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Abstract

Particularly in rational expectations models, it can occur that a
model has serially correlated residuals, implies that those residuals are
uncorrelated with contemporaneous and lagged values of a predetermined instrument,
but does not imply that the instruments are strictly exogenous. This paper
proposes a method for transforming such a model to one without serial
correlation, while keeping the instrument predetermined. Standard theory of
instrumental variables éestimation then applies. If enough lagged values of
the instrument are used, standard instrumental variables estimators applied
to the transformed model approach the same bound on asymptotic efficiency
which applies to another class of estimators for this problem which have

been proposed by others.



EFFICIENT ESTIMATION OF TIME SERIES MODELS WITH
PREDETERMINED, BUT NOT EXOGENOUS, INSTRUMENTS

by .Fumio Hayashi and Christopher Sims July 1980

In a number of recently developed macroeconomic models behavioral equations
arise in which error terms can be asserted on the basis of economic arguments to
be orthogonal to some set of instrumental variables at a certain set of dates,
but not to be orthogonal to the instruments at all dates. Examples of such models
are in work by Kennan (1979), . and Brown  and Maital (1979), to name a few.
Sometimes a theory of this type will assert that the error term in question is
itself serially uncorrelated and is orthogonal to all current and past values of
the instruments: this corresponds to the assumption that the instruments are pre-
determined, which is a standard textbook assumption, so standard textbook estimation
methods apply. However, often the relevant theory does not predict the absence of
serial correlation, and serial correlation turns out to be substantial in fact.
This situation is not a standard textbook situation, and researchers have not always
avoided (at least in their first drafts) the pitfall of applying textbook methods
to these situations, where the methods are not justified.

Hansen (1980) and Cumby, Huizinga and Obstfeld (1980) derived con-
sistent estimators for models like these without a separate, explicit "correction
for serial correlation" in the estimation process. Hansen (1980) derives the
asymptotic distribution for these estimators and shows that they are efficient
within a certain class. We will call these estimators '"finite-order efficient"
(FOE) . Here we describe a method for making a serial correlation correction
in such models which makes standard instrumental variables estimators apply to
them. The class of estimates so generated is different from the FOE's class and

may be either more or less asymptotically efficient.*

e
w

The forward-filtered instrumental variables estimator was invented by Hayashi

and described in his thesis (1980).
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Hansen and Sargent (1980) in a footnote pointed out that ideally one
would use all the available orthogonality conditions in such situations. 1In
particular, when all lagged values of the instruments are uncorrelated with the
current residual, all these zero correlations should be exploited in estimation.
Recently Hansen and Sargent in unpublished work have derived in the frequency
domain the form of the optimal estimator exploiting all these conditions.
Applying an insight described also in Cumby, Huizinga, and Obstfeld (1980)
this paper shows a connection between this paper's '"forward-filtered", estimates
and the FOE estimates. The optimal estimator can be approximated arbitrarily
well by estimators of either class. Besides providing an interpretation of the
optimal estimator which may be more transparent than that in Hansen and Sargent's
unpublished work, this paper's result suggests an estimation method which is
easily implemented with standard econometric statistical packages and may in some
instances be the most attractive computational approach when existing statistical

packages are not a constraint.

An example

To see concretely why these issues are important and the nature of the
solutions proposed, consider the case of testing the rationality of expectations.

We assume we have data on "expected Y", ?t and on actual Y Y, . The ration-
bl

ality hypothesis asserts that E(Yt | ?s , all s <t) = ?t . Thus, we can

estimate the linear regression
Y, = by +
D t t Yt

and expect to find b=1 . Orthogonality of u_ to §t follows from the theory.

Orthogonality of u. to lagged values of u, follows only if the information

on which ?t is based includes Y It can easily happen that, say, the

t-1 °
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forecasts are prepared at 6-monthly intervals for a 12-month time horizon, so

that it is clear is not available when Yt is formed.

