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Abstract

In this paper we analyze competitive decision-making situations
in terms of their preference structures and posterior performance,
through a Bayesian decision-theoretic framework. The setting is
that of a two-by-two, two-person, non-zero-sum and non-cooperative
game which is repeated over time. The dynamic behavior of the com-
petitors for classes of games, identified by their preference
structures, is examined and a classification scheme is proposed
for the purpose of unification. The competitors' dynamic behavior
and posterior performance for some general classes of games is then
derived, and the relationship to the results implied from game-
theoretic considerations is discussed. Illustrative examples are

given, too.



l. 1Introduction

The essence of decision analysis is to provide the decision maker with
an optimal decision rule in order to evaluate alternatives under uncertainty,
where the outcomes are governed by nature. White [24, p. 17] notes "...when
‘optimality' is a valid concept, it is a 'prior' concept and not a 'posterior'
one. In other words, a decision is optimal at the point of taking it, in the
light of circumstances surrounding it, and not necessarily optimal in retro-
spect." Consequently, the decision rule that is prescribed is stated in terms
of expected value and the focus is on the "goodness" of the decision rather
than the "goodness" of the posterior outcomes (performance). Howard [9, p. 86]
emphasizes the distinction between a good decision and a good outcome and
argues that "Hopefully, by making good decisions in all the situations that
we face we shall insure as high a percentage as possible of good outcomes."”

Adopting this relative frequency interpretation in repetitive decision-

making under uncertainty against nature, one can make only the following
statement concerning the relationship between the expected and the posterior
performance: the expected performance represents the "average value" of the
posterior performance if the decision is to be made repetitively, a large
number of times. The concern here is with long-run posterior performance.
The analysis of the posterior performance, however, can be more elaborate
and insightful when nature is replaced by another decision maker who also
behaves according to optimal decision rules and the problem thereby falls
within a competitive decision-making framework.

The need for managers to gain better understanding of competitive
decision-making and behavior becomes more evident these days since many
industries have reached their maturity level and hence, a firm's growth is

possible only through attacking the share of its competitor. Increased



attention by companies to formal strategic planning has highlighted questions
such as: What actions are competitors likely to take? What is the best
way to respond? How will my industry evolve in the short run and in the
long run? Porter [1ll] presents an interesting conceptual framework which
attempts to help a firm analyze its industry as a whole, to predict the
industry's future evolution, to understand its competitors and its own
position, and to translate this analysis into a competitive strategy for a
particular business. His approach, however, is qualitative and does not
provide answers to the above stated questions in a quantitative sense.

For years, the classical game theory [26] has been regarded as a
logical jointly prescriptive quahtitative approach for modeling competitive
decision-making. A game-theoretic approach is static in its nature, assumes
that the competitors do not assign probabilities to each other's choice of
a pure action, allows for mixed-strategies as an optimal solution, and
emphasizes the existence and stability of competitive equilibrium. Perhaps
one of the reasons why game-theoretic ideas have not found more widespread
application is that randomization of the decisions seems to have limited
appeal in many practical situations. In addition, the evaluation of the
industry evolution when mixed-strategies are allowed is similar to that of
games against nature and is stated in expected values terms. Hence, creating
competitive decision-making models where the competitors are assumed to
choose only pure strategies at any point of time, and which can still preserve
the desired properties of equilibrium in mixed-strategies as developed in
game theory, is important in the analysis of competitive industries. This
can be done through a Bayesian decision-theoretic approach which is dynamic

in its nature by allowing the decision maker to assign probabilities to the



opponent's choices of actions and to revise them in light of new information.
It prescribes the selection of pure strategies as an optimal behavior, and
considers the optimality of the behavior of one competitor.

This paper anlayzes competitive situations within a Bayesian decision-
theoretic framework. The major objective of the paper is to provide insight
and a benchmark as to how different industries may evolve over time in terms
of posterior performance. The approach presented in this paper may also
provide a unifying framework for analyzing industries that are constantly
at peace, constantly at war, or cycling between states of peace and war.

Using game-theoretic terminology, the paper analyzes competitive situations
characterized as two-by-two, two-person, non-zero-sum, repeated and noncooper-
ative games. The paper is rather conceptual and deals mainly with interpre-
tations and discussions, relying on another paper for the basic mathematical
proofs [3]. Thus, only sketches of the proofs will be discussed here.

In Section 2, we describe in more detail the competitive situations
studied and the decision-meking model employed, and we refer to some of the
relevant literature. In Section 3, we present the major results of the model
by examining the behavior of the competitors across competitive situations
and over time, and the relationship between their behavior and the one implied
from game-theoretic considerations. In Section 4, illustrative examples are
given and discussed. Section 5 provides a summary and suggestions for further

research.



2. The Competitive Situation and the Bayesian Model

The competitive situation studied here is the case in which there are
two competitors (players) I and II, with two actions (strategies) available
to each competitor, (al, az) for Player I and (Bl, 82) for Player II, and
where the decisions are made simultaneously by the two players. The term
"simultaneously"” does not refer to the physical flow of time but means
"without knowing the decision taken by the other player." Both players
know this, and of course, each player knows his own possible returns.

