere convergence of the corresponding Hk—sequence. Since

Bk(t) = (1/t) IS Hk(s)ds, almost everywhere convergence of the

k.

H™—sequence implies pointwise convergence of the Bk—sequence, which

implies weak convergence of the Gk—sequence as claimed.!l Q.E.D.

5. Equilibrium payoffs

Finally, we determine the expected profit of the informed bidder
and the expected revenue of the seller. A consequence of the following
theorem is that these equilibrium payoffs vary continuously in the

distribution F of H.

Theorem 4: At equilibrium, the informed bidder's expected profit
. © 1 '
is IO F(h)(l - F(h)) dh = IO t(1-t) dH(t) , and the seller's expected

revenue is [j (1 - F(n))%dh = [} (1-t)%dH(t) + K(0).

Proof: When the informed bidder has distributional type t, his
equilibrium bid is B(t) = H(t) - (1l/t) fg s dH(s). Conditional on
winning, his expected profit is H(t) - B(t). The bid B(t) wins with
probability G(B(t)) = t, unless H(t) = H(0) = B(0) = g(t). In either

case, his expected profit when T =t (not conditioned on winning) is



- 12 -

t(H(t) - B(t)) = fg s dH(s) = fg F(z) dz, where h = H(t). To obtain
the informed bidder's expected profit, we integrate over t wusing the

distribution of T, which yields

fé IS s dH(s)dt fé s (j; dt) dH(s)

[ sQi-s) aH(s) .

Notice that for any realization (z,x) of (Z,X) and any
(wtl)-tuple of bids, the seller's revenue plus the bidders' profits
totals z. Hence, the seller's expected revenue is E[g] minus the

bidders' expected profits. But
Elz] = E[H] = E[H(D] = [ H(t) dt = [} (1-t) dH(t) + H(O) .

Deducting the informed bidder's expected profit (recall that the

uninformed bidders expect zero profit), our result follows. Q<. E.D.
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Advanced Research in Managerial Economics at Northwestern University.

4This study is the basis for the "Maxco/Gambit" case [1974], used

in many business schools.

5For a broad survey of the literature on competitive bidding, see

Engelbrecht-Wiggans [1980].

6In particular, the characterization holds whether (Z,X) has a
continuous, discrete, or mixed distribution. The unifying techniques
presented here are applicable to a variety of games with incouplete
information (cf. Milgrom [1981], Milgrom and Weber ([198la], and
especially [1981lc, Section 6]).

7By this we mean that he observes (H,U) = (h,u), where T(h,u) = t.

8This agrees with our original specification of 8 because, when

T(h,u) = t, {T < t}c {(H,0) < (h,u)} c {T < t}, and the event
{T =t} is null.
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9An exception occurs if H has an atom at H(O). In that case,
one can verify that G also has an atom at H(O) and hence that it is
optimal for the informed bidder to bid B(t) = H(0) if and only if
H(t) = H(0). For the remainder of this paper, we omit consideration of

the case where H has an atom at H(O0).

10Here we use the assumption that bids are nonnegative, or at least
bounded from below. 1If arbitrarily large negative bids were permitted,

there would exist other equilibria not satisfying Theorems 1 and 2.

llConvergence of the bid distributions can involve the convergence
of a sequence of pure strategies to a mixed strategy. That happens, for
example, when ﬂk is uniformly distributed on [0,1/k] U [1-1/k,0], so
that H<(s) = 2s/K for O < s < 1/2, , and HK(s) = 1 - 2(1-s)/k
for 1/2 < s € 1. Note that {Fk} is a sequence of continuous
distributions which converges weakly to the discrete distribution which
places probability UQ at 0 and at l. 1In distributional form, weak
convergence of the bid distributions takes the convenient form of

pointwise convergence of the sequence {Bk(-)}.
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