Ye-1
One way to proceed would be to use OLS on (1), but use an asymptotically

justified estimate of the covariance matrix of the estimates. This procedure,

which uses Yt as an "instrument" for itself, is in the class of estimates

which we label "finite order efficient". This paper proposes, following

Hayashi (1980), that we filter (1) to produce seriélly uncorrelated residuals, but

use a forward filter -- i.e., replace Yt ’ ?t , and u, by the corresponding series

filtered through B(L_l) , a polynomial in non-positive powers of the lag operator

L . If B is chosen properly, the filtered u will be serially uncorrelated.

Furthermore, since it has been filtered forward, orthogonality of Yt and the

filtered residual holds -- this follows from the assumption that ?t is based on

information which is still available at t+s for any s > 0 . Thus, ?t remains

eligible as an instrument for the transformed equation, and in fact the usual

theory of instrumental variables estimation applies here -- we have transformed

to a system in which §t is predetermined in the textbook sense. However, because

Yt is less well correlated with the filtered ?t than §t is with itself, it is

not clear that this "forward-filtered IV" procedure using Yt as an instrument
is in fact any more efficient than OLS.

The general model and the general estimator

We consider an equation

4) Y, o =Xb+u



with the identifying assumption that Z't_S u, has zero expectation for all
s > 0 . We assume all the variables jointly stationary for convenience of
exposition, though as Hansen (1980) has pointed out the assumption could be re-

laxed. If we use the finite list of qk instrumental variables Zt"' then,

'Zt—k’
as is shown in Hansen (1980), the best estimator of b based on this list of

instruments is given by:

1 1

5) b= (xX'zMiz'x) 'y
where Z is the Tx[(1+k)q)] matrix of instrumental variables, X is the Txp
matrix of right-hand-side variables, Y 1is the Txl matrix of dependent variables,
and M = lhnT_lE(Z'uu'Z) . Clearly the more instruments we use (i.e., the
larger is k) the more efficient our estimator will be asymptotically, in general.
The reader is referred to Hansen (1980) for a careful discussion of the
regularity conditions needed to justify asymptotic normality and consistency
for this type of estimator; they are also discussed in the Appendix.
In practice, the list of instruments used will always be finite, but it
seems reasonable to use a longer list in a larger sample. Undoubtedly it is
possible (perhaps along the lines suggested by Geweke (1979)) to give an explicit
rule for choosing k which under fairly broad conditions guarantees consistency
and results in an estimator which is asymptotically better than any based on a fixed
finite k
It may also be possible in some applications to do better than choosing
k "large, but not too large'" by taking explicit account of knowledge or data
relating to the determination of X and Z . We might have a model of the way

Z determines X , for example, which would tell us that lags in Z beyond some

order are necessarily orthogonal to X . In a nonlinear system we might discover
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nonlinear functions of Z which are better correlated with X than any
linear combination of Z's and which retain the property of orthogonality

to the u's . Thus, the usual considerations relevant to choosing between
single-equation and multiple-equation methods and to choosing between instru-

mental variables and maximum likelihood apply to this type of problem as well.

Ways of estimating M

Under a stationarity assumption, M can be estimated by estimating the
autocovariance function for the stochastic process Z; u_ . Of course, this
autocovariance function involves infinitely many unknown parameters, in general,
so that estimating M 1in a way that preserves consistency of the estimator is a
non-trivial problem. Hansen (1980) provides some guidelines for the general case.

In some applications, including the type of forecasting example discussed

at the beginning of the paper, a plausible argument can be made that we should

expect E[ut u o | Z, » all v < t] not to depend on any of the Z's . This

assumption is justified, e.g., if the Z's and u's are jointly normal. All of

this paper's results on asymptotic behavior of estimators depend on this assump-
tion.
)
Let V = E{uu ] and let WW' =V be a factorization of V . Under the

1 1

condition given above, M=plim T ~Z'VZ . Now let 2z*¥ =wW'z , X*=Ww X,

and Y*=Wly . 1£ Y*

and X* replace Y and X in (4) the transformed

T
equation clearly has serially uncorrelated residuals. Furthermore, z¥'u* = Z'u ,
so the transformed instruments are orthogonal to the transformed residuals.