Several possibilities exist as far as the knowledge of the opponent's
returns are concerned. Perhaps the most realistic one is the case in which
each player does not know his opponent's returns for any of the four
possible combinations of the competitors' pairs of strategy choices (ocut-
comes). In this case, in the terminology of game theory, we are dealing
with games with incomplete information ([8]), represented in normal form
by a 2 x 2 matrix. This same competitive situation is repeated many times
and allows the competitors to learn about each other's past decisions
which are observable. Future decisions of the opponent are not known to
each player and can be just inferred from his past behavior. The analysis
of this situation can be thought of as taken from the point of view of an
industrial analyst or other observers trying to forecast the industry evolu-
tion. In the sequel we shall show that the knowledge of the ordinal
praference of the players over the four possible outcomes, is sufficient to
broadly determine how the sequential game will proceed in the future, for
certain classes of games. If the outside observer manages to collect or
estimate additional and finer information such as the cardinal preference
of the players, the forecasting of the industry evoliution becomes more

elaborate. The cardinal preference can be, for example, a von Neumann-



Morgenstern utility function over the business goals that are achieved by
each player, for each of the four pairs of strategy choices. Other possi-
bilities concerning the knowledge of the opponent's returns such as
complete-information or asymmetric-information also exist but will not be
considered in this paper.

Although competitive situations depicted as 2 x 2 games are the
simplest two-person games, they have attracted attention of researchers
from many disciplines. Rapoport, Guyer and Gordon [16] summarize and inter-
pret what has been learned in the last fifteen years, through experimentation,
about social interaction and behavior using this paradigm. Classifications
for all 2 x 2 games have been suggested by Rapoport and Guyer [15] and
Harris [6, 7] to aid in combining together éames with similar game-theoretic
and behavioral aspects. 1Iterated Prisoners' Dilemma games have also been
studied extensively [5,13]. Sequential games arise also in contexts such as
economics [22], gaming [23], and stochastic processes [18, 19].

In a business context, the two actions available to each competitor
can be thought of as strategic moves such as offensive or defensive moves.
Martial language is familiar in many business situations. There are the
gasoline price "wars," the "escalating arms budgets" of the soap companies
and the "invading Coke's markets," to name a few. Porter [1l, Ch. 5]
describes several conditions that may increase the likelihood of "competitive
warfare." Hence, it appears that the language of warfare in business is
not just descriptive and bears operational logic to business executives in
plotting competitive strategy. At the broadest level, two major strategies
can be identified, namely: attack (or defend) vs. keep the status-quo. An
attack strategy can then be formulated in terms of product, price, advertising,

etc. Strategic decisions concerning these two broad strategies are made



quite periodically and thereby can be construed as generating sequential
games.

Noting that the results and the conclusions drawn later are constrained
of course by the assumptions made, we turn now to a detailed description and
explanation of the competitive decision-making model's assumptions. The
model developed here assumes that the competitors regard each other's
behavior as a stochastic decision process. This assumption is implicit in
the "fictitious play" literature [1l, 17]. Each player assumes, for lack
of other information, that his opponent will behave randomly. Consistently
with this assumption, if the pair (p,g) represents the probabilities of
Players I and II choosing their first available action, respectively, then
q is not known to Player I and p is not known to Player II. However, they
can assess some prior probability density functions (p.d+f) over the para-
meters. The p-d-f's are denoted by (fI(q), fII(p)). In words, fI(q) is
Player I's prior p-d-f over the event that Player II is choosing his first
available action with probability g, and fII(p) is Player II's prior p-d-f
over the event that Player I is choosing his first available action with
probability p. It is also assumed in our model that the opponent's behavior
can be described by a Bernoulli process. A Bernoulli process is a data-
generating process with two possible outcomes on each trial ("success" and
"failure"), such that the probabilities of these outcomes are stationary
and the outcomes of the trials are independent. In our context, a trial
corresponds to simultaneous decisions whereas a "success" corresponds to
the event that the opponent did choose his first action. After observing
each other's decision, the two players learn and revise their prior p-+d-+f's
according to the Bayesian rule and thus obtain their posterior p+d-f's which

serve as prior p+d-f's for the next simultaneous decisions. It has been



noted in the statistical decision-theoretic literature [12, 25] that the
revision could be difficult to do analytically unless the prior distribution
is a member of the family of distributions that is conjugate with respect
to the Bernoulli process. The conjugate family in this case is thé family
of beta distributions.

A beta distribution f(p[r,n) for 0 < p <1 is characterized by two

parameters r and n, where n > r > 0 and its mean and variance are:

X
E(p|r,n) = (2.1)

and

r(n-r).

