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ABSTRACT

Papadimitriou and Reiss have independently shown how a rational x = p/q,
P,q positive integers with p, q < N can be found in O(log N) queries of the
form is x < y? We examine some of the algorithmic implications of their

findings.

I. Introduction.

It is sometimes possible to solve a mathematical programming problem of
the form:
s* = max f(X)

(P subject to X e F rR"
using the following strategy. First, a finite set S, which is known to
contain the optimal objective value s*, is identified. Then, one searches for
s* in S using a test whose role is to decide for each s € S, whether or
not s* < s. This approach is especially viable in cases where an efficient
subroutine for performing the test is available and where the set S is easily
generated and is rather small or contains enough structure to allow efficient
search within it. Examples of problems which where successfully solved using
this technique include the maximization of ratio functions, [3], [10], [12},
[{16], minimax location problems on trees, [4], [5], [9), [17], the linear

knapsack and multiple choice knapsack problems, [1], [2], [7] [8], [18], etc.

The cardinality of the set S plays a crucial role in the overall
complexity of such algorithms. Thus, there is a natural tendency towards
preferring smaller sets to larger ones. In fact, the polynomial nature of
several algorithms of this type depend crucially on the fact that an ingeneous
reasoning allows one to consider a set S whose cardinality is polynomial (e.g.
[13]). Naturally, in order to obtain a small set S, one usually exploits to
the maximum degree possible the specific details of the problem at hand.

Thus, there is often a close relationship between the structure of the problem
(P) and the structure of the set S. For instance, in [4], [5], [9], [14],

[17], one uses a set S, which is derived from the set of inter-nodal distances
on a tree. Much of the efficiency of the algorithm depends on this particular

structure,



The strategy considered in this note is the opposite of the one described
in the paragraph above. Rather than search within a small and problem
specific set S, we consider a set R 2 §, which is typically much larger than
S. Specifically, we consider sets of the form

RN ={x/y : x> 0, y >0, x,y € N, X,y integer}
where N is sufficiently large to ensure that Ry > S. As will be demonstrated
below, such a strategy allows one to derive polynomial algorithms for several
problems (P) for which no such algorithms existed before. For other problems,
the method can be used to attain a better bound on the computational
complexity. As a bonus, we typically also get a very significant

simplification in the structure of the algorithms for (P).

At the heart of the proposed strategy is the following interesting
theorem, due independently to Papadimitriou, [15], and to Reiss [16]:
Theorem 1, [15}, [16]: Let s*e RN be given, but unknown. Then, s* can be

*
identified within 0(log N) querries of the form is s > s ?

Papadimitriou's method is based on Farey's series; that of Reiss on
continued fractions. We note that both methods, but in particular the one of

Reiss, [16], lent themselves easily to practical implementation.

In the following two sections we examine two cases where such a strategy
seems advantageous. The first is the problem of minimization of a ratio
function over a combinatorial set, the second is the weighted min max location

problem on a tree.

ITI. Minimization of Ratio Functions

Consider the problem:

(PR) s* = min (cy + cx)/(do + dx)
subject to x € F

where the coefficients appearing in the objective function are integers and
where dO + dx > 0, x € F. For ease of exposition, we assume throughout this
section that F is a set of 0-1 vectors in R". However, the results remain
virtually unchanged for any bounded Polyhedral set with rational extreme
points whose numerator and denominator can be bounded apriori. Consider the
Linear version of (PR):

(PL) max cx

subject to x € F



where ¢ is a vector of integers. Obviously, any algorithm for (PR) can solve
(PL) as well. A connection in the reverse direction is established by the

following observation whose proof is trivial:

Proposition 1 Let F be such that d0+ dX > 0 for every x € F. For a
scalar A let:

Z(A) = max (c - xd)X

subject to x € F

then: x> s* iff z(x) > S Ado.
This approach was utilized by Chandrasekaran, [3], for the minimal ratio
spanning tree problems and by Karp, [10}, and Lawler, [12], for the minimal
ratio cycle problem. MMore generally, we have the following interesting result

due to Megiddo, ([13]:

Theorem 2 [13]: If problem (PL) can be solved within 0(p(n)) comprisons and
0(q(n)) additions than problem (PR) can be solved in time O(p(n)(q(n) +
p(n))).

Megiddo's result is based on the strategy referred to in the introduction
where the algorithm for (PL) serves a guide for a search through S. The main
point in his result is a clever way to identify an appropriate set S whose
cordinality is bounded by O(p(n)). Obviously, if p(+) and q(+) are
polynomially bounded functions than so is the complexity of the algorithm for
(PR). Nevertheless, we note that theorem 2 falls short of asserting that (PR)
is solved in polynomial time if (PL) is. This is due to the limitation on the
type of operations allowed by the algorithm for (PL), namely additions and
comparisons only. Although these limitations can be somewhat relaxed, they
cannot be entirely removed. Thus, a polynomial algorithm for (PL) which is
based, say, on multiplications of cost coefficients, cannot be used to support
a polynomially bounded algorithm for (PR). Examples of problems for which the
only known polynomial algorithms are of this type will be given below. But,

first we use Theorem 1 to close the gap left open by Theorem 2:
Theorem 3 (PR) is solvable in polynomial time iff (PL) is.