Finally, it is easily verified that b from (5) is just two-stage least squares

using the transformed equation and transformed instruments, i.e.
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* This characterization of the finite-order efficient estimator was pro-

posed by Cumby, Huizinga and Obstfeld (1980).

The factorization V=W'W has an element of arbitrariness. One natural

way to normalize W is to require that it be upper triangular. If X1 is at

the top of X and XT at the bottom, as in the conventional notation, u:
will then be a combination of Uite for s > 0, while Z: will be a combination
of Z for s < 0 . Thus we can obtain the estimator in (6) as follows:

t+s

First estimate V , e.g., by a preliminary instrumental variables procedure
which ignores serial correlation, then filter the equation forward to eliminate
serial correlation and filter the instruments backward by the inverse of the
same filter; then apply two-stage least squares.

The limiting covariance matrix for the estimator in (6) is
e (wk' ok okt okl Sxrgxy—l
7 S = (X™ z7(z*'z%) ZFTX%)

As is familiar from textbook discussions of two-stage least squares, S can

be characterized as the limiting covariance matrix of ﬁ: , where i: is

the projection of X: on the instruments. But now by construction the filter
applied to the Z's to yield Zz* is invertible and one-sided. It is relatively
easy to verify that the space spanned by Z: , all s <t , is the same space as
that spanned by ZS , all s <t , when Z: is obtained from ZS by a one-sided
(backward in time) invertible filter. Clearly the lower bound to (7) is the
variance-covariance matrix of the projection of X: on the whole space spanned

by Z: », S8 <t . But this is the same as the variance-covariance matrix of the

projection of X: on all current and past Z;s . Thus, though estimates based
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on using k lagged values of z* as instruments will always be different
from estimates based on k lagged values of Z itself, for large k the
difference must become negligibly small. These assertions are discussed more
carefully in the Appendix.

Thus, for this case we can somewhat simplify the prescribed procedure:
The step of transforming the Z's by the inverse of the filter applied to the
equation will be of little marginal benefit if k is chosen fairly large. It
is largly a matter of convenience whether we use (5) with z'VZ replacing M
or instead filter the system forward and then apply 2SLS wusing a long list

of current and lagged Z's as instruments.

Choosing among estimators in practice.

Though it is not hard to see that there might be other specific implementa-

tions of these estimators, we consider just two,"forward -filtered instrumental

~ ~

variables" bFF and "finite~order efficient instrumental variables" bFOE .

BFF is characterized as follows: Estimate the equation by some consistent
method; estimate a model for the serial correlation of the residuals from the
estimated residuals; filter the equation variables forward in time by a filter
which is estimated to eliminate serial correlation in the residuals; apply
instrumental variables, using k current and lagged values of the original

A~

instrument vector. bFOE is characterized this way: Estimate the equation by
some consistent method; estimate a model for the serial correlation of the
residuals from the estimated residuals; use the estimated model of the residual
to form an estimate G of the covariance matrix V of the residuals and

thus of M , using k lagged values of the original instrument vector Z 1in

7%, as meT L ZK'Uzk |
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Finding EFF involves inversion of the V matrix in principle,
which is of the order of sample size. But as is made explicit in the
above characterization, this inversion is easily approximated as filtering
the data, which is much easier than a general T-order inversion. Of course,
the filtering operation will either require dropping some observations or compu-

tation of correct weights for observations at the end of the sample. Finding BFOE

requires forming M and inverting it. The inversion is of order k , thus not
terribly burdensome. Computational considerations thus leave the two estimators

closely comparable, except that BF can be implemented with a package that does

F

two-stage-least-squares and data transformations, while BFOE requires separate

matrix-manipulation facilities.

Since Hansen's proofs already demonstrate that BFOE is the most efficient

]
estimator exploiting the orthogonality condition EZk u=0 for a given k , it

might seem that EFO should generally be better than gFF for a given k.