V(pl|r,n) (2.2)

n2(n+l)

The shape of f(p[r,n) depends on r and n, and can accommodate a large number

of probabilistic judgments. If the prior parameters at time t are T, and Ny,

and the sample results are r "successes" in n trials, the posterior para-

meters at time t+1, rt+l and nt+l' can be easily computed from:
= + 2.
Bepp g 7 0 (2.3)
and
= + r. .4
Teer " T T (2.4)

In our context, of course, n=1 whereas r=1l or 0, depending on whether or

not the opponent did select his first action. We note, therefore, that nt

and rt can be viewed as counters such that nt - nO counts the number of

simultaneous decisions that have been made and rt - rO counts the number of

times the opponent has used his first action. We also note that within the

Bayesian decision-theoretic framework, the simultaneous decisions amount to



the selection of an action which does not influence the subjective probability
of the random events (states) associated with this action. This case which is
assumed throughout this paper is called the act - unconditional states case.
An alternative Bayesian decision-making model, act - conditional states [21],
allows for the possibility that the selection of an alternative may influence
the subjective probability of the random events that will follow the choice.
More formally, if fI(q’al) and fI(q[az) denbte Player I's subjective p+d-£f
over the event that Player II is choosing his first action with probability
q, given that he (Player I) selects his first and second action respectively,
then under the act - unconditional states assumption: fI(anl) = fI(q[az)
at any point of time. Symmetrically, fII(p|Bl) = fII(pIBZ) at any point of
time.

After the players revise their prior p+d-f's and obtain the posterior
p+d+f's, they use them to compute their expected returns. It will be assumed
that‘the decision-making rule used by both players is to select their first

action if and only if its expected return is strictly greater than the expected

return of the second action. Consequently, the second action is chosen by

both players if and only if its expected return is greater than or equal to

the expected return of the first action. No generality is lost by this
decision rule since by relabeling the actions, all 2 x 2 games can be treated
this way.

We conclude this section by noting that a model similar somewhat to the
sequential game model analyzed in this paper has Seen briefly discussed by
Sanghvi and Sobel [18] as a non-compact game. In their model it is assumed
that Player I plays a zero-sum 2 x 2 game against a programmed opponent who
uses a stationary mixed strategy and never learns about Player I's behavior.

Noting on the difference between this model and other models discussed in



their paper (compact games), they prove (Theorem 5.1) that this game is
ergodic, in the sense that it has a positive probability of being in any

state in the long-run.
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3. 2Analysis of Competitive Preference Structures and Posterior Performance

Let matrix (a) represent a 2 x 2 game with the following returns to

the players:

Player II's Actions

By B,
o, | Rlo), Ble) | B (o, R (o,
Player I's !
Actions ! i
o i1 I i1
a, l R (03), R™7(0,) R7(0,), R (04) |
i J

Matrix (a)

where oi(i = 1,2,3,4) denote the four possible outcomes (states) of the
. , , . . I IT
game defined by the competitors' pairs of strategy choices, and R (*), R "~ (*)
denote the returns to Players I and II respectively, from each of the four
. I 11
possible states. Next, support that R (+) and R () are measured on an
. . . I . . .
rdinal scale. That is, if R (+) is measured for example in profit terms,
the information contained in the matrix (a) allows one to make a statement
I I . .
such as: R (ol) > R (02) means that the profit generated to Player I in

state 0, is larger than the profit generated to him in state g Note that

1 27
in making this statement one does not have to know the exact value of the
profit generated in each state. We can also interpret R(°*) as an ordinal
preference measure and make, for instance, the following statement:

I I . .

R (ol) > R (02) if and only if Player I prefers state 9, to 9, Here,
several specific goals can be achieved by the player in each state. We
shall assume, unless otherwise specified, strict preference ordering of the
states. It has been noted by Rapoport and Guyer [15] that cases of indif-

ference between two states can be considered as limiting cases of strict

preference.
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Our first aim is to investigate whether the ordinal scale is suffi-
cient to determine the course of the sequential game for any possible
2 X 2 game, and to identify classes of games such that sequential games
may evolve in the same pattern within each class. We shall rely on the
taxonomy developed by Rapoport and Guyer [15] for this purpose. They
have shown that from all five hundred and seventy-six possible pairs of
preference orderings (4! X 4!) only seventy-eight of these gages are non-
equivalent. Equivalent games can be generated from one another by re-
labeling actions and/or players. For example, consider the following

game, in which the preference ordering is 4>3>2>1.

Bl B2
al f 2,2 4,15
o, 1,4 3,3;
Matrix (b)

By interchanging rows, columns, or both rows and columns, we obtain from

{b) three other matrices representing the same game:

Bl B2 B2 Bl B2
i ;
a, 1,4 3,3 | ay 4,1 2,2 a, § 3,3 1,4
@y 2,2 4,1 a, 3,3 1,4 oy g 4,1 2,2
Matrix (c) Matrix (4) Matrix (e)

When we interchange the players, however, we obtain a matrix which is iden-
tical to Matrix (b). Thus, Matrix (b) can generate only four equivalent

games. Cther matrices may generate a different number of eguivalent games.
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We shall term a game such as the one described in Matrix (b) as a "compe-~
titive preference structure." Rapoport and Guyer classify all 2 X 2 non-
eguivalent games into three major classes. C(Class I: each player has a
dominating strategy (games 1-21); Class II: one player has a dominating
strategy (games 22-57); and Class III: neither player has a dominating
strategy (games 58-78).

To investigate and classify the dynamic competitive behavior implied
by our model, we denote the differences in the players' return by S, T, U,

and V such that:

5=%8(0,) - R'(d,),

T=R(0,) - R (o),

u=rT,) - R (),
and v = R (0,) - R (0).