Proof The only if part is trivial since (PL) is a special case of (PR). For

the other direction, let:



d = max max {Ici|, ldil}

and let: i=0...n

* * *
s = (cO + cx )/(d0 + dx ) = p/q

Obviously, p,q are integers whose absolute value is bounded by, say, N =

2nd. Thus, we can identify s* within Ry using 0(logN) = 0(log(n * d)) tests,
each involving a run of the algorithm for (PL). To conclude the proof we note
that the cost entries in each of these runs (expressed as integers) are

bounded from above by Nd = O(n2d2).

We now apply theorem 3 to several ratio problems which do not fall within
the scope of theorem 2. All the examples given are consequences of the
extremely powerful technique developed in a recent paper by Grgetchel, Lova;z
and Schrijver, [6]. The method, which is based on Khachians polynomial
algorithm for Linear Programming [11]}, is used in [6] to construct polynomial
algorithms for numerous combinatorial programming problems. The first two
examples are based on algorithms for (PL) taken from [6]; the third is taken
from [19].

Example I Let G be a perfect graph. It is shown in [6] how to find, in
polynomial time, a subset of vertices of G which is independent (i.e. no two
vertices in the subset are connected by an edge) and which maximizes a linear
objective function. Thus, we can solve in polynomial time the problem:

s* = max (cO + cx)/(do + dx)
where x is the incidence vector of an independent set in G, and where c, d are
vectors of integers with dg + dx > 0 for every feasible x.
Example II Let F be a family of subsets of{l...n}, which is closed under
unions and intersections, and let f be an integral valued supermodular
function over F. Then, it is shown in [6] how max f(x) over x € F can be
found in polynomial time (subject to some mild assumptions on the way F is
given). Using Theorem 3, we can solve, in polynomial time, the problem:

max (fq + f(x)/(go + g(x))
for g(x) integral valued submodular function over F and such that
g, + g(x) > 0, xe F.
Example III Let G be an undirected graph whose arcs are subject to
probabilistic failure. Denote the probability that arc i will be operative
throughout a certain time interval by pij- Assume we are given only the

information:



a, < Py < bi
where i runs over all the edges of G. It is shown in [19] how we can
calculate in polynomial time the best possible upper and lower bound on the
probability of events of the type:

(El): every two nodes of G are connected by a path.

(EZ): two specific nodes of G, say s and t, are connected by a path.
etc. Using theorem 3, we can calculate, in polynomial time, the best bounds
on the conditional probability of E; given E,, provided that the probability

of the later does not vanish. Similar results can be obtained for directed

graphs and for other types of conditional events.

In spite of examples I - III, we note that almost all polynomial
algorithms available to date fall within the stipulations of Theorem 2. For
such problems, one is naturally interested in comparing the algorithm of this
Theorem versus the one of Theorem 3. We note at the outset one advantage of
the later algorithm. The set Ry used by this algorithm is a standard one and
does not depend on the problem (PL) (except the obvious dependence on the
parameter N). Thus, we can use a general master problem for (PR) which
accepts any algorithm for (PL) as a subroutine. Moreover, this master program
is extremely simple requiring little more than a binary search over a
continuous region, [16]. This is in sharp contrast to the algorithm of
[13], where the structure of the problems (PL) bears close relation tc S so
that the master problem for (PL) is problem specific. As for the
computational complexity of the two methods, they, of course, depend on the
specific problem one is considering. In table I below, we examine several
typical examples. In the first two, an accelerated version of Megiddo's
algorithm is used, as in [13]). The other two are not specifically analyzed in

[13], so the complexity is given by the expression given in theorem 2.

The examples considered are the following:
(1) The minimum ratio cycle problem.
(ii) The minimum ratio spanning tree problem.
(iii) The maximum ratio matching problem.
(iv)  The minimum ratio flow problem.
For all four problems, let m and n denote the cardinality of the set of edges
and nodes of G respectively, and let d denote an upper bound on the

coefficients appearing in the objective row, expressed as integers. For the



fourth problem we let u denote the maximal capacity of an arc.

Algorithms of Algorithms of
Problem Theorem 2 Theorem 3
(1) 0 (m n? log(n)) 0 (mn log(nd))
(ii) 0 (m logz(n) log log(n)) 0 (m log(nd) log log(n))
(1i1) 0 ( 0% 0 (a3 1log(dn))
(iv) 0 (@* logZ(u)) 0 (m? 1og(u) log(dem))
TABLE I

Naturally, the difference between the bounds implied by theorems 2 and 3
increases with the complexity of (PL) and decreases with log d. Thus, in
general, the algorithm based on Theorem (3) is preferable for problems where
the linear version is of high complexity and where the coefficients in the

objective row are not extraordinarilly large.