E

But this is not so, because for a given k bFF in general exploits all the

orthogonality conditions and thus is not in the class with respect to which BFOE

is best.
To be specific, suppose that, as is likely in the forecasting example in the
beginning of the paper, the residuals in equation (1) are a low-order moving

average —-— say first order. Let the parameter of the moving average be a , so

~

that ut=(l+aL)et . Then the relative efficiency of bFF and bFOE is determined

by which gives the higher R2 in determining (1+QL_1)_J-§t : k lagged values

of Yt or k lagged values of (l+aL)§_(t . It is easy to see that, say, in the

case where Yt is itself a moving average of first order with parameter o , and

~ 2
k 1is one, the bFF estimator has asymptotic variance (l+a2)/(l+2a2/(l+a2) )

This is better by 33% than b for & near one, but worse

times that of bF FOE

OE"

by 6.77 than bF B for oa=.4

0]
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When Yt is a first—-order autoregression and u  a moving average,

~

bFF is always asymptotically more efficient than bFO

factor of 2 when Yt is serially uncorrelated and o approaches one.

g by as much as a

An intuitive explanation for the tendency of bFF to be more efficient

in these examples runs as follows. Both estimators can be thought of as

instrumental variables applied to the forward-filtered equation. bFF uses Zt

~ —1%*
as instrument, while bFOE uses a 1 Zt . Now if Zt and Xt are very closely

related and u, is positively serially correlated, the forward-filtering of

Xt will reduce its serial correlation and thereby weaken its relation to Zt'

If Zt is backward-filtered through a , this increases Zt's serial correlation,

further weakening its relation to Xt.

That this heuristic argument is not exact is clear from the example in

which we found bF better for some a's and serial correlation patterns in Z .

OE

Nonetheless, it is probably more than chance that plausible examples with bFOE

~

much more efficient than bFF are hard to construct.
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APPENDIX

We take as given the vector stochastic processes Z(t) , X(t) , and
u(t) with Y(t) = X(t)btu(t)
The stochastic process Z 1is our candidate for an instrumental variable,

and the "forward-filtered" instrumental variables estimator is given by

Al) bop = S A A N AT AL e B AT

Each matrix in the formula (Al) is of length T-S(T) . S(T) is the number of
observations lost from the end of the sample in filtering. The typical row of

~

— — ~t — -—
X dis X(t) = a *X(t) and of y 1is y(t) = a'*y(t), where the "*" indicates

mrn

convolution and the when applied as here to a function of time indicates

reversal of the time index, so ;(s) = ;'(—s) . The rationale for the estimator
suggests that ; should be an estimate of the autoregressive operator a for u ,
where a*u(t)=e(t) , e(t) uncorrelated with u(s) , all s<t , and a(0)=1 ,
a(s)=0 for s<0 . The typical row of Zk is Zk(t) = [Z(t), Z(t-1),...,Z2(t-k)].

The "finite-order efficient" estimator based on the same set of k+1 lags
of the instrument process is given by

~

k. . -1 k'
bFOE

A2) = (x'zk(zk'ﬁzk)‘lz I A T M y o,
Where V is an estimate of V , the variance-covariance matrix of the length-T
vector u of residuals. In (A2) all matrices are of length T .

We now list a set of assumptions which allow rigorous proof of the claims
in the text. We follow Hansen in assuming stationarity. While relaxing the
stationarity assumption is possible, doing so seems to complicate the proofs a great
deal and to require increased stringency in assumptions about the distribution

of errors. In these assumptions g 1is some monotone function on the positive
<«

integers such that z g(s)—l < o,
s=0
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i) y(t) , X(t) and Z(t) are jointly stationary, ergodic, 3 linear srocess of

maximal rank, and linearly regular;—

_/ For definitions of ergodicity, maximal rank, and linear regularity see

Rozanov (1966).
ii) E [u(t) | Z(t-s), all s < 0] = 0 ;

(iii) E[ua(t)u(t-s) | Z(v) , all v < t] = Efu(t)u(t-s)] , for any s > O ;

.. . . -1 . .
(iv) a has an inverse under convolution a satisfying

la_l(s)l =0 for s<0 and Z Ig(s)a—l(s)| bounded;