Our classification of the 2 X 2 games is made according to the following

relationships:
Class (i): S >0,T> 0.
Class (ii): s<0,T>0, U<O0, V>0.

Class (iii): § >0, T < 0, U <0, V>0.
That is, we shall always rearrange a 2 X 2 game such that it will fall in
one of the above three classes. In our classification, games in Class (i)
are such that at least one player has a dominating strategy. This class
contains games 1-57 in accordance with Rapoport and Guyer's taxonomy. Our
Class (ii) of games contains games 58-65 in their taxonomy by interchanging
the columns or rows of these games, and in addition, it contains their games
66-69. Finally, our Class (iii) contains Rapoport and Guyer's games 70-78,

by interchanging their columns or rows.
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We turn now to the first proposition which shows that the ordinal infor-
mation regarding the competitor's returns is sufficient to uniguely deter-
mine the course of the game for some classes, and insufficient for other
classes. We shall view the generated sequential game as a discrete time
Semi-Markov process with a discrete state space (o (o

fof 04) and which

1’ 72" 73'
possesses transition probabilities egqual to zeros and ones. The state of
the process is determined by the play's outcome and we shall characterize
the. dynamic behavior of the process (game) using terminology from the

theory of stochastic processes.

PROPCSITION 1

Given the state of the process at time t and the Class to which the
competitive preference structure belongs, the next different state visited

by the process is given by the entries of Table 1.

Table 1
Current and Next-Visited State for each Class of Games

Class of Games

(i) (ii) (iii)
9, n/a* not unigque 9,
Current 02 n/a* none** 9y
State 03 n/a* or 04 none** Ol
9y none** not unique o,

* not applicable since the game will never enter this state.
** whenever the game is in this state, it remains there on all
future plays.
It can be seen from Table 1 that for games in Class (i), 01 and 02

are two state which the process will never enter. This is so because our
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definition of Class (i) is.such that § > 0 and T > 0. This implies that
82 is Player I's dominating strategy. Hence, he will always choose this
action, regardless of what his subjective probability assessment over the
opponent's choice of action is. If Player II also has a dominating strategy,

we shall label it as 82 and in this case state 0. will never be visited by

3
the process. If, however, Player II does not have a dominating strategy
we shall label as 82 the strategy that makes U > 0, and it is still possible

to find the process at some point of time in state ¢ (Recall that we

3
assume that Player II does not know the returns for Player I.) This state

is, however, a transient state and after a finite number of simultaneous

4" State 04

decisions the process will leave this state and enter state o
is thus an absorbing state since once the process enters this state, it
remains there on all future plays.

An example for a business competitive situation which can be struc-

tured as one of Class (i)'s games is shown in the following game matrix:

Competitor II

Keep the Cut
Status-Quo Price
Bl BZ
Keep the
Status-Quo al B,F D,E
Competitor I
Cut
a
Price 2 A/H .G

Matrix (f)

Here, A >B >C > D and E > F > G > H are the returns for Player I and
Player II, respectively. This is a Priscner's Dilemma like game matrix
where both players have dominating strategies: ao_ and 52. Of course, due

to our incomplete information assumption, neither player knows his opponent's
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payoffs and when acting as a Bayesian player, our model would then predict
that if the game is repeated over time, the decisions made by the competitors
each time will always be to cut the price, and hence, the posterior perfor-
mence will be C and G for Players Ivand II, respectively, at any point of
time. An illustration of this game in the context of advertising radial
tires competition between Sears and Goodyear is shown and discussed in [4].
Turning to the games of Class (ii), we consider, for example, the

following game:

Bl B2
o loe | sl
az A,F D,H -
Matrix (g)

where, again, A>B>C>D and E>F >G> H. Any competitive situation which
has a payoff table with the same properties as game matrix (g) is known as
a Battle of the Sexes. An illustration and discussion of the game in the
context of new product introduction is given in ([4]. Notice that both pairs

of choices (a., 82) (or state o0,) and (a

1 > X Bl) (or state 03) are equilibrium

pairs in the sense that if the game is in one of these states, it is to
neither player's advantage to unilaterally choose a different strategy. Hence,
states o, and o, are the absorbing states for games in Class (ii). What will

be the course of a Class (ii) game if the current state is g, or 04? Unfor-

tunately, the answer to this question is not unique. This will be illustrated

by means of an example related to matrix (g).

Suppose that the game described by matrix (g) is currently in state

I II

. I I
Cs . P <
04~ This is true if and only if, EV_ (al) < EV (az) and EVL (Sl) < EVL (82),
where the EV_( )'s are the expected returns of the two actions available to

the two players, at time t. Of course, in computing the player’'s expected
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returns we have to interpret A,B,C,D,E,F,G,H as cardinal returns. However,
they can be any cardinal numbers that preserve the assumed ordinal relation-
ship. Given that state 9, has just occurred, the two players will revise

their beta distributions and obtain the following revised expected returns:

nIEVI(u ) + B IE'VI( ) + D
el () = bt 1 4 vl )_nt £'%2
t+1 ‘%1 I, an e+l (%2 T I,
t t
eyt + ¥ nllevitig) + =
eIl gy - bt "1 nd el (g - ot 02 ,
t+1 1 IT t+1 2 II
n + 1 n + 1

t t

where n, denotes one of the two parameters of the beta distribution at time

t. For numerical illustration, suppose that Evi(ul) = Evi(az) = 4, EVEI(Bl) = 3,
II I 11 .
EVt (82) = 5, n = 3 and n o= 4. It can be readily seen now that the next

~visited state will be 9, if: F - H > 8, or a, if: F - H < 8. Hence, in
addition to the ordinal property of the returns, we need to know the difference
in the expected returns at time t relative to the difference in the respective
returns, in order to determine the future course of the game.