III. The Weighted P center problem on a Tree

We consider, in this section, another problem, for which theorem 1
provides a polynomial algorithm. However, this problem is not of the ratio
type problem discussed in the previous section. Consider a tree network T =
(V,E) which is embedded in the Euclidean plane so that edges correspond to
line segments meeting each other at the nodes. Let A be the union of all the
edges of T, each considered as the subset of points which make out the
respective line segment. For each pair of points x & A, y ¢ A, let d(x,y)
denote the distance between them, measured along the edges of T.

k r
Let T = Zi, and A = |J A, be two subsets of A. We assume that each

i=1 j=1
set Zi,Aj corresponds to a closed and connected subtree of T, possibly

containing just one point. Without loss of generality, we can assume that all
the end points of the sets Zi, i=l...k, Aj’ j=l...r are considered vertices of

T, i.e., are members of V. Denote by n the cardinality of this set.

We can think of the set I as the set of prospective supply points on T.

Similarly, we refer to A as the demand set. For each individual demand



region, Aj’ j=1l.eor, let Wy be a positive integer which represents the

"importance” or "weight" of this set. Similarly, for each supply

3 be a positive integer which is inversely related

to the "speed” of a server dispatched from this region. For every

region, Zi, i=1...k, let v

point x € I , let v, = v; where i is the (unique) index such that x ¢ Zi.

Similarly, for y e A, let Wy

Consider a "customer” (demand point) y & A which is being "serviced” by

= Wy for j such that y e Aj.

a facility established at a point x e Z. Let

s(x, y) = v wyd(x, y)
be the objective function, as viewed from the perspective of this customer.
Naturally, if we establish centers at locations S = {xl,...,xp}, the one most

preferred by y is the point x*tS such that

s(x*,y) = min s(x, y)
XE S
Thus, the weighted p - Center Problem (WPCP) can be defined as the problem of
finding a set S = {xl,...,xp}, X,€ L, i =1,...,p which minimizes the

expression:
mnax min  s(x, y).
yel XES

We say that (WPCP) is discrete if both I and A are finite sets i.e. if

ZUuAc V. We say that the problem is semi-discrete if at least one of the

sets is finite. A problem which is not semi-discrete will be referred to as

continuous. Also, a problem will be referred to as semi-weighted if only one

of the sets I or A is weighted i.e. if v, = 1, x e I or wy =1, ye A. The

X
problem is un-weighted if neither set is weighted. We will refer to the

unweighted version of (WPCP) as (PCP).

It is well known that (WPCP) defined on a general graph is np-hard even
for the unweighted case and even when the sets £ and A are simple, [12]. On
the other hand, the unweighted problem on a tree is well behaved.

Polynomial algorithms for this problem are given in [31, [41, [51, (91, [14],
[17]. The current best bound for the discrete and semidiscrete case is

O0(n log(u)), [5]. Putting together the results of [5] and [14] we also get an
0(ng log(pn/qz)) algorithm for the continuous problem where q = min{n, p}.

The weighted case of (WPCP) is not treated in the literature, except for few



special cases [9], [1l4].

All the above mentioned algorithms for (PCP) are based on the strategy
presented in the introduction. First, a set S is constructed which is
intimately related to the set of internodal distances on T. 1In addition, a
test is designed, [4], [9], [17], whose role is to decide, for each

r € §, whether or not s > s%, In all cases, the test requires 0(n) steps
and the cardinality of the set S is polynomially bounded. Thus, the overall
algorithm for (PCP) is plynomial.

In order to handle the weighted case using theorem 1 we need to establish
an appropriate set Ry which contains s* and to establish a test routine which
can guide the search over Ry. These two issues are handled in the following
two propositions given here without proofs. The first is a generalization of
proposition 1 in [l14] and can be proved by the same methods. The second,
which is applicaple to the semiweighted cases only, can be obtained by
combining the ideas of [4], and [9] and [17]. The question of whether a
similar polynomially bounded test can be devised for the fully weighted case
is open.

Proposition 2 The optimal value to (WPCP), is contained in the set

k
1 .
St = {d(x, y)/ ‘E PPREra— } X, ye V, k< ¢t, xiaZ, yieA, i=l,...,Kk.
i=1 "x, y.
i i
where
1 if the problem is discrete
t = 2 if the problem is semi discrete
2p if the problem is continuous

Proposition 3. If (WPCP) is semiweighted i.e. if v, = 1, xe I or W§ =1, ye A)

there exists an 0(n) procedure for deciding whether a given scalar s satisfies
5 > s*%,

Let u be an upper bound on the weights appearing in (WPCP) and let d be
an upper bound on a length of an arch in T. It follows from Proposition 3
that s* ¢ RN for N = nduZt. Thus, we can solve the semiweighted (WPCP) in

0(n log(ndu)) steps in the discrete or semidiscrete use and in O(np log(ndu))

steps in the continuous case.
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