(v) S(T)/T >0 as T » = ;

(vi) T la(s)—a(s) ] g(s) 1is bounded in probability;
s=0

(vii) max ] a—l(s) - a_l(s) l g(s) converges 1in probability
to zero as T » « .,
viii) letting X(t) = a*x(t) , E[X(t)'zN(t)] = Iy, is of rank p , where
p is the length of the X(t) vector ;
. ro K r k .
ix) E{27(t) z7(t)] = I, is of full rank and E[X(t)'X(t)] < = ,

X) the process W(t) = LZIEB has a moving average representation

W= A% with g(s) A(s) bounded.

Some of these assumptions could be given simpler form if we restricted the gener-

ality of the assumptions. For example, if the residuals u fit a finite-order

ARMA model of known order, (jv) requires only that we rule out unit roots in

the numerator of the moving average operator; (x) is redundant if W is a
finite-order ARMA process. (iii) is recundant given the assumption of linearity
in (i); it is retained for convenience in the proof and because it would be

rcouired separately in a variant of the theorem which could be cbtained by

Cropping the linearity assumption and strengthening (x). Note that (v), (vi) and (vil)
irteract. If
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our estimate of the filter is to be truncated at lag S(T) , this might

affect whether it satisfies (vi) or (vii). Showing that one can choose an
estimator for a which satisfies both (v), (vi) and (vii) might be technically
difficult though it seems clear that, e.g., fitting a finite-order AR of order
S(T) = YT  to the residuals from an initial consistent estimate of the equation
would yield the desired properties. It is easy to check that if, e.g., u follows

a finite-order ARMA process whose parameters are consistently estimated with

convergence at rate T_l/2 , (iv), (vi) and (vii) are all satisfied if the

ARMA operator has no unit roots.

~

First we display the asymptotic distribution for bFF

Theorem 1l: Under assumptions (i) through (%), except (iv) and (vii), we have

-1

1
T’ﬁ(bFF—b) converges in distribution to N(O0,(Z=, I Zii)_l G2

XZ "7z e) )

Proof: If a were known exactly and if there were no truncation so that S(T)
were always 0 , then our assumpiions would lead immediately to asymptotic

normality by application of Hansen's Theorem 4.1 . To be specific, if we define

BFF by the same formula as used for BFF , but with a =a and S(I)=0, all T,

then BFF is exactly of the form considered by Hansen, with Hansen's function

k = =
f given by 2Z (t)'(y(t)—X(t)b) and the weighting matrix which Hansen calls a

(N being sample size) given by ?"zk(zk'zk)'l . Note also that because with

N

a known the filtered residuals are exactly serially uncorrelated, we are in the
standard case of instrumental variables and many derivations in the existing
literature of an asymptotic distribution for two-stage least squares apply to

a
N

bFF . To be explicit about how our assumptions match Hansen's, his (i) follows
from our (i) ; his (ii) from our (i) and (ix) ; his (iii) from our (i) ;
his (iv) from our (i) and (x); his (v) immediately from the form of our version
of the function f ; his (vi) from our (viii) ; his (vii) , consistency, from

our (i) , (ii) , (viii) , and (ix) ; and his (viii) from our (viii) , (ix)

and (i) . It is easy to check that Hansen's expression for the asymptotic
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The derivation of Hansen's (iv) from our (i) and (x) 1is the only
one of these implications which requires a nontrivial argument. Hansen' (iv)
puts a direct restriction on Z(t)'u(t) as a stochastic process, a restriction
which cannot in general be checked by examining the second-~order properties of
u and Z as a joint process. Our theorem, by assuming linearity, generates
conditions which can be checked entirely in terms of covariance properties. To
translate Hansen's condition (iv) into our notation, let Q(t) = Z(t)'u(t).