Although dynamic games of Class (ii) are in general nonunique, it is
still possible to identify conditions for some games, based on their compe-
titive preference structure, such that the future course of these games can
be uniquely determined. It has been shown by Répoport and Guyer [15] that some
games in Class (ii) (games 58-63) are such that they contain a single Pareto-
optimal outcome whereas there exist six games in Class (ii) (games 64-69)
which contain two Pareto-optimal outcomes. A Pareto-optimal outcome of a
game is defined as an outcome such that there is no other in which both players
get larger returns. We turn now to COROLLARY 1.1 whose proof is straight-

forward and which formalizes the game-theoretic behavior implied for some of

the games in Class (ii). We shall use this property in the sequel, to
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investigate further the posterior performance of these games.

COROLLARY 1.1

There exist six games in Class (ii) such that it is possible to identify
for them competitive preference structures so that for each game, the
equilibrium mixed-strategies of the two players will be equal.

We shall illustrate the corollary by means of an example. Consider the

following two game matrices:

Bl 62 Bl 82
al C,H A,E al B,F C,E
i
az ;B,F D’Gj a2 A,G } D,H:
Matrix (h) Matrix (i)

We are still assuming the following ordinal relationship: A>B>C>D and
E>F>G>H. Matrix (h) contains a single Pareto-optimal outcome (A,E). 1In
Matrix (i), however, the Pareto-optimal outcomes are (C,E) and (A,G).

For non-zero-sum games where the players' returns are measured on an
interval scale, the prescription provided by game-theory is given in terms
of the following equilibrium mixed-strategies (see [14, p. 138] for an example

of a specific derivation and the rationale):

Matrix (h) Matrix (i)

p* = Pr{lplays a,} = (F-G)/(E+F-G-H) p* = (G-H)/(E+G-F-H) (3.1)

g* = Pr{II plays el} = (A-D)/(A+B-C-D) q* (C-D) / (A+C-B-D) (3.2)

Notice that because of the ordinal relationship that we are assuming, in
Matrix (h): g* > 1/2 and p* < 1/2 and hence, g* # p*. However, in Matrix (i)

it is possible to identify competitive preference structures such that p* = g*.
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The necessary condition for that is: (A-B)/(C-D) = (BE-F)/(G-H). We turn
now to a proposition concerning the dynamic behavior of the six games of

Class (ii) discussed in COROLLARY 1.1.

PROPOSITION 2

Games in Class (ii) where p* = g* and where the players' expected
values of the beta distribution at t = 0 are equal, are developed in cycles,
in the sense that the process oscillates between states 9y and Tye

It can be seen from matrix (i) which is one of the matrices for which
PROPOSITION 2 holds, that states 02 and 03 are two absorbing states from
which it is to neither player's advantage to unilaterally move out. Note
also that the conditions required by PROPOSITION 2 make these games very
symmetri;. Consequently, the switch in the players' strategy choice occurs
exactly at the same time.

Unlike the games discussed in PROPOSITION 2 in which the process may
visit only two states, games of Class (iii) are developed in cycles in which

all four states are visited. This is formalized in the following propo-

sition:

PROPOSITION 3

Games in Class (iii) are developed in cycles, in the sense that once
the process leaves state ci (i = 1,2,3,4), the probability of returning to
this state after a finite number of steps is one.

The proof of this proposition is based on the preference structure of
Class (iii)'s games which is such that whenever one player switches to a
different strategy, his opponent's expected returns are such that it is still

optimal for nhim to keep choosing his old strategy.
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In stochastic processes jargon, the process for Class (iii) games is
a regenerative process. Note from Table 1 that the sequence of the visited
states is Oy Oy - 9 > Oy It is also worth noting that the game described

in Matrix (j); for A>B>C>D and E>F>G>H,

Bl 82
ul B,G D,E
az C,F A,H
Matrix (3)
is a pure conflict game and belongs to Class (iii). This competitive

preference structure is importapt becéuse itieaﬁnéapture both non-zero-sum
and zero-sum conditions (E=-D, F=-C, G=-B, H=-A). The basic mathematical
proofs concerning the dynamic behavior of this game are given in [3]. Since
games in Class (ii) and (iii) proceed by cycles (PROPOSITIONS 2, 3), it
makes no difference when we start observing them when studying their dynamic
behavior. We shall, therefore, assume that at € = 0 the process is in

state U4 A question of interest is: how many plays a game such as the

one described in Matrix (3j) will be in each of its four possible states?
To answer this question we need to know the competitive cardinal preference

L ] 8 ) ll S | S ) ) 3 . .
structure. We denote by lt’ ]t, kt' £ (lt' ]t, kt, lt are positive integers)

o, and o, (in this order),

the cumulative number of plays that states ¢ 03, 1 5

4’
respectively, have been realized for a game in Class (iii), during the first

I
t cycles. We also denote by Eé(q) and EOI(p) the expected values, at t = 0,

of the prior beta distributions of Players I and II, respectively, over the

probability that the opponent will choose his first action. PROPOSITION 4
presents the necessary and sufficient condition for this game to be realized,
and sets lower bounds for ié, jé, ké, and lé. Its proof is based on the

computation of the expected returns of the competitors' actions, at times when
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transitions occur, and on some algebraic manipulations.

PROPOSITION 4

For games of Class (iii) and under the Bayesian model, if at t = O,

Eé(q) < g* and EgI(p) > p*, then the process starts in state 9, and the

following inequalities hold:

i v 3
N} ] 1 —_ - S —
e Per * kt-]:! [—U] Jee1 T g (3-3)
r ul
. S | [
LSS D ] t — . 1 b o—_ , .
e 7 P T lt-ljl [—T_} keer T op (3.4)
N [
. . F-u S
[ t (] 1 - t - —
kt > —jt + lt] VJ Qt-l 7 (3.5)
r 1 -~ -
=T | . €
L > R I = B .
t — _?t Ie L s 1 S (3.6)
_ Iz _ II I1 _ 1,1 I
where § = no [EVO (82) EVO (Bl)] and € = nO[EVO(az) EVO(al)].
Series for ié, jé, ké and lé can be formed recursively, under certain
conditions, from (3.3) - (3.06) Let S = K . L —é-— M and <= N W
1 r . . . T , v > = o R e

can turn now to PROPOSITION 5 which provides insight on the cumulative

number of times that each state has been visited during the first t cycles,
and we show that under certain conditions, it can be expressed by a second-
order power series. The required conditions are stated in the proposition

and the proof is based on PROPOSITION 4 and mathematical induction.

PROPOSITION 5

For games of Class (iii), for L = 1; M,N > 0 and integers:; K > N+3 and
. . . I 1T
integer, and under the Bayesian model, if at t = 0O, Eo(q) < g* and EO (p) > p*,
where p* and g* are the game-theoretic equilibrium mixed-strategies, then the

following egquations hold:
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. 2
ir= T emt for t=1,2,3,... (3.7)
- — -
2 - K-
kt® + MK+K2—lt—T3+N for t=1,3,5,...
Lo | - — -
e 2. T K-1] 28
Kt™ + {MK + —/—{¢t for t=2,4,6,...
2
- r -
+ -
[xe? + MK+ut-K—22+N for t=1,3,5,...
k) = - ) (3.9)
e s vk o+ BEL e for t=2,4,6
ki\\_ .-1 2d or =Z2,4,0,...
.2
g1 = 7+ (D)t for t=1,2,3,... (3.10)

Remark: Although we require in the -proposition that K > N + 3, proofs for

2 <K <N+ 3 are similar but have to be considered separately.

To compare the dynamic behavior of Class (iii) 's games with that of
games of Class (il) (the ones discussed in PROPOSITION 2), we present now

PROPOSITION 6 whose proof is similar to PROPOSITION 5's proof. We let now

=S
T

1l
=
)
=]
jo N}

1]
2

=K=1L S
' -U

PROPOSITION 6 -

For games in Class (ii), for K > 1 and integer; M,N > 0 and integers,

where p* = g* and Eé(q) = Eél(p); and under the Bayesian model, if at =0

Eé(q) > g* (EEI(p) > p*) then the following equations hold:

iO = M+ 1 (3.11)
- ]

k! = ((M+1)K - N t for t=1,2,3,... (3.12)
t L ]

ié = t for t=1,2,3,... (3.13)

We can now comment on some cof the major differences and similarities
in the dynamic behavior of games of Class (ii) and Class (iii). First, games
of Class (ii) proceed by fixed cycles; that is, the number of simultaneous

decisions made in each cycle, remains constant. On the other hand, the
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cycles are variable and becoming longer for games of Class (iii). Second,
note that for games of Class (ii) there exists a transient period of time
(iO) before the process starts cycling. This transient period of time gets
longer, the larger the difference between the players' initial expectations,
EO(-),and the game-theoretic equilibrium mixed-strategies. Games of Class
(i1i), on the other hand, start cycling from their beginning. Finally,
it can be shown that for both classes of games, the empirical relative
frequencies of strategy choices converge to the game-theoretic equilibrium
strategies. This interesting result has been conjectured by Brown {1l] and
proved by Robinson [17] for finite two-person zero-sum games. Our competitive
model extends this result to non-zero-sum games. It should be noted, however,
that the convergence is not the same in the two classes of games. The
games of Class (ii) converge immediately and with the same rate to their
equilibrium mixed-strategies because of their symmetric structure
(p* = g* and Eé(q) = Eél(p)). The convergence, however, may take different
forms for games of Class (iii). It can come from above or below, with
different convergence rates. For example, for games such as the‘ones
described in PROPOSITION 5, Player II converges more rapidly than Player I
to his game-theoretic equilibrium strategy. This may be due to the assumption
that the initial state is 9y which is the least desirable one for Player II.
This concludes our analysis of competitive preference structures and
posterior performance and the presentation of the results implied by our
competitive decision-making model. We turn now to the next section where

some of the points made in this section will be illustrated by means of

examples.
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4. TIllustrative Examples

Example 1

In this example we shall consider two industries (1) and (2), where
in each industry Player I can be thought of as a potential entrant,
whereas Player II can be viewed as the market leader. The competitive
preference structures of the two industries are represented by matrices
(4.1.1) and (4.1.2), where the preferences are measured, for instance,

on a 0-100 cardinal scale.