Let Vs = E[Q(0) l Q(t), t < s] - E[Q(0) [ Q(t), t < s]. Hansen requires that

z Il E[V V'] 111/2 be finite. Now clearly I E[V.V'] = E[Q(s)Q(s)']}, which
<=0 5 s <=0 s s

is finite by (iii) and (ix). Let SQ(t) be the sigma-field generated by

values of Q(s) for s < t and Szu(t) be that generated by values of Z(s)

and u(s) for s < t. Clearly S
bX E[VSVé], being the second moment of E[Q(0) | SQ(m)], is smaller than

s=m

E[HQ(O) [ Szu(m)]E[Q(O) I SZu(m)]'] . But now E[Q(0) | SZu(m)] can be written,

Zu(t) contains SQ(t). But this means that

by (x) and the linearity assumption, as z az(s)n(—s) L au(s)n(—s) , Wwhere
s=m t=m
a, and a, are the rows of A from (x) corresponding to Z and u, respec-

tively. From this point on, using the fact that linearity means that the n

process is serially independent, it is a straightforward calculation to show

that the bound on ||g(s)au(s)[| and on i| g(s)az(s)|| generates a bound on
' 1/2 ' .

||g(s)E[VSV S] I , and thus Hansen's (iv).

It is easy to check that Hansen's expression for the asymptotic
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covariance matrix matches our asserted covariance matrix for bFF . What

L oA 2
remains is for us to show that T 2(bFF - bFF)—+>O in probability as T —> «

First note that T 1z°'z° has the same probability limit whether 2%
has length T or T-S(T) so long as (V) is satisfied. Second note that
T ?ﬂzk has the same probability limit as T—li'zk . This follows from the
regularity conditions we have imposed on a and a , as follows.

Note that E[‘X(t)'Zk(t+s)|] is bounded above, say by H , according to

assumption (ix) , with the bound independent of s . But then we have

I oGes)-as)Tt T xeey 'z (e+5) |
s=0 t=1
~ ® _1 T—S(T) -1 ' k
f_[ﬁgx [a(s)—a(sx g(s) ZT Z g(s) ‘X(t) z (t+sﬂ .
s=0 t=1

The left term in this latter expression converges in probability to zero by
(vi) while the right term is bounded in probability because its expectation
is less than z g(s)—l H .

Now our task will be complete if we can show that

“1/2 (TS

T Z5(t) "(a"-a ") *u(t)

t=1

converges in probability to zero. (As with the other terms, it is easy to
show here that the extra S(T)-1 terms in the part of this expression corres-
ponding to %FOE are asymptotically negligible.) We proceed by showing that
this term can be split into two pieces, the part summed over t < N , and the
part summed from N onward. The latter can be made as small as desired with

probability as high as desired by choosing N 1large enough, while the former

converges in probability to zero, which will complete the proof.



215-

Consider first

oo
-1
T /2 y
t=N+1

25ty (3" -a ") *u(t)

=]

< Tl/z[mgXIa(S)—;(S) g(s)) 1T T e ™) uers)
s=0 t=N+1

As in the last preceding argument, we have a bound on E[Zk(t)'u(t+s)| which

oo
is uniform in s , and since z g(s) -1 can be made as small as desired
N+1

by picking N large enough, we can make the right-hand term in the product as
small as desired with probability as high as desired by picking N large enough.

The left-hand term is bounded in probability by assumption (vii)
L T8
Since for any fixed s > 0 T z Z7(t)'u(t+s) converges almost

surely to O by ergodicity, it follows dgiéctly that

-1/2 N R T-S(T) K ,
T Z (a(s)-a(s)) = Z (t) u(t+s) converges to zero in probability
s=0 t=1
as T » « . This completes the proof for this term, and thereby the proof of
the theorem. .
To discuss the asymptotic distribution for b we modify assumption

FOE

(viii) as follows:

viii') E[X(t)'Zk(t)] = ZX is of full row rank p

Z
viii') E[X(t)'Zk(t)] = ZXZ is of full row rank p.