Leader Leader
Keep the Keep the
Defend Status- Defend Status-
Quo uo
8l 82 Bl B2
Keep the Keep the
Status- a 40,20 20,40 Status-~ al 60,20 20,40
potential- Quo 1 Potential- Quo
Entrant Entrant
Attack a2 30,30 80,10 Attack a2 40,30 | 100,10
Matrix (4.1.1) - Industry (1) Matrix (4.1.2) - Industry (2)

Several arguments may support these competitive preference structures
which are basically pure conflict games. From the leader's point of view,
his most preferred outcome is that both sides keep the status-quo (i.e.,
peace prevails). His second most preferred outcome is a combination of an
offensive move on the part of the competitor and a defensive move on his part.
This may be justified since the disciplining action can lead the aggressor
to expect that retaliation will always occur. Porter {11, p. 99] refers to

this strategy as "discipline as a form of defense."” The leader's third most
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preferred outcome is a defensive move on his part while the competitor is
keeping the status-quo. This may mean unjustified warfare costs for the
leader. Finally, the leader's least preferred outcome is obviously to keep
the status-quo while the competitor is attacking. For the potential entrant,
the preference ordering of the four states is exactly reversed due to similar
arguments.

We shall use now the notations developed in Section 3 to investigate

the evolution of the two industries.

Industry (1) Industry (2)
S$=60, T=-10, U=-20, V=20, K=6 $=80, T=-20, U=-20, V=20, K=4,
I
L=1, p*=1/2, g*=6/7, Eo(q)=4/5, 1=1, p*=1/2, g*=4/5, E;(q)=8/ll,
IT I 11 11 I 11
E, (p)=2/3, n_=2.5, n =3, N=1, E, (p)=2/3, n =2.75, n =3, N=1,
M=1. M=1.

Note that the two industries are similar in every respect except for their
K-ratios. Given the competitive preference structures, we identify the two
games as belonging to Class (iii). Hence, from the data and due to PROPOSI-
TIONS 3 and 5 we know that currently both industries are in state Oy that
is, the potential entrant is attacking while the leader is keeping the

status-quo. How many plays they will stay in each state can be determined

from equations (3.7) - (3.10). For example, the first cycle will last as
follows:

Industry (1) Industry (2)

1l=2, jl=l4, kl=15, ll=3 1l=2, jl=lO, kl=ll, ll=3

i +j +0.= i +j.+k +2.=

ll jl+kl ll 34 ll jl kl ll 26

Clearly, the cycles in industry (1) are longer because of its larger K-ratio.
An insight as to the asymptotic dynamic behavior of the two industries can
be obtained from the limits of the empirical relative frequencies which we

denote by ppé(al) and ppé(Bl) for strategies o_ and Bl, respectively.

1
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kl+2,l
. t Tt
ppt(all = (4.1)
i'+jl+k'+2"
t "t t t
jl+kl
t Tt
and pp!(B.) = (4.2)
t l i'+j'+k'+2’
t "t 't t
Substituting (3.7) - (3.10) for some t odd we obtain:
(K+1)£° + [MK PE-S.EIN M] g - X232 N
2
' —
ppt(al) (4.3)
2(K+1)t2 + (2M+2MK+K+1)t ~ K + 3 + 2N
2Kt2 + K{(2M+1)t - K + 3 + 2N
and ppé(Bl) = (4.4)

2(K+1)t2 + (2M+2MK+K+1)t ~ K + 3 + 2N

For the two industries being investigated we obtain:

Industry (1)

7t2+ll.5t—0.5

1 =
ppt(al) -
14t +21t-1
2
pp; (8)) = 12t +lgt-1
l4t2+2lt—l

It turns out that ppé(al) converges to p* from above

The convergence of pp is from below 1n industry
h £ é(Bl) is £ bel in ind

industry (2).
rapidly than pp'(al) in both industries.
t

Example 2

Industry (2)

Ppé(al)

pp (B,)

5t%+8.56+0.5
10t2+15t+1

8t2+12t+l

i

lOt2+15t+l

in both industries.

(1) and from above. in

We also note that pp'(Bl) converges to its equilibrium more
t

Consider the industry with a competitive preference structure represented

by matrix (4.2.1) and where the preferences are measured, say, on a 0-20

cardinal scale.
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Competitor II

siiiisfgio Attack
8l 82
. ctamsguo %1 | 1012 | 8as
Comptition I
Attack o, 12,10 2,1
|

Matrix (4.2.1)

This industry is symmetric with respect to the competitors' preference
ordering of the four states. However, the strength of the preference is
different. The competitive preference structure described in Matrix (4.2.1)
may represent an industry where mutual war could be a disaster for both
competitors and hence, it is their least preferred state. The second least
preferred state for each competitor is the case where he is keeping the
status-quo while his opponent is attacking. The second most preferred state
is the case where both competitors are in peace. Finally, the most preferred
outcome for each competitor is to attack while his opponent is keeping the
status-quo.

What would be the evolution of the industry for some given expectations
over the competitor's likelihood of choosing his strategies? We shall determine
it from the industry's parameters, using the notations presented in Section 3:

S=-6, T=2, U=-9, V=3, K=3, 1=3, p*=3/4, q*=3/4, E_(@)=3/4, E; (p)=3/4,

M=0, N=0.

We note that the competitive preference structure belongs to Class (ii)
and meets the conditions specified in PROPOSITION 6. Hence, the industry
will cycle through two states: o, and o,, namely, keeping peace simul-

1 4

taneously or mutual war. From the data and PROPOSITION 6 we can determine
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the number of plays that these states will be visited. The process will
start with one simultaneous decision of war (io=l). This will be the
transient period. Then, cycles will develop and always be composed of
three simultaneous peace decisions (k=3) and a single simultaneous war
decision (i=1).

Example 3

In this example we shall illustrate the effect of the competitors'
attitudes toward risk upon their posterior performance. Consider the

competitive preference structures represented by matrices (4.3.1) and

(4.3.2.).
Bl B2 Bl 82
al 40,20 20,40 al 3.50,20 1.87,40
o, 30,30 80,10 e, 2.56,30 12.23,10
Matrix (4.3.1) Matrix (4.3.2)

Here, matrix (4.3.1) is identical to matrix (4.1.1) presented in Example
1, and we can use the results illustrated there. However, we shall inter-

pret now the numerical returns as monetary payoffs. Matrix (4.3.2) is

derived from matrix (4.3.1) in some particular manner. It is assumed
that Player II is still risk neutral and hence, his returns are the same
as in matrix (4.3.1). For Player I, though, matrix (4.3.2) is constructed
from the monetary payoffs in matrix (4.3.1) and under the assumption that
. . . . ‘s . 0.0313x
he is a risk taker with an exponential utility function: U(x) = e .
Exponential utility is viewed as a reasonable approximation to the pre-
ferences of many decision makers [10, 20]. Note that the preference

ordering of the four states does not change but the parameters of the in-

dustry represented by matrix (4.3.2) now become:
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§=10.36, T=-0.94, U=-20, v=20, K=11, L=1, p*=1/2, q*=11/12, Eg(q)=4/5,
E;I(p)=2/3, n3=2.5, néI=3, N=3, M=1.

Consequently, the posterior performance of the competitors during the

first cycle will be: il=2, jl=26, kl=27 and £l=3. The length of the

first cycle is now composed of 58 simultaneous decisions compared with

34 decisions for the two risk-neutrals case, i.e., the cycle is longer.

The same implication holds for any other cycle. A more general discussion of

the effect of the competitor's attitudes toward risk is given in [3].

It is based on the results that have been reported in {2].
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5. Summary

This paper has investigated competitive preference structures which
can be represented by 2 x 2 game matrices, and examined their implied
posterior performances. The approach taken was Bayesian decision-theoretic,
where the decision maker regards his opponent's behavior as a stochastic
decision process. Each decision maker is assumed to assess probability
distributions over the likelihoods of his opponent's choices of strategies.
After observing each other's decision, the two competitors learn and
revise their probability distributions. At each play, each player acts
in such a way as to maximize his expected return and selects an optimal
pure strategy, based on the players' mutual past history.

It was first shown that different competitive preference structures
may generate different sequential games. A classification of the games
was then presented such that the same pattern of dynamic behavior is to
be observed within each class of games. For some general classes of games,
bounds and expressions on the number of times in a sequence of plays that
certain strategy pairs will be employed, were obtained. The convergence
of the dynamic competitive behavior implied by our model to the one
implied from game-theoretic considerations was noted and characterized,
too. Examples which illustrate the implications of the results were also
presented.

The analysis of real competitive situations can be guite complicated.
However, it is felt that the approach presented in this paper could provide
some insight and a benchmark as to how different industries may evolve
over time, in terms of the competitors' posterior performance. This under-
standing becomes more important these days since many industries have
reached their maturity level and a firm's growth is possible only through

attacking the share of its competitor. In addition, the results reportad
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in this paper can be used for generating hypotheses regarding actual
dynamic behavior in competitive situations. These hypotheses can then
be tested in an experimental gaming setting or with industry data and
may provide stepping stones to developing theory in the direction of
greater relevance to the "real world."

Several possibilities exist for future work in the same spirit as
the work reported here. Perhaps, the two most interesting changes in the
details of the game that should be considered are the following. First,
a dynamic preference theory can be incorporated to account for the temporal
aspects of the problem, and the results could be compared with the stable
preference assumed in this paper. VSecondly, a relaxation of the act--
unconditional states assumption may provide an insight on the effect of
the players' beliefs concerning possible "information leaks" upon their

competitive behavior.
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