~

We also define V to be the matrix with typical element in row i, column j

Ru(i—j) E[u(t)u(t-i+j)] and V to be the matrix with typical element

a_l*(a—l)'(i—j). Now we can state

ﬁu(i—j)

Theorem 2: Under assumptions (i)-(ix), with (viii') replacing (viii)

[o0]

- ~ k k
and excluding (vi), T 1Zk'VZk converges in probability to M = Z Ru(s)E[Z (t)'2 (t-s)] ,
s=0
hich is full k, and T%(g -b) onverges in distribution to N(O, (I M_lz ')_1)
which is full rank, FOE converges in > (Zyo X7
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Proof:
That M is non-singular is guaranteed by the assumption in (i) that Z is

of maximal rank. ©Note that if we define

N K, 1.k
MN = 3 Ru(s)E[Z (t) 27°(t-s)] ,
s=-N

then MN can be made arbitrarily close to M by choosing N large enough.

But clearly

N N T . 1 T+s .
o= 7oty 250 -9k () + [ Th ] 250 'Ne-0)R (o)
o s=0 t=1+s s=-N t=1 v

converges in probability to MN » by ergodicity and the consistency of ﬁu

So the proof is complete if we can show that

i T
|7 1 7 K zMe-s)R (s)]
s=N+1  t=1+s v

can be made arbitrarily small with arbitrarily high probability for large T

if N is chosen large enough. But(iv) and (vii) guarantee that

|ﬁu(s) |g(s) is bounded in probability uniformly in s . Then since
R T K, 'k -1
z T z ] z27(t) z (t-s) Ig(s) goes to zero in probability uniformly
s=N+1 t=1+s

in T as N goes to infinity, the argument is complete.

From this point on, the proof consists only of verifying Hansen's
Theorem 4.1 assumptions, almost exactly as in Theorem 1. 1In this case Hansen's
is x'Zvzo

function f is Zk(t)'u(t) and the weighting matrix ay
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Finally, we consider the limiting behavior of the asymptotic covariance
matrices of the two esfimators when k , the number of lagged values of the
instruments used, is allowed to increase without limit. It should be noted
that Hansen has (in unpublished work reported to us by letter) already dis-
played the limiting form as the covariance matrix of an ideal estimator. Our
contribution here is only to show that both of our two proposed methods approach

the limit arbitrarily closely.

Theorem 3:
Z . 3 r . ~ .
If rp 1S the asymptotic covariance matrix of bFF and ZFOE is the
asymptotic covariance matrix of bFOE as given in Theorems 1 and 2 respectively,
then ZFF and ZFOE converge to the same limit as k goes to infinity.

Proof: For two vector stochastic processes x and y we will use ny(t)
to mean E[X(s)'y(t—s)] . (The processes are treated as row vectors.) Then

we can write

2= 1L R, QY R,m]

where va is the v,w'th block of Q_l and Q has v,w'th block

= T _ 1k s _ ~1x
va = E_m Ru(s)RZZ(s—v+w) . Now let X=a X and Z = a Z . Clearly,
1%, -1+ 2 .

R.u = a (a ) oe and RXZ = Rii . Now we can write
-1 2 zk zk —vw ,
z =0 == (v) Q -5 (w)
FOE € v=0 w=0 RXZ RXZ

where va = RZZ(W_V) . But this last expression is recognizable to anyone

‘1 . 2 . . .
familiar with least~squares formulas as o, times the covariance matrix of the

projection of X(t) on Z(t-s) , s=0, ...,k in the covariance inner product.
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. . N .
Turning our attention now to bFF » We can write

-1 9 k k — ,
Tpp T % L1 Ry (0 QT Rg ()
v=0 w=0
== T
where Q 1is a matrix with v,w th block given by
Qg = Rz (w-v)
This formula is clearly in the same form as the one we found for 6 s

FOE

again being 02 timé? the covariance matrix of a projection of X(t) , but
this time on the space spanned by Z(t-s) , s=0,...,k . The two matrices
will thus increase to the same limit if H;(t) , completion of the space spanned
by Z(s) , all s <t , is the same as H%(t) , the completion of the space
spanned by Z(s) , all s <t . That this is so is immediately apparent from

the fact that for each s Z(s) = a—l*Z(s) lies in H;(s) and Z(s) = a*i(s)

lies in H%(s) . Thus the proof is complete